多学科设计优化关键技术研究及其在机构学领域中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,机械系统越来越精密、复杂,其内部各组成部分之间的相互作用也日益明显。机械系统设计通常涉及到多学科、多目标、多约束、多个设计变量,使得机械系统的总体设计过程十分复杂。为挖掘设计潜力,提高设计质量,多学科设计优化(Multidisciplinary DesignOptimization,MDO)理论得到了极大重视。MDO通过充分利用各学科间相互作用所产生的协同效应,获得系统的整体最优解或工程满意解。目前,MDO已引起了国内外学术界的广泛关注,并在航空航天领域内取得了巨大成功,产生了巨大的效益。MDO在航空航天领域内的巨大成功也引起了其他工程设计领域的重视,MDO的应用范围已经拓展到了武器、汽车、计算机、通信、机械、医疗以及建筑等各个领域。
     引入MDO的思想到机构设计领域,研究了机构的设计模式。介绍了机构的串行、集成和MDO设计模式的定义,分析了机构设计模式的思想,建立了机构设计模式的优化模型,研究了机构设计模式的优缺点。
     归纳了MDO的耦合因素的类型,分析了影响MDO子系统之间耦合程度的一些主要因素,研究了耦合因素相互作用的机理,着重对交叉耦合因素进行深入研究分析,利用灵敏度计算结果,定义强弱耦合因素的概念,利用模糊数学信息,定义耦合因素的隶属度函数,提出强弱耦合因素的判定准则,构建了基于灵敏度分析的MDO解耦方法。
     分析了近似技术应用于MDO的重要性,阐述了MDO的局部近似技术和全局近似技术,归纳了试验设计方法。针对CO算法系统级的计算困难的难题,采用均匀设计方法,选取近似模型的样本点,利用Kriging近似技术,构造了系统级约束的近似优化模型,提出了改进的CO算法。
     分析了MDO系统的特点,提出了基于层次分析法(Analytic HierarchyProcess,AHP)确定各个子系统(学科)重要度的步骤,介绍了满意度和满意解的定义,列举了满意函数的常见分布类型及函数的选择问题,阐述了复杂系统MDO可行解的综合满意度的评价方法,建立了MDO可行解的满意度评价模型,构建了MDO可行解的评价函数,提出了MDO可行解的满意评价方法,从而指导进一步的设计。
     本文把MDO引入到机械设计领域,系统地研究了机构的设计模式、MDO的耦合复杂性难题、MDO算法和MDO可行解的评价方法等MDO关键技术,并将这些方法成功应用于机构系统设计与MDO经典工程算例。
With the development of Science and Technology,mechanical systems are becoming more and more complex,the interaction between parts of them becomes increasingly obvious.The design of mechanical systems usually involves multidisciplinary、multi-objective、multi-constraint and multivariable.In order to improve design quality and develop design potential,the theory of multidisciplinary design optimization(MDO) is developed.It can be described as a methodology for the design of systems where the interaction between several disciplines must be considered,and where the designer is free to significantly affect the system performance in more than one discipline.At present,MDO has received much widely attention recently in academic circles,both at home and abroad.The success in the field of aerospace has been paid attention to by the researchers in non-aerospace fields.The yield of MDO application has been expanded to the field of weapon、automobile、computer、the mechanical design and other fields.
     The MDO idea is applied to the design of mechanism system.Three modes of mechanism design,such as serial design、integrated design and MDO mode are investigated systematically,including the definitions、the ideas and the optimization models.The merits and demerits of design mode are studied.
     Coupling complexity of MDO is studied.With the analyzing method of sensitivity information,coupling factors are researched.The factors of effecting coupling degree are analyzed.The conception of coupling strength is presented, the function of membership degree is defined with the method of fuzzy methematics,and the judgement criteria of coupling factors is proposed.Based on the conception and the judgement criteria,decoupling method of MDO is proprosed.
     The merit and demerit of collaborative optimization(CO) are analyzed.The local and global approximate technologies are introduced.The methods of experimental design are synthesized.According to the calculation problem of system level of CO,the uniform design is adopted to select sample points,the Kriging approximate technology is used to structure the system level constraints. The improved CO is proposed.In order to perfect the theory of MDO,the evaluation problem of feasible solution is researched.The characteristics of MDO systems are analyzed and summarized.The weights of disciplines are calculated. The definition of satisfactory solution is introduced.The satisfactory functions are enumerated.The satisfaction evaluation model of MDO feasible solution is established.The evaluation method of MDO feasible solution is proposed with offering guidance for further design.
     The dissertation introduces the idea of MDO to the field of mechanical design.The key technologies of MDO,such as design mode of the mechanism、MDO coupling complexity、MDO algorithms and evaluation method of MDO feasible solution,are studied,and all the research results has been successfully used in mechanism system and classical engineering example of MDO.
引文
[1]屈翔,游四海,贾秋红.多学科优化设计及其在汽车设计中的应用[J].重庆工学院学报,2006,20(11):26-28.
    [2]孔凡国.基于Agent模型的汽车车身多学科设计优化研究[J].机械设计与研究,2006,22(6):10-22.
    [3]王奕首,史彦军,滕弘飞.多学科设计优化进展[J].计算机集成制造系统,2005,11(6):751-756.
    [4]AIAA White Paper,Current State of the Art:Multidisciplinary Design Optimization[R].Washington:AIAA Technical Committee for MDO,1991.
    [5]Sobicszozanski-Sobieski J,Haftka T.Multidisciplinary aerospace design optimization:Survey of Recent Development[R].AIAA 96-0711,Nevada:AIAA,1996.
    [6]Giesing J.P.,Barthelemy J.M.A Summary of Industry MDO Applications and Needs.White Paper on Industrial Experience with MDO[A].In:7th AIAA/USAF/NASA/ISSMO Symposium on multidisciplinary Analysis and Optimization[C].St.Louis MO:September 2-4,1998.AIAA Paper 98-4737-CP.
    [7]Jaroslaw,Sobieszczanski-Sobieski.Multidisciplinary aero-space design optimization:survey of recent development[R].AIAA-1996-0711.
    [8]Hulme K.F.,Bloebaum C.L.Development of a Simulation-based Framework for Exploiting New Tools and Techniques in Multidisciplinary esign Optimization[A].In:First ASMO UK/ISSMO Conference on Engineering Design Optimization[C].Ilkley,West Yorkshire,United Kingdom:July,1999.
    [9]王振国,陈小前,罗文彩,等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006.
    [10]R.V.Tappeta,J.E.Renaud.Multiobjective Collaborative Optimization.Journal of Mechanical Design,1997,119:403-411.
    [11]刘克龙,姚卫星,余庆雄.几种新型多学科设计优化算法及比较[J].计算机集成制造系统,2007,13(2):209-216.
    [12]Sobieszczanski-Sobieski J.A Linear decomposition method for optimization problems-blueprint for development. NASA Technical Memorandum 83248,1982.
    [13] AIAA multidisciplinary design optimization Technical committee. Current State of the Art on Multidisciplinary Design Optimization (MDO). An AIAA White Paper. ISBN 1-56347-021-7, September, 1991.
    [14] Sobieszczanski-Sobieski J, Haftka R T. Multidisciplinary Aerospace Design Optimization Survey of Recent Development, AIAA-96-0711.
    [15] Balling R J, Sobieszczanski-Sobieski J. Optimization of coupled systems: A critical Overview of Approaches [J]. AIAA Journal, 1996, 34(1):6-17.
    [16] Marc A. Stelmack, Stephen M, Batill, Bryan C. Design of an Aircraft Brake Component Using an Interactive Multidisciplinary Design Optimization Framework [J].Transactions of the ASME, 2000, 122:70-77.
    [17] Charles D. McAllister, Timothy W. Simpson. Multidisciplinary Robust Design Optimization of an Internal Combustion Engine [J].Transactions of the ASME,2003, 125:124-131.
    [18] Stephen M. Batill, Marc A. Stelmack, Xiong Qing Yu. Multidisciplinary design optimization of an electric-powered unmanned air vehicle [J]. Aircraft Design, 1999, 2: 1-18.
    [19] Susan L. Burgee、 Layne T. Watson. Parallel Multipoint Variable-Complexity Approximations for Multidisciplinary optimization [J].IEEE, 1994:734-741.
    [20] Balling R J, Wilkison C A. Execution of multidisciplinary design optimization approaches on common test problem [J]. AIAAJournal, 1997,35(1):178-186.
    [21] Sobieszczanski-Sobieski J. Sensitivity of complex internally coupled systems [J].AIAA Journal, 1990, 28(l):153-160.
    [22] Evin J. Cramer, J. E. Dennis, Jr., Paul D. Frank Michael Lewis, Gregory R.Shubin. Problem Formulation for Multidisciplinary Optimization.CRPC-TR93334,August, 1993.
    [23] R. J. Balling, J. Sobieszczanski-Sobieski. Optimization of coupled systems:A critical Overview of Approaches. AIAA Journal, 1996, 34(1): 6-17.
    [24] K.F. Hulme, C.L. Bloebaum, A Comparison of Solution Strategies for Simulation based Multidisciplinary Design Optimization, AIAA-98-4977, 1998.
    [25] Mike Yukish, Timothy W. Simpson, Requirements on MDO Imposed by the Undersea Vehicle Conceptual Design Problem, AIAA-2000-48.16,2000.
    [26] R. D. Braun, A. A. Moore, I. M. Kroo. Collaborative Approach to Launch Vehicle Design. Journal of Spacecraft and Rockets, 1997, 34(4):478-486.
    [27] Sobieszczanski-Sobieski J. A step from hierarchic to non hierarchic systems [R]. NASA-CP-3031.Part I, Virgjnia: NASA, 1989.
    [28] Sellar R S, Batill S M, Renaud J E. Response surface based, concurrent subspace optimization for multidisciplinary system design[R].AIAA-96-0714,Nevada: AIAA, 1996.
    [29] Stelmack M A, Batill S M, Beck B C, et al. Application of the concurrent subspace design framework to aircraft brake component design optimization[R].AIAA-98-2033, CA: AIAA, 1998.
    [30] Yu X Q, Stelmack M A, Batill S M. An application of the concurrent subspace design (CSD) to the preliminary design of a low-reynolds number UAV[R]. AIAA-98-4917, Missouri: AIAA, 1998.
    [31] Backer C A, Grossman B, Haftka R T, et al. HSCT con figuration design space exploration using aerodynamic response surface approximations[R].AIAA-98-4803, Missouri: AIAA, 1998.
    [32] Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design[R].AIAA-94-4325, FL: AIAA, 1994.
    [33] Braun R D, Kroo I. Use of the Collaborative Optimization Architecture for Launch Vehicle Design [A]. Proceeding of 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WS,1996.
    [34] Kroo I, Manning V. Collaborative optimization: status and directions[C].AIAA-2000-4721.
    [35] Robert Braun, Peter Gage, Ilan Kroo, et al. Implementation and performance issue in collaborative optimization[C].AIAA-96-4017.
    [36] ALEXANDROV N M, LEWIS R M. Analytical and Computational Aspects of Collaborative Optimization for Multi-disciplinary Design [J].AIAA Journal, 2002,40(2):301-309.
    [37]CORMIER T A,SCOTT A,LEDSINGER L,et al.Comparison of collaborative optimization to conventional design techniques for a conceptual RLV[A].AIAA-2000-4885,the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C].Long Beach,2000.
    [38]李响,李为吉.基于系列响应面方法的协同优化方法算法[J].西北工业大学学报,2003,21(4):79-82.
    [39]李响,李为吉.利用协同优化方法实现复杂系统分解并行设计优化[J].宇航学报,2004,25(3):300-304.
    [40]Braun R D.Collaborative optimization:an architecture for large-scale distributed design[D].Stanford University,1996.
    [41]杨维维,赵勇,陈小前,姚雯.一种改进的协同优化过程研究[J].系统工程与电子技术,2007,29(9):1564-1567.
    [42]陶冶,黄洪钟,吴宝贵.基于满意度原理的多学科协同优化[J].应用基础与工程科学学报,2006,14(1):106-114.
    [43]余雄庆,薛飞,穆雪飞,等.用遗传算法提高协同优化方法的可靠性[J].中国机械工程,2003,14(21):1801-1804.
    [44]周盛强,向锦武.飞机总体协同优化中的一种混合混沌算法[J].北京航空航人大学学报,2006,32(8):908-911.
    [45]陈亚洲,高亮,周驰.基于粒子群优化和协同优化的多学科设计优化研究[J].机械科学与技术,2007,26(4):424-426.
    [46]SOBIESKI I P.Collaborative Optimization Using Response Surface Estimation[D].Stanford University Department of Aeronautics and Astronautics,1998.
    [47]HU Y,LI W J.A New Effective Multidisciplinary Design Optimization Algorithm[A].The 23rd ICAS Congress[C].ToronLo,2002.
    [48]JUN S,JEON Y,RHO J,LEE D.Application of Collaborative Optimization Using Response Surface Methodology to an Aircraft Wing Design[A].AIAA-2004-4442,the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference[C].Albany,New York,2004.
    [49]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用[D].武汉:华中科技大学,2004.
    [50]Braun R D,Gage P,Kroo I,et al.Implementation and performance issues in collaborative optimization[R].AIAA-96-4017,Washington:AIAA,1996.
    [51]SOBIESZCZANSKI-SOBIESKI J,AGTE J,SANDUSKY R Jr.Bi-level integrated system synthesis(BLISS)[A].AIAA-1998-4916,the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C].St.Louis,Missouri,1998.
    [52]KODIYALAM S,SOBIESZCZANSKI-SOBIESKI J.Bi-level integrated system synthesis with response surfaces[J].AIAA Journal,2000,38(8):1485-1497.
    [53]SOBIESZCZANSKI-SOBIESKI J,ALTUS T,PHILLIPS M,et al.Bi-level Integrated System Synthesis for Concurrent and Distributed Processing [J].AIAA Journal,2003,41(10):1996-2002.
    [54]ALTUS T D.A response surface methodology for bi-level integrated system synthesis(BLISS)[R].Hampton,Va.,USA:NASA Langley Research Center,2002.
    [55]KIM H,RAGON S,SOREMEKUN G,et al.Flexible Approximation model Approach for Bi-Level Integrated System Synthesis[A].AIAA-2004-4545,the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference[C].Albany,New York,2004.
    [56]BROWN N F.Evaluation of Multidisciplinary Optimization (MDO)Techniques Applied to a Reusable Launch Vehicle[A].The 43rd AIAA Aerospace Sciences Meeting and Exhibit[C].Reno,Nevada,2005.
    [57]操安喜,崔维成.基于多学科设计优化的深海空间站总体设计方法研究[J].舰船科学技术,2007,29(2):32-40.
    [58]SOBIESZCZANSKI-SOBIESKI J,EMILEY M,AGTE J,et al.Advancement of Bi-Level Integrated System Synthesis (BLISS)[A].AIAA-2000-421,38th Aerospace Sciences Meeting and Exhibit[C].Reno,NV,2000.
    [59]SOBIESZCZANSKI-SOBIESKI J,KODIYALAM S.BLISS/S:A New Method for Two-level Structural Optimization[R].AIAA-99-1345,1999.
    [60]KODIYALAM S,YUAN C.Evaluation of Methods for Multidisciplinary Design Optimization(MDO),Part Ⅱ[R].AIAA Paper NASA/CR-2000-210313,2000.
    [61]KIM H,RAGON S,MULLINS J,et al.A Web-based Collaborative Environment for Bi-Level Integrated System Synthesis (BLISS)[A].AIAA-2006-1618,the 47th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference[C].Newport,Rhode Island,2006.
    [62]余雄庆,姚卫星,薛飞,等.关于多学科设计优化计算框架的探讨[J].2004,23(3):286-289.
    [63]Eldred M S,DAKOTA G A A.A Multilevel Parallel Object Oriented Framework for Design Optimization,Parameter Estimation,Uncertainty Quantification,and Sensitivity Analysis[R].Version 3.0 Users Manual.Sandia Technical Report SAND2001-3796,2002.
    [64]Batill S B,Stelmack M A,Yu X Q.Multidisciplinary design optimization of an electric-powered unmanned air vehicle[J].Aircraft Design,1999,2(1):1-18.
    [65]Kroo I,Manning V.Collaborative optimization:status and direction[A].AIAA-2000-4721,8th AIAA/ NASA/ USAF/ ISSMO Symposium on Multidisciplinary Analysis and Optimization,2000.Dovi A R,Sup,Murthy T.A distributed object approach to multidisciplinary analysis of aerospace vehicle[A].AIAA-2000-4898,8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization,2000.
    [66]Vanderplaats Research & Development Inc.DOT(Design optimization Tools)Users Manual Version 5.0[M],2001.
    [67]Giunta A A.Use of data sampling,surrogate models,and numerical optimization in engineering design[A].AIAA 2002-0538,in Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit[C].Reno,NV,Jan,2002.
    [68]Scott A T.An Evaluation of Three Commercially Available Integrated Design Framework Package for Use in the Space System Design Labs[R].Georgia Institute of Technology,2001.
    [69]http://www.phonix-int.com/index.html
    [70]http://www.engineous.com/index.htm
    [71]李金从,邓家裎.多学科优化集成设计框架[J].现代制造工程,2003(3):77-79.
    [72]余雄庆.多学科设计算法及其在飞机设计中的应用研究[D].南京:南京航空航天大学,1999.
    [73]黄俊,武哲,孙惠中,等.飞机总体优化设计的新进展[J].航空学报,2000,21(6):481-487.
    [74]陈小前.飞行器总体设计优化理论与应用研究[D].长沙:国防科技大学,2001.
    [75]王爱俊,余雄庆,陈大融.复杂微机电系统多学科设计方法研究[J].机械设计,2000(11):7-9.
    [76]王爱俊,陈大融.多学科设计优化方法及其在微型飞行器设计中的应用[J].中国机械工程,2001,12(12):1351-1353.
    [77]胡峪.飞机多学科设计优化及其应用研究[D].西安:西北工业大学,2001.
    [78]胡峪,李为吉.飞机多学科设计的分级优化方法[J].西北工业大学学报,2001,19(1):144-147.
    [79]陈琪峰,戴金海,李晓斌.分布式协同进化MDO算法及其在导弹设计中应用[J].航空学报,2002,23(3):245-248.
    [80]陈琪峰,戴金海.多目标的的分布式协同进化MDO算法研究[J].国防科技大学学报,2002,24(4):12-15.
    [81]陈琪峰,戴金海.异步并行的分布式协同进化MDO算法研究[J].宇航学报,2002,23(4):57-61.
    [82]李响,李为吉.基于序列响应面方法的协同优化算法[J].西北工业大学学报,2003,21(1):79-82.
    [83]李响,李为吉.基于超球近似子空间的协同优化方法及其应用研究[J].西北工业大学学报,2003,21(4):461-464.
    [84]李响,李为吉.利用协同优化方法实现复杂系统分解并行设计优化[J].宇航学报,2004,25(3):300-304.
    [85]方杰,童晓艳,毛晓芳,等.某型发动机喷管的多学科设计优化[J].推进技术,2004,25(6):557-560.
    [86]王书河,何麟书,张玉珠.飞行器多学科设计优化软件系统[J].北京航空航天大学学报,2005,31(1):51-55.
    [87]罗世彬.高超声速分析器机体/发动机一体化及总体多学科设计优化方 法研究[D].长沙:国防科技大学,2004.
    [88]Ting-Yu Chen,Chen-Ming Yang.Multidisciplinary design optimization of mechanisms[J].Advances in Engineering Soft-ware 36(2005) 301-311.
    [89]吴宝贵,黄洪钟,原薇.汽车设计的多学科设计优化方法[J].应用科学学报,2005,23(4):420-423.
    [90]秦东晨,王丽霞,张珂,等.汽车车身的多学科优化设计(MDO)研究[J].现代机械,2004(5):4-6.
    [91]秦东晨,王丽霞,张珂.大型机械结构件的多学科设计优化(MDO)研究[J].机床与液压,2004(4):64-65.
    [92]陈亮,邓灵,高诚辉.多学科协同设计的约束网络模型研究[J].中国制造业信息化,2005(9):97-102.
    [93]吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科设计优化[J].航空动力学报,2005,20(5):795-801.
    [94]陈建江,孙建勋,常伯浚等.基于人工神经网络的多学科设计优化研究[J].计算机集成制造系统,2005,11(10):1351-1356.
    [95]张科施,李为吉,李响.飞机概念设计的多学科综合优化技术[J].西北工业大学学报,2005,23(1):102-106.
    [96]周盛强.一类基于分解协调机制的多学科优化算法[J].航空计算技术,2006,36(1):117-122.
    [97]王晓慧,夏人伟.一种处理多学科设计优化问题的通用和有效方法[J].宇航学报,2006,27(5):1050-1053.
    [98]陈炉云,郭维,王德禹.多学科设计优化技术在舰船设计中的应用[J].船海工程,2006,4:28-31.
    [99]龚春林,谷良贤,袁建平.基于系统分解的多学科集成设计过程与工具[J].弹箭与制导学报,2005,25(3):98-101.
    [100]谢进.基于非线性科学理论的机构设计新方法的研究[D].成都:西南交通大学,2006.
    [101]谢维.平面机构结构和控制的并行设计[D].成都:西南交通大学,2003.
    [102]任毅.平面铰链四杆机构的动力和控制设计[D].成都:西南交通大学,2005.
    [103]姚燕安,查建中,颜鸿森.机构与控制的协同设计[J].机械工程学报,2004,40(10):1-5.
    [104]YOUCEF-TOUMI K.Modeling,design,and control integration:a necessary step in mechatronics[J].IEEE/ASME,Transactions on Mechatronics,1996,1(1):29-38.
    [105]J.A.Reyer,P.Y Papalambros.An investigation into modeling and solution strategies for optimal design and control[C].Proceedings of the DETC'00.(ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference) DETC2000/DAC-14253.
    [106]J.A.Reyer,P.Y.Papalambros.Combined optimal design and control with application to an electric DC motor[J].Transaction of the ASME Journal of Mechanical Design,2002,124:183-191.
    [107]WU F X,ZHANG W J,LI Q,et al.Integrated designs and PD control of high-speed closed-loop mechanisms[J].ASME,Journal of Dynamic Systems,Measurement and Control,2002,124:522-528.
    [108]姚燕安,颜鸿森,张策,等.凸轮机构与伺服控制系统的集成设计[J].中国科学(E辑),2000,30(6):524-530.
    [109]J.Park,H.Asada.Concurrent design optimization of mechanical structure and control for high speed robots[J].Transaction of the ASME Journal of Mechanical Design,1994,116:344-355.
    [110]李旭宇,钟掘.一种机电产品并行设计中协同方法的研究[J].机械科学与技术,2003,22(2):325-327.
    [111]谢进,魏宏,阎开印,等.混合驱动连杆机构的串行和并行设计[J].机械工程学报,2007,43(9):179-184.
    [112]Ting-Yu Chen,Chen-Ming Yang.Multidisciplinary design optimization of mechanisms[J].Advances in Engineering Software,2005,36:301-311.
    [113]朱志磊.铰接驱动式三自由度摇动装置动力学分析与控制[D].长春:吉林大学,2007.
    [114]李冰.着舰引导仿真转台单自由度控制系统研究[D].哈尔滨:哈尔滨工程大学,2006.
    [115]袁贺玲.铰接驱动式三自由度并联机器人运动学分析与优化[D].长春:吉林大学,2007.
    [116]宋俊,王淑莲,王洁,等.液压元件优化[M].北京:机械工业出版社,1999.
    [117]Tao J,Sadler J.P.Constant Speed Control of a Motor Driven Mechanism System[J].Mechanical Machine Theory,1995:30(5):737-748.
    [118]余雄庆.基于Agent模型的多学科设计优化方法[J].机械科学与技术,2002,21(5):844-851.
    [119]王奕首,史彦军,滕弘飞.多学科设计优化研究进展[J].计算机集成制造系统,2005,11(6):751-754.
    [120]Sobieszczanski-Sobieski J.Sensitivity of complex,internally coupled systems[J].AIAA Journal,1990,28(1):153-162.
    [121]Bloebaum C L.Coupling strength-based system reduction for complex engineering design[J].Structure Optimization,1995,4(1):113-121.
    [122]陈柏鸿,刘继红,钟毅芳,等.多领域优化设计中耦合因素的一种协调方法[J].机械科学与技术,2000,19(6):872-876.
    [123]何麟书,王书河,张玉珠.飞行器多学科综合设计新算法[J].航空学报,2004,25(5):465-469.
    [124]陈柏鸿.机械产品多学科综合优化设计中的建模、规划及求解策略[D].武汉:华中科技大学,2001.
    [125]颜力.飞行器多学科设计优化若干关键技术的研究与应用[D].长沙:国防科技大学,2006.
    [126]AIAA Multidisciplinary Design Optimization Technical Committee.Current State of the Art on Multidisciplinary Design Optimization(MDO).An AIAA White Paper[R].ISBN 1-56374-021-7,1991.
    [127]Sobieszczanski-Sobieski J.,Haffka R.T.Multidisciplinary Aerospace Design Optimization:Survey of Recent Developments[A].In:34th Aerospace Sciences Meeting and Exhibit[C].Reno,Nevada:January 15-18,1996.AIAA Paper 96-0711.
    [128]J.Sobieszczanski-Sobieski,Barthelemy J.F.,Riley K.M.Sensitivity of Optimum Solutions to Problem Parameters[J].AIAA Journal,1982,20(9):1291-1299.
    [129]Joaquim R R,Martins A.A coupled-Adjoint Method for High-Fidelity Aero-Structural Optimization.PhD,Stanford University,October 2002.P 57-64.
    [130]Joaquim R R,Martins A.Sensitivity Analysis,AA222-Multidisciplinary Design Optimization.http://www.stanford.edu/class/aa222.
    [131]冯志友,李永刚,张策,杨廷力.并联机器人机构运动与动力分析研究现状 及展望[J].中国机械工程,2006,17(9):979-984.
    [132]朱兴龙,周骥平.运动解耦机理分析与解耦关节设计[J].中国机械工程,2005,16(8):674-677.
    [133]王宪平,戴一帆,李圣怡.一般机构的解耦运动[J].国防科学技术大学学报,2002,24(2):85-90.
    [134]王文熙.机器人的最优解耦控制[J].机器人,1988,2(4):26-29.
    [135]王文熙.最佳解耦控制及其应用[J].安徽工学院学报,1988,7(1):1-6.
    [136]Hayward V,Nemri C,Chen Xianze,et al.Decoupling Kinematic in Mechanisms and Application to passive Hand and Controller Design [J].Journal of Robotic Systems,1993,10(5):767-790.
    [137]Baron L,Angeles J.The Kinematic Decoupling of Parallel Manipulators Using Jiont-sensor Data[J].IEEE Transactions,2000,16(6):644-651.
    [138]刘洋,郭庆鼎.6DOF并联机床的运动学解耦[J].沈阳工业大学学报,2001,23(5):395-398.
    [139]Guo Qingding,Liu Yang,Liu Ying.Local Structurization Kinematic Decoupling of Six-leg Birtual-axis NC Machine Tool[J].IEEE/ASME Transactions on Mechatronics,2002,7(4):515-518.
    [140]郭庆鼎,刘洋.直线伺服6位置环虚拟轴机床的运动学解耦[J].控制与决策,2002,17(3):364-367.
    [141]杭鲁滨,王彦,杨廷力.一种新型三平移一转动解耦并联机构分析[J].中国机械工程,2004,15(12):1035-1037.
    [142]Kong Xianwen,Gosselin C M.Type Synthesis of Input-output Decoupled Parallel Manipulators[J].Transactions of the Canadian Society for Mechanical Engineering,2004,28(2A):185-196.
    [143]何景峰,谢文建,韩俊伟.六自由度并联机器人输出解耦控制[J].哈尔滨工业大学学报,2006,38(3):395-398.
    [144]颜力,陈小前,王振国.飞行器多学科设计优化中的灵敏度分析方法研究[J].航空计算技术,2005,35(1):1-5.
    [145]邱清盈,冯培恩,董黎刚.基于灵敏度信息的优化结果分析技术[J].浙江大学学报,2000,34(6):603-607.
    [146]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [147]朱宏辉.物流自动化系统设计及应用[M].北京:化学工业出版社,2004.
    [148]Cirrus Shakeri.Discovery of Design Methodologies for the Integration of Multidisciplinary Design Problems[D].Worcester:Worcester Polytechnic Institute,1998.
    [149]Golovidov O.B.Variable-Complexity Response Surface Approximations for Aerodynamic Parameters In HSCT Optimization:[MS thesis].Virginia Polytechnic Institute and State University,July,1997.
    [150]Kaufman M.,Balabanov V,etc.Variable-complexity response surface approximations for wing Structural weight in HSCT design.Computational Mechanics,1996,18:112-126.
    [151]Giunta A.A.,Balabanov V,etc.Variable-Complexity response surface design of an HSCT configuration.
    [152]http://www.aoe.vt.edu/~mason/Mason_fficase_paper05.pdf
    [153]Giunta,A.A.Aircraft Multidisciplinary Design Optimization Using Design of Experiments and Response Surface Modeling Methods[D].A Dissertation Virginia Polytechnic Institute and State University,Blacksburg,Virginia,May,1997.
    [154]徐秉铮,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出版.1994.
    [155]王洪元,史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社.2002.
    [156]Anthony A.Giunta.Aircraft Multidisciplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods[D].Virginia Polytechnic Institute,May 1997.
    [157]Giunta,A.A.and Watson,L.T.,A Comparison of Approximation Modeling Techniques:Polynomial versus Interpolating Models[J]7th AIAA/USAFINASA/ISSMO Symposium on Multidisciplinary Analysis&Optimization,St.Louis,MO,AIAA-98-4758.
    [158]Simpson,T.W.,Mauery,T.M.,Korte,J.J.,and Mistree,E,Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization[J]7th Symposium on Multidisciplinary Analysis and optimization,St.Louis,MO,AIAA-98-4755.
    [159]Sin,R.,Chen,W.and Simpson,T.W.,Comparative Studies of Meta modeling Techniques under Multiple Modeling Criteria[J].Journal of Structural and Multidisciplinary Optimization,2001,23(1):1-13.
    [160]张健,李为吉.飞机多学科设计优化中的近似方法分析[J].航空计算技术,2005,35(3):5-16.
    [161]张科施.飞机设计的多学科优化方法研究[D].西安:西北工业大学,2006.
    [162]任露泉.试验优化技术.北京:机械工业出版社,1989.
    [163]张利辉.基于Kriging模型的球磨机齿轮传动可靠性优化设计[D].长春:吉林大学.2007.
    [164]Myers,R.H and Montgomery,D.C.Response Surface Methodology:Process and Product Optimization Using Designed Experiments[M].New York:John Wiley&Sons,1995.
    [165]Lewis,R.M.A Trust Region Framework for Managing Approximation Models in Engineering Optimization[C].AIAA-96-4101.
    [166]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [167]刘文卿.实验设计[M].北京:清华大学出版设,2005.
    [168]栾军.现代试验设计优化方法[M].上海:上海交通大学出版社,1994.
    [169]韩明红.复杂工程系统多学科设计优化方法及技术研究[D].北京:北京航空航天大学,2004.
    [170]张健.飞机多学科设计优化中的近似方法研究[D].西安:西北工业大学,2006.
    [171]张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179.
    [172]BRAUN R D,GAGE KROO I.Implementation and performance issues in collaborative optimization[R].NASA-AIAA-96-4017,1996.
    [173]Srinivas Kodiyalam.Evaluation of Methods for Multidisciplinary Design Optimization(MDO),Phase Ⅰ[R].NASA/CR-1998-208716.
    [174]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005.
    [175]Srinivas Kodiyalam,Charles Yuan.Evaluation of Methods for Multidisciplinary Design Optimization(MDO),Phase Ⅱ[R].NASA/CR-2000-210313.
    [176]邵家骏.质量功能展开[M].北京:机械工业出版社,2004.
    [177]许树柏.层次分析法原理[M].天津大学出版社,1988.
    [178]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学版社,1990.
    [179]朱茵,孟志勇,阚叔愚.用层次分析法计算权重[J].北方交通大学学报,1999,23(5):119-122.
    [180]沈源,陈幼平,丘智明,等.一种基于满意度的模糊层次分析评估方法[J].中国机械工程,1999,10(7):769-772.
    [181]古莹奎,吴陆恒.机械运动方案评价中评价因素权重确定的模糊层次分析法[J].中国机械工程,2007,18(9):1052-1055.
    [182]陈彦如.ITS指挥系统的满意优化理论及列车调整研究[D].成都:西南交通大学,2003.
    [183]任平.优化理论中的令人满意准则[J].模糊数学,1983(4):111-112.
    [184]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983.
    [185]金炜东.线性满意度及其组合运算[J].铁道学报,1997,19(5):49-55.
    [186]罗刚,金炜东,李治.动态矩阵控制参数的满意优化[J].信息与控制.1999,28(1):75-79.
    [187]梅志红.满意评价方法及其应用研究[D].成都:西南交通大学,2004.
    [188]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2004.
    [189]赵学峰.灰色局势决策在维修商评价中的应用[J].中国管理科学,2003,11(2):62-65.
    [190]赵克勤.集对分析对不确定性的描述和处理[J].信息与控制,1995,24(3):162-166.
    [191]赵克勤.集对分析及其初步应用[M].杭州:浙江科学技术出版社,2000.
    [192]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [193]雷功炎.关于将相对熵用于层次分析的简单注记[J].系统工程理论与实践,1995,15(3):65-68.
    [194]钱敏平.随机过程引论[M].北京:北京大学出版社,1990.
    [195]万仲平.优化理论与方法[M].武汉:武汉大学出版社,2004.
    [196]王耀南.机器人智能控制工程[M].北京:科技出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700