高动态捷联惯导系统的并行实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高超声速巡航导弹的高速高机动特性,本论文研究高动态下的捷联惯导系统并行实现方法,涉及初始对准算法、并行卡尔曼滤波器设计、捷联解算算法、并行捷联解算算法设计以及FPGA实现技术等方面。其内容主要包括以下几个方面:
     1.类似于组合导航中的耦合机制,在对捷联惯导系统导航计算机的功能需求以及性能需求进行分析的基础上,提出了三类导航计算机的并行体系架构,即浅并行体系架构、深并行体系架构和全并行体系架构。其中,在全并行体系架构中,所有的计算均是并行化执行的,因此就需要设计全新的捷联惯导系统初始对准和捷联解算算法,即并行初始对准算法和并行捷联解算算法等。
     2.针对武器系统快反下的高晃动特性,提出了两种新的晃动基座捷联惯导系统初始对准算法,即基于动态增益调节的捷联罗经对准方法(DGA-Compass)和卡尔曼滤波对准方法(New-Kalman)。其中,在DGA-Compass对准算法中,根据滤波时间和运载体姿态变化剧烈程度动态调节对准回路的增益使系统姿态角输出随运载体的低频大幅度晃动的变化而变化,加快了对准算法的收敛速度,即缩短了系统的初始对准时间;在卡尔曼滤波对准算法中,通过在卡尔曼滤波器观测量中引入水平加速度计测量值,提高对准算法的性能。
     3.针对提高卡尔曼滤波对准算法实时跟踪运载体真实姿态变化的局限性,提出了一种基于法捷耶夫算法的卡尔曼滤波器并行脉动阵列结构实现。对于任意给定的两个或多个矩阵,矩阵运算(矩阵求逆、矩阵相乘和矩阵相加)或三种运算的合运算都可通过它们对应的法捷耶夫算法实现。由脉动阵列结构的规则性、模块性等特性可知,脉动阵列结构是一种很好的实现法捷耶夫算法的并行结构。从而可将卡尔曼滤波器表示为一些列矩阵运算形式,然后基于法捷耶夫算法将其映射为并行脉冲阵列结构来实现。
     4.针对高超声速巡航导弹的高速高机动运动特性,提出了一种适合高动态的捷联惯导系统捷联解算算法。其中,考虑到当前计算机的性能(高速和高吞吐量),在捷联解算算法中采用了单速结构。并且针对姿态更新中的圆锥运动和姿态更新中的划桨运动,提出了一种新的广义优化圆锥补偿算法和划桨补偿算法。其相对于现有的圆锥和划桨补偿算法,当惯性器件的输出采样速率恒定时,圆锥和划桨补偿算法的更新速率与惯性器件的输出采样个数无关,即在圆锥和划桨补偿算法的高更新速率下可采用高阶更新算法。
     5.考虑到姿态更新算法是捷联解算算法的核心,也是影响系统精度的主要因素,特别是对作高速高机动运动的高超声速巡航导弹等运载体来说,定量分析了圆锥补偿算法的阶次以及更新周期对算法误差的影响大小。通过分析可知,相对于更新周期,圆锥补偿阶次对姿态误差的影响关系更为复杂。当运载体作中低动态运动时(即中低圆锥运动频率),可通过同时提高圆锥补偿的更新速率和增大圆锥补偿阶次来减小系统的姿态误差;当运载体作高动态运动时(即高圆锥运动频率),考虑到圆锥补偿的更新速率不能无限制地提高,必须仔细选择合适的圆锥补偿阶次。
     6.针对捷联惯导系统减小更新周期(即提高更新速率)可提高其精度的特点,特别是对作高速高机动的高超声速巡航导弹,提出了一种并行捷联解算算法结构。根据并行算法的设计技术(即分治策略和流水线技术),对捷联解算算法进行了并行化设计,且对这种并行捷联解算算法的性能进行定量分析。通过这种并行捷联解算算法相对串行捷联解算算法的性能(即相对加速比)分析可见,这种捷联解算算法的并行化设计可显著减小算法的执行时间,从而可提高算法的更新速率。这就为工作在高动态环境下的捷联惯导系统精度的提高提供了重要基础。
     7.针对捷联惯导系统的并行捷联解算算法和并行卡尔曼滤波初始对准算法的FPGA实现,分别从系统的角度进行了详细分析。其中,利用Xilinx嵌入式软核MicroBlaze控制和调度并行捷联解算算法和并行卡尔曼滤波初始对准算法中的各模块执行。通过车载试验验证了这种捷联惯导系统FPGA硬件实现的可行性。这就为在提高惯性器件输出速率的情况下,提高捷联惯导系统在高动态下的精度和实时性奠定了坚实的基础,具有非常好的现实意义和理论价值。
Considering the high-speed and high-maneuvering features of hypersonic cruise missiles, this thesis systematically investigates the parallel implementation of SINS under high dynamic conditions, which involves the initial alignment algorithm, parallel Kalman filter design, strapdown algorithm, parallel strapdown algorithm design and FPGA implementation. The main contents of this thesis are summarized as follows:
     1. Similar to the matching mechanism of SINS/GPS integrated navigation systems, three parallel system architectures of navigation computer are proposed based on the analysis of SINS functional requirements and performance requirements, namely, loosely-parallel architecture, deep-parallel architecture and totally-parallel architecture. In the totally-parallel architecture, all calculations of SINS are performed on the parallel mode; it needs to design new initial alignment and strapdown algorithms of SINS, namely, parallel strapdown algorithm and parallel initial alignment algorithm.
     2. Considering that the vehicle is inevitably subject to the impact of rocking disturbances by wind gust or engine idling, etc. on the initial alignment, a strapdown compass alignment method based on dynamic gain adjustment (DGA-Compass) and a new Kalman alignment method (New-Kalman) are proposed and comparatively analyzed for the effectiveness of their alignment algorithms under different disturbance conditions. In the DGA-Compass alignment algorithm, the gain parameter is dynamically adjusted based on the expected alignment time and attitude change of vehicle to make the attitude angle output of system track the low-frequency and large-amplitude rocking disturbance, so the convergence speed of compass alignment can be accelerated, that is, the alignment time is reduced; in the New-Kalman alignment algorithm, level accelerometer measurements are introduced into the observations of the Kalman filter to improve the performance of alignment algorithm.
     3. Considering the limitation of Kalman filter real-time tracking the attitude change of vehicle, a parallel systolic array structure implementation of Kalman filter algorithm is proposed based on the Faddeeva algorithm. For any given two or more matrices, matrix operations (matrix inversion, matrix multiplication and matrix addition) or combined operations can be computed by their corresponding Faddeeva algorithm. From the regularity, modularity and other features of systolic array structure, it is shown that systolic array structure is a good structure to achieve the Faddeeva algorithm. Kalman filter can be expressed in the form of some matrix operations, and then can be mapped to the parallel array structure based on Faddeeva algorithm.
     4. Considering the high-speed and high-maneuvering features of hypersonic cruise missiles, a new strapdown algorithm suitable for the high dynamic conditions is proposed, in which the single-speed structure is used based on the performance of current navigation computer (high speed and high throughput). And new generalized optimization coning and sculling compensation algorithms are proposed to solve the coning movement in the attitude updating algorithm and the sculling movement in the velocity updating algorithm. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with higher-order algorithm to improve the accuracy of system.
     5. Taking into account that the attitude updating algorithm is the core of strapdown algorithm, and the major factor influencing system accuracy, especially for the high-speed and high-maneuvering hypersonic cruise vehicles, the relationship between the attitude errors and the coning compensation updating rate as well as the order of the coning compensation is deduced for quantitative analysis of the new coning compensation algorithm under typical coning movement conditions. Through analysis, it is shown that relative to the update rate, the relationship between the order of coning compensation and attitude error is more complex. When a vehicle moves with "normal" dynamics (characterized by a small or moderate coning movement frequency), both the increase of the updating rate of the coning compensation and the increase of the number of gyro incremental angle samples benefit the reduction of the attitude error. When a vehicle is in a high dynamic motion described by a larger frequency, however, in consideration of the technical limitations on the updating rate of the coning compensation (e.g., due to the limited computation speed of the navigation computer), the choice of the sampling number of gyro incremental angles must be made carefully.
     6. Since reducing the update cycle (namely, increasing the update rate) can improve the accuracy of SINS, especially for the high-speed and high- maneuvering hypersonic cruise vehicles, a parallel strapdown algorithm structure is proposed. According to the design techniques of parallel algorithm (i.e., divide-and-conquer strategy and pipelining), the strapdown algorithm is parallel designed, and the parallel design is quantificationally analyzed. By the comparative analysis of the performance, it is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, comparative with the existing implemented on the DSP platform.
     7. From the perspective of system, the FPGA implementation of parallel strapdown algorithm and parallel Kalman filter initial alignment algorithm is analyzed in detail, respectively. Among them, the Xilinx embedded IP hardware MicroBlaze is used for controlling and scheduling the execution of each module in the parallel algorithms. Through car test, it is shown that the FPGA hardware implementation of SINS is feasible. This provides a solid basis for increasing the accuracy and real-time of SINS under the high dynamic conditons, and has a very good practical and theoretical value.
引文
[1]文铁,巡航导弹的现状与走向.现代军事,1998,22(004):13-15.
    [2]张丽静,刘东升,于存贵,高超声速飞行器.航空兵器,2010,2:13-16.
    [3]解发瑜,李刚,徐忠昌,高超声速飞行器概念及发展动态.飞航导弹,2004,5:27-31.
    [4]黄志澄,高超声速飞行器空气动力学.北京:国防工业出版社,1995.
    [5]李大光,世界各国高超声速武器发展现状.国厉技术基础,2007,5:45-48.
    [6]康志敏,高超声速飞行器发展战略研究.现代防御技术,2000,28(4):13-15.
    [7]沈剑,王伟,国外高超声速飞行器研制计划.飞航导弹,2006,8:1-9.
    [8]宋博,沈娟,美国的X-51A高超声速发展计划.飞航导弹,2009(005):36-40.
    [9]曾慧,白菡尘,朱涛,X-51A超燃冲压发动机及飞行验证计划.导弹与航天运载技术,2010,1:57-61.
    [10]刁琳,秦明,贾利,美军巡航导弹的现状和发展.飞航导弹,2007,8:16-19.
    [11]谌国森,陈晓丽,美军巡航导弹的现状及发展趋势.飞航导弹,2006,2:37-40.
    [12]丛敏,魏国福,俄罗斯继续研制高超声速推进系统.飞航导弹,2010,2:9-10.
    [13]丛敏,俄罗斯试射高超声速导弹.飞航导弹,2004,9:24-24.
    [14]褚运,德国高超声速导弹达到Ma=7+的速度.飞航导弹,2004,3:5-5.
    [15]徐文,德国的高超声速导弹.飞航导弹,2004,1:1-4.
    [16]周军,德国的高超声速导弹研制.飞航导弹,2004,4:37-37.
    [17]李娜英,李惠峰,SINS/GPS/CNS组合导航在高超声速巡航飞行器上的应用.微计算机信息,2005,21(25):6-7.
    [18]母方欣,季梅,张臻鉴,高超声速飞行器组合导航算法.航空计算技术,2010,40(5):55-58.
    [19]罗世杰,高超声速巡航飞行器导航系统方案研究.西北工业大学硕士学 位论文,2006.
    [20]黄威,高超声速飞行器组合导航技术及其半物理仿真研究.哈尔滨工业大学硕士学位论文,2010.
    [21]黄铭媛,高超巡航飞行器组合导航系统研究与算法验证.上海交通大学硕士学位论文,2008.
    [22]常青,巡航导弹制导系统关键技术研究.西北工业大学博士学位论文,2003.
    [23]梁勇,邓方林,巡航导弹制导技术的现状及发展趋势分析.尹厦航天,2003.8:35-38.
    [24]Savage, P.G., Strapdown Analytics. Maple Plain, Minnesota:Strapdown Associates,Inc.,2007.
    [25]Titterton, D.H., J.L. Weston, Strapdown Inertial Navigation Technology. London:The Institution of Electrical Engineers,2004.
    [26]秦永元,惯性导航.北京:科学出版社,2006.
    [27]以光衢,惯性导航原理.北京:航空工业出版社,1987.
    [28]陈哲,捷联惯导系统原理.北京:宇航出版社,1986.
    [29]邓正隆,惯性导航原理.哈尔滨:哈尔滨工业大学出版社,1994.
    [30]周海波,刘建业,赖际舟,光纤陀螺仪的发展现状.传感器捞术,2005,24(6):1-3.
    [31]郑露滴,汤全安,章燕申,激光陀螺仪的现状与发展趋势.中国仪器仪表,1995,30(4):4-6.
    [32]岳明桥,王天泉,激光陀螺仪的分析及发展方向.飞航导弹,,2005,12:46-48.
    [33]杨亭鹏,刘星桥,陈家斌,光纤陀螺仪(FOG)技术及发展应用.火力与指挥控制,2004,29(2):76-79.
    [34]张炎华,光纤陀螺的研究现状及发展趋势.上海交通大学学报,1998,32(8):126-129.
    [35]张桂才,光纤陀螺原理与技术.北京:国防工业出版社,2008.
    [36]孙丽,王德钊,光纤陀螺的最新进展.航天控制,2003,21(3):75-80.
    [37]胡卫东,光纤陀螺发展评述.红外技术,2001,23(5):29-33.
    [38]张桂才,王巍,光纤陀螺仪.北京:国防工业出版社,2002.
    [39]顾宏,高精度光纤陀螺仪及其关键技术研究.南开大学博士学位论文,2008.
    [40]王宇,机抖激光陀螺捷联惯导系统的初步探索.国防科技大学博士学位论文,2005.
    [41]魏建仓,机抖激光陀螺及捷联惯导系统振动误差研究.国防科技大学硕士学位论文,2006.
    [42]陈林,王家兵,汪卫星,基于DSP的捷联姿态参考系统实现.弹箭与制导学报,2006,26(004):69-71.
    [43]孙科,刘刚,房建成,基于ARM和DSP的嵌入式导航计算机方案设计.山东大学学报(工学版),2007,37(1):1-4.
    [44]王冬生,基于MCU和DSP双核的捷联导航计算机系统设计.东南大学硕士学位论文,2008.
    [45]施锋,基于DSP和ARM7的捷联导航计算机系统的设计.东南大学硕士学位论文,2008.
    [46]Inc., E.T. EAGLE AIR 650-Miniature GPS Aided Inertial Navigation Systems for Aircraft-650 knots. Available online: http://www.eagle.co.za/display_product_2931.htm.
    [47]Inc., E.T. EAGLE LAND 300-MEMS Based Land Inertial Navigation System. Available online:http://www.eagle.co.za/display_product_2932.htm.
    [48]杜亚玲,刘建业,李荣冰,基于DSP的小型捷联惯性航姿系统研究.仪器仪表学报,2005,26(8):365-366.
    [49]宋桂华,基于浮点DSP的微小型导航系统设计与工程实现研究.南京航空航天大学硕士学位论文,2009.
    [50]杨侃,基于DSP和FPGA导航计算机硬件电路研究与设计.哈尔滨工程大学硕士学位论文,2009.
    [51]张鹏飞,汤建勋,龙兴武,基于DSP的捷联惯导计算机系统的设计与开发.计算机工程,2007,33(2):244-245.
    [52]张鹏飞,许高雁,龙兴武,基于DSP和CPLD技术的捷联惯导系统小型化导航计算机的设计.数据采集与处理,2006,21(B12):139-142.
    [53]李海洋,基于DSP和FPGA的多功能嵌入式导航计算机系统设计.南京 航空航天大学硕士学位论文,2005.
    [54]刘国志,基于DSP/FPGA的捷联惯性导航系统设计.大连理工大学硕士学位论文,2009.
    [55]王东卫,SOPC+DSP6713构成的复合惯导计算机系统设计与实现.哈尔滨工程大学硕士学位论文,2008.
    [56]龚辉,基于高性能DSP的捷联信息处理硬件平台设计与实现.哈尔滨工程大学硕士学位论文,2007.
    [57]Akeila, E., Z. Salcic, A. Swain. Direct gravity estimation, compensation in strapdown INS applications. Proceedings of 3rd International Conference on Sensing Technology, Tainan, Taiwan,2008.
    [58]王其,徐晓苏,基于浮点DSP的SINS/GPS舰船导航计算机设计.舰船电子工程,2007,27(2):73-75.
    [59]周益,周清根,乔鹏,基于FPGA+DSP的微小型捷联惯导系统的设计.电子测量技术,2008,31(2):119-122.
    [60]任磊,宋凝芳,陈永奇,基于DSP+FPGA的光纤航姿系统实时数据采集与处理,中国仪器仪表学会第九届青年学术会议,合肥,安徽,2007.
    [61]任晓东,文博,CPLD/FPGA高级应用开发指南.北京:电子工业出版社,2003.
    [62]田耘,徐文波,胡彬,Xilinx ISE Design Suite 10. x FPGA开发指南:逻辑设计篇.北京:人民邮电出版社,2008.
    [63]田耘,徐文波,Xilinx FPGA开发实用教程.北京:清华大学出版社,2008.
    [64]Kilts, S., Advanced FPGA design:architecture, implementation, optimization. New York:Wiley-IEEE Press,2007.
    [65]Simpson, P., FPGA design:Best practices for team-based design. London: Springer Verlag,2010.
    [66]Jew, M., A. El-Osery, S. Bruder. Implementation of an FPGA-based aided IMU on a low-cost autonomous outdoor robot. Proceedings of IEEE/ION Position Location, Navigation Symposium (PLANS2010), Indian Wells, CA, USA 2010.
    [67]Jew, M., Design, Implementation of an Integrated Navigation System on an FPGA. New Mexico Institute of Mining, Technology,2010.
    [68]贾胜文,冯冬竹,王民钢,FPGA的并行处理及在捷联惯导算法中的应用.弹箭与制导学报,2006,26(2):953-955.
    [69]杨芳,郝永平,苗雷,基于FPGA技术的多处理器导航系统设计.弹箭与制导学报,2007,27(2):126-128.
    [70]万德钧,房建成,惯性导航初始对准.南京:东南大学出版社,1998.
    [71]Song, E.J., et al., Design of an Initial Fine Alignment Algorithm for Satellite Launch Vehicles. International journal of aeronautical, space science,2010,11: 184-192.
    [72]Song, E.J., et al. A Fast Initial Fine Alignment Algorithm for a Strapdown Inertial Navigation System of a Satellite Launcher. Proceedings of 60th International Astronautical Congress, Daejeon, Korea,2009.
    [73]Hung, J., H. White, Self-alignment techniques for inertial measurement units. IEEE Transactions on Aerospace, Electronic Systems,1975,6:1232-1247.
    [74]杨亚非,谭久彬,邓正隆,惯导系统初始对准技术综述.中国惯性技术学报,2002,10(2):68-72.
    [75]李东明,捷联式惯导系统初始对准方法研究.哈尔滨工程大学博士学位论文,2006.
    [76]严恭敏,捷联惯导系统动基座初始对准及其它相关问题研究.西北工业大学博士后出站报告,2008.
    [77]孙昌跃,王司,邓正隆,舰载武器惯导系统对准综述.中国惯性技术学报,2005,13(3):81-88.
    [78]Ali, J., F. Jiancheng, Alignment of strapdown inertial navigation system:a literature survey spanned over the last 14 years. School of instrumentation Science, Optoelectronics Engineering, Beijing University of Aeronautics, Astronautics,2004.
    [79]Reddy, Laser gyro strapdown system alignment/calibration, land navigation using Kalman filters. Proceedings of the National Aerospace, Electronics Conference, Dayton, Ohio,1980.
    [80]Grewal, M.S., V.D. Henderson, R. Miyasako, Application of Kalman filtering to the calibration, alignment of inertial navigation systems. IEEE Transactions on Automatic Control,1991,36(1):3-13.
    [81]Aranda, J., et al., Reduced-order Kalman filter for alignment. Cybernetics, systems,1994,25(1):1-16.
    [82]Pittelkau, M.E., Kalman filtering for spacecraft system alignment calibration. AIAA Joumal of Guidance, Control,2001,24:1187.
    [83]Ahn, H.S., C.H. Won, Fast alignment using rotation vector, adaptive Kalman filter. IEEE Transactions on Aerospace, Electronic Systems,2006,42(1):70-83.
    [84]Jiang, Y.F., Error analysis of analytic coarse alignment methods. IEEE Transactions on Aerospace, Electronic Systems,1998,34(1):334-337.
    [85]秦永元,梅春波,白亮,捷联惯性系粗对准误差及数值问题分析.中国惯性技术学报,2010,18(6):648-652.
    [86]Britting, K.R., Inertial navigation systems analysis. New York: Wiley-Interscience,1971.
    [87]Hua, C., Gyrocompass Alignment with base motions:Results for a 1 nmi/h INS/GPS System. Navigation,2000,47(2):65-74.
    [88]严恭敏,严卫生,徐德民,逆向导航算法及其在捷联罗经动基座初始对准中的应用.中国科技论文在线,2007.
    [89]高伟,陆强,曹洁,孙枫,水下潜器捷联惯导系统初始对准技术研究.中国航海,2003,3:5-8.
    [90]周丽弦,崔中兴,系泊状态下舰载导弹自主式初始对准研究.北京航空航天大学学报,2002,28(1):86-89.
    [91]杨剑宏,施红兵,陆恺,舰载弹用捷联系统初始对准时陀螺误差的估计.中国惯性技术学报,1999,7(4):30-33.
    [92]Wan, D., Y. Huang, T. Ren, Study on new kalman filter mechanization for initial alignment of INS in random rocking vehicles, Proceedings of Symposium Gyro Technology, Stuttgart, Germany,1989.
    [93]El-Sheimy, N., S. Nassar, A. Noureldin, Wavelet de-noising for IMU alignment. IEEE Transactions on Aerospace, Electronic Systems,2004,19(10):32-39.
    [94]Zhang, C.B., W.F. Tian, Z.H. Jin, A novel method improving the alignment accuracy of a strapdown inertial navigation system on a stationary base. Measurement Science, Technology,2004,15:765.
    [95]Fang, J.C., A fast initial alignment method for strapdown inertial navigation system on stationary base. IEEE Transactions on Aerospace, Electronic Systems,1996, 32(4):1501-1504.
    [96]房建成,祝世平,俞文伯,一种新的惯导系统静基座快速初始对准方法. 北京航空航天大学学报,1999,25(6):728-731.
    [97]经张俊,程向红,王宇,捷联罗经的动基座自对准技术.中国惯性技术学报,2009,17(004):408-412.
    [98]Morimoto, T., et al. Initial rapid alignment/calibration of a marine inertial navigation system. Proceedings of IEEE Position Location, Navigation Symposium, Las Vegas, NV, USA,1994.
    [99]Park, H.W., J.G. Lee, C.G. Park, Covariance analysis of strapdown INS considering gyrocompass characteristics. IEEE Transactions on Aerospace, Electronic Systems,1995,31(1):320-328.
    [100]Fomitchev, A.A., et al. Estimation of gyrocompass ing accuracy, techniques of course, gyro drift correction in integrated navigation system. Proceedings of 9th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Russian,2002.
    [101]Andrews, A., Parallel Processing of Kalman Filter. Proceedings of Int. Conf. on Parallel Processing,1981.
    [102]Baheti, R.S., D. O'hallaron, H.R. Itzkowitz, Mapping extended Kalman filters onto linear arrays. IEEE Transactions on Automatic Control,1990,35(12): 1310-1319.
    [103]Jover, J., T. Kailath, A parallel architecture for Kalman filter measurement update, parameter estimation. Automatica,1986,22(1):43-57.
    [104]Hashimoto, K., H. Kimura. A parallel architecture for recursive least square identification. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing,1986.
    [105]Behera, P.K. Implementation of factorized filter in systolic arrays. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing,1986.
    [106]Zhang, Y., et al. A parallel decoupled Kalman filtering algorithm, systolic architecture. Proceedings of the 32nd IEEE Conference on Decision, Control,1993.
    [107]Yeh, H.G. Kalman filtering, systolic processors. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing,1986.
    [108]Yeh, H.G., Systolic implementation on Kalman filters. IEEE Transactions on Acoustics, Speech, Signal Processing,1988,36(9):1514-1517.
    [109]Morf, M., T. Kailath, Square-root algorithms for least-squares estimation. IEEE Transactions on Automatic Control,1975,20(4):487-497.
    [110]Sung, T.Y., Y.H.E.N. Hu. VLSI implementation of real-time Kalman filter. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing,1986.
    [111]Gaston, F., G. Irwin. Systolic Kalman filtering:an overview. IEE Proceedings On Control Theory, Applications,1990.
    [112]Gaston, F., G. Irwin, J. McWhirter, Systolic square root covariance Kalman filtering. The Journal of VLSI Signal Processing,1990,2(1):37-49.
    [113]Lu, M., X. Qiao, G. Chen, A parallel square-root algorithm for modified extended Kalman filter. IEEE Transactions on Aerospace, Electronic Systems,1992, 28(1):153-163.
    [114]Chen, M., K. Yao. Systolic Kalman filtering based on QR decomposition. SPIE Conference on Advanced Algorithms, Architectures for Signal Processing,1987.
    [115]Chen, M., K. Yao. Recursive least squares estimation, Kalman filtering by systolic arrays. International Conference on Advances in Communication, Control Systems,1988.
    [116]Lee, C., Z. Salcic, High-performance FPGA-based implementation of Kalman filter. Microprocessors, Microsystems,1997,21(4):257-265.
    [117]Lee, C., Z. Salcic. A fully-hardware-type maximum-parallel architecture for Kalman tracking filter in FPGAs. Proceedings of International Conference on Information, Communications, Signal Processing,1997.
    [118]Bigdeli, A., et al., A new pipelined systolic array-based architecture for matrix inversion in FPGAs with Kalman filter case study. EURASIP journal on applied signal processing; 2006,2006:75-75.
    [119]Barnes, R.C., A. Dasu, Hardware/Software Co-designed Extended Kalman Filter on an FPGA, Proceedings of the 8th Engineering of Reconfigurable Systems, Algorithms,2008.
    [120]Sudarsanam, A., Analysis of Field Programmable Gate Array-Based Kalman Filter Architectures. Utah State University,2010.
    [121]Barnes, R.C., Dynamically Reconfigurable Systolic Array Accelerators:A Case Study with Extended Kalman Filter, Discrete Wavelet Transform Algorithms. Utah State University,2008.
    [122]聂水茹,高动态环境下捷联惯导的优化算法研究.西北工业大学硕士 学位论文,2003.
    [123]牟淑志,雄洙,李永新,高动态环境下的捷联惯导系统姿态算法的研究.弹箭与制导学报,2006,26(003):11-13.
    [124]练军想,胡德文,胡小平,吴文启,捷联惯导姿态算法中的圆锥误差与量化误差.航空学报,2006,27(1):98-103.
    [125]王健,高动态环境下捷联算法研究及DSP实现.哈尔滨工业大学硕士学位论文,2006.
    [126]屈重君,张亮,陆志东,高动态环境下旋转矢量法的优化和应用.计算机仿真,2008,25(003):66-69.
    [127]张士邈,适合高动态环境的捷联惯导系统高精度算法研究.西北工业大学硕士学位论文,2002.
    [128]Savage, P.G., Strapdown inertial navigation integration algorithm design. Part 1:Attitude algorithms. Journal of Guidance, Control, Dynamics,1998,21(1): 19-28.
    [129]Savage, P.G. A New Second-Order Solution for Strapped-Down Attitude Computation. Proceedings of AIAA/JACC Guidance, Control Conference,1966.
    [130]Jordon, J.W., An accurate strapdown direction cosine algorithm.1969, Report TND-5384:Washington.
    [131]Bortz, J.E., A new mathematical formulation for strapdown inertial navigation. IEEE Transactions on Aerospace, Electronic Systems,1971,1:61-66.
    [132]Gilmore, J.P., Modular strapdown guidance unit with embedded microprocessors. Journal of Guidance, Control,1980,3:3-10.
    [133]Miller, R.B., A new strapdown attitude algorithm. Journal of Guidance, Control, Dynamics,1983,6:287-291.
    [134]Lee, J.G., Y.J. Yoon. An extension of strapdown attitude algorithm for high-frequency base motion. Proceedings of AIAA Guidance, Navigation, Control Conference. Minneapolis, MN,1988.
    [135]Lee, J.G., Y.J. Yoon, Extension of strapdown attitude algorithm for high-frequency base motion. Journal of Guidance, Control, Dynamics,1990,13(4): 738-743.
    [136]Jiang, Y.F., Y.P. Lin, Improved strapdown coning algorithms. IEEE Transactions on Aerospace, Electronic Systems,1992,28(2):484-490.
    [137]Ignagni, M.B., Optimal strapdown attitude integration algorithms. Journal of Guidance, Control, Dynamics,1990,13:363-369.
    [138]Musoff, H., H. James, Study of strapdown navigation attitude algorithms. Journal of Guidance,Control, Dynamics,1995,18(2):287-290.
    [139]Panov, A.P., Mathematical Fundamentals of Inertial Orientation Theory. Moscow:The Naukova Dumka Publishing House(in Russian),1995.
    [140]Branets, V., I. Shmyglevsky, Introduction to the theory of strapdown inertial navigation systems. Moscow, Nauka,1992.
    [141]武元新,对偶四元数导航算法与非线性高斯滤波研究.国防科学技术大学博士学位论文,2005.
    [142]Harasty, G.A., F.G. Unger. Computational requirements for a digital analytic inertial platform system. Proceedings of the 12th East Coast Conf. on Aerospace, Navigational Electronics, Baltimore, Md.,1965.
    [143]Bar-Itzhack, I.Y., Navigation computation in terrestrial strapdown inertial navigation systems. IEEE Transactions on Aerospace, Electronic Systems,1977,6: 679-689.
    [144]Mark, J.G., D.A. Tazartes. On sculling algorithms. Proceedings of 3rd St.Petersburg International Conference on Integrated Navigation Systems, Russia, 1996.
    [145]Savage, P.G., Strapdown inertial navigation integration algorithm design. Part 2:Velocity, position algorithms. Journal of Guidance, Control, Dynamics,1998, 21(2):208-221.
    [146]Savage, P.G., A unified mathematical framework for strapdown algorithm design. Journal of Guidance, Control, Dynamics,2006,29(2):237-249.
    [147]薛祖瑞,关于捷联惯导系统圆锥误差的诠释.中国惯性技术学报,2000,8(4):46-50.
    [148]余杨,张洪钺,捷联惯导系统中的圆锥和伪圆锥运动研究.中国惯性技术学报,2006,14(5):1-4.
    [149]耿延睿,王养柱,崔中兴,捷联惯导系统划船效应补偿算法研究.北京航空航天大学学报,2001,27(6):694-697.
    [150]顾冬晴,秦永元,捷联惯导位置更新中的二子样涡卷补偿优化算法研究.宇航学报,2005,26(5):562-566.
    [151]陈国良,并行算法的设计与分析.北京:高等教育出版社,2009.
    [152]胡玥,高庆狮,高小宇,串行算法并行化基础.北京:科学出版社,2008.
    [153]辛师勃,并行信号处理系统研究.南京理工大学硕士学位论文,2004.
    [154]Moldovan, D.I., Parallel processing:from applications to systems. California, USA:Morgan Kaufmann Publishers Inc.,1992.
    [155]王进,捷联惯导系统罗经对准方法研究.国防科学技术大学硕士学位论文,2005.
    [156]郑谔,捷联惯导系统陀螺罗经对准性能的协方差分析.西北工业大学学报,1988,6(1):119-126.
    [157]李瑶,徐晓苏,吴炳祥,捷联惯导系统罗经法自对准.中国厉性捞术学报,2008,16(4):386-389.
    [158]周琪,杨鹏翔,秦永元,基于自抗扰控制技术的捷联罗经对准算法.控制与决策,2010.
    [159]Savage, P.G., Strapdown analytics. Maple Plain, MN, USA:Strapdown Associates Inc.,2000.
    [160]Systolic array. Available online: http://en.wikipedia.org/wiki/Systolic_array.
    [161]Kung, H.T., C.E. Leisersont. Systolic arrays (for VLSI). Proceedings of Spare Matrix Proceedings, Society for Industrial & Applied Mathematics,1979.
    [162]Kung, H., Why systolic architectures? Computer,1982,15(1):37-46.
    [163]Petkov, N., Systolic parallel processing.:Elsevier Science Inc,1992.
    [164]HandUber, J. Systolic Arrays. Available online: http://web.cecs.pdx.edu/-mperkows/temp/May22/jhanduber2.pdf.
    [165]Quinton, P., Y. Robert, Systolic algorithms & architectures.:Prentice Hall, 1991.
    [166]Moldovan, D.I., On the design of algorithms for VLSI systolic arrays. Proceedings of the IEEE,1983,71 (1):113-120.
    [167]Yao, K., F. Lorenzelli, Systolic Algorithms, Architectures for High-Throughput Processing Applications. Journal of Signal Processing Systems, 2008,53(1):15-34.
    [168]Nash, J.G., S. Hansen, Modified Faddeeva algorithm for concurrent execution of linear algebraic operations. IEEE Transactions on Computers,1988, 37(2):129-137.
    [169]Nash, J.G., S. Hansen, Modified Faddeeva algorithm for matrix manipulation, Proceedings of the SPIE Conference,1984.
    [170]E1-Amawy, A., A systolic architecture for fast dense matrix inversion. IEEE Transactions on Computers,1989,38(3):449-455.
    [171]El-Amawy, A., K. Dharmarajan. Parallel VLSI algorithm for stable inversion of dense matrices. Proceedings of IEE Computers, Digital Techniques, 1989.
    [172]Bortz, J.E., A new mathematical formulation for strapdown inertial navigation. IEEE Transactions on Aerospace, Electronic Systems,1971, AES-7(1): 61-66.
    [173]Park, C.G., et al., Generalized coning compensation algorithm for strapdown system, Proceedings of AIAA Guidance, Navigation, Control Conference, San Diego, CA,1996.
    [174]Park, C.G., et al., Formalized approach to obtaining optimal coefficients for coning algorithms. Journal of Guidance, Control, Dynamics,1999,22(1): 165-168.
    [175]Musoff, H., J.H. Murphy. A study of recent strapdown navigation attitude algorithms. Proceedings of AIAA Guidance, Navigation, Control Conference, Monterey, C A,1993.
    [176]Musoff, H., J.H. Murphy, Study of Strapdown Navigation Algorithms. Journal of Guidance, Control, Dynamics,1995,18(2):287-290.
    [177]Ignagni, M., Efficient class of optimized coning compensation algorithms. Journal of Guidance, Control, Dynamics,1996,19(2):424-429.
    [178]Kumar, V., Introduction to parallel computing. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,2002.
    [179]Gallivan, K.A., Parallel algorithms for matrix computations. Philadelphia, PA, USA:Society for Industrial Mathematics,1990.
    [180]Gupta, A., V. Kumar, Scalability of parallel algorithms for matrix multiplication.1993.
    [181]Ignagni, M.B., Duality of optimal strapdown sculling, coning compensation algorithms. Navigation,1998,45(2):85-95.
    [182]Savage, P.G., Coning Algorithm Design by Explicit Frequency Shaping. Journal of Guidance, Control, Dynamics,2010,33(4):1123-1132.
    [183]Savage, P.G., Computational Elements For Strapdown Systems, Proceedings of Low Cost Navigation Sensors, Integration Technology, Available online:http://ftp.rta.nato.int/Public/PubFullText/RTO/EN/RTO-EN-SET-064/EN-SET-064-03.pdf,2009.
    [184]Geng, Y.R., Y.Z. Wang, Z.X. Cui, Optimal Design for Sculling algorithms of SINS. Journal of Beijing University of Aeronautics and Astronautics,2001,27(6): 694-697.
    [185]Grejner-Brzezinska D.A., et al. Enhanced Gravity Compensation for Improved Inertial Navigation Accuracy. Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR,2003.
    [186]Kwon, J.H., C. Jekeli, Gravity requirements for compensation of ultra-precise inertial navigation. The Journal of Navigation,2005,58(03):479-492.
    [187]Groves, P.D., Principles of GNSS, inertial, multisensor integrated navigation systems. Boston, MA, USA:Artech House,2008.
    [188]Stirling's approximation. Available online: http://en.wikipedia.org/wiki/Stirling's_approximation.
    [189]Marsaglia, G., J.C.W. Marsaglia, A New Derivation of Stirling's Approximation to n! American Mathematical Monthly,1990:826-829.
    [190]Romik, D., Stirling's Approximation for n!:the Ultimate Short Proof? The American Mathematical Monthly,2000,100(6):566-557.
    [191]Li, Y.C., A note on an identity of the gamma function, Stirling's formula. Real Analysis Exchange,2006,32(1):267-272.
    [192]彭求实,Stirling公式的改进及二项分布概率的近似计算.哈尔滨商业大学学报(自然科学版),2006,22(004):101-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700