电力系统恢复中并列过程仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上个世纪六十年代以来,各国相继发生了多起大规模停电事故,波及范围广停电时间长,严重影响了人们的正常生活,造成了巨大的社会影响和经济损失。虽然大停电事故发生的概率极小,但从根本上讲,大停电事故是不可避免的。所以,研究大停电事故后如何进行快速有效的电力系统恢复具有非常重要的意义。
     随着研究的深入,对电力系统恢复的研究已经由原来的黑启动阶段扩展到网架恢复阶段。其中,系统间的并列作为网架恢复的一个重要组成部分,伴随在系统恢复的整个过程中。系统的并列涉及诸多问题,并列点、并列时机的选择在很大程度上影响到电网的安全和恢复进程的快慢,应该作为网架恢复方案制定与优选的考虑因素。由于并列两网的相互影响,并列后系统会出现振荡,尤其是在恢复初期,且当两侧系统规模相当时,系统很有可能会振荡失稳。为了保证系统并列的安全,加快并列进程,减少停电损失,必须对系统并列的暂态过程进行研究和仿真分析。
     针对系统并列问题,本文提出了一种系统并列暂态过程的仿真方法。通过对潮流结果的调整,实现了并列操作同期装置的功能模拟与并列前电网状态的初始化设定,通过修改导纳阵实现了并列操作的开关闭合模拟,通过暂态计算前发电机转速的差异设定与全网统一频率基值的选取,保证了两网频差的体现和暂态过程中功角的正确计算。此外,考虑到不同的电网环境对并列条件的要求存在差异,本文进一步实现了对特定电网下合理并列条件的估算,并以此指导同期装置的参数整定以及并列条件的调整,以保证设定的并列条件能够更适合目前的电网状态,有利于同期装置快速准确的把握并列时机。
     基于本文提出的仿真方法,本文分别对山东电网利用内部电源并行恢复方案中临沂和日照子系统间的系统并列、利用河北黄骅和辛安站外部电源恢复时500kV骨干网架的环网并列搭建了模型并进行仿真,校验了并列操作的安全性和方案的可行性;通过大量的仿真分析了影响并列过程的主要因素,并提出了一些相应的电网调整的措施。仿真结果显示,本文提出的措施正确有效。
     本文最后还对山东电网黑启动试验系统与山东主网运行系统的并列过程进行了仿真计算,校验并列操作的安全性,并估算了最佳并列条件。通过仿真计算,提出了一些改进措施,例如,适当增大试验系统频率,使其高于主网系统,且采取相应措施保证试验系统频率稳定;增大同期装置相角差的设定值等措施。通过与试验数据比较,证实了仿真结论与对策的有效性。
Since the 1960s, large-scale power outages have taken place in many countries, covering broad area and long time. These outages seriously affect people's normal life, causing enormous social impacts and economic losses. Though the blackout is not probably happened, fundamentally the outages are inevitable. Therefore, research on how to restore the power system quickly and effectively after the outages is of major importance.
     With the deepening of research, the study on power system restoration has expanded from the black-start to skeleton restoration. As an important component of skeleton restoration, the paralleling operations between bilateral systems appear in the whole restoration process. There are many problems in paralleling operation. The choice of location and conditions has great effect on the security and speed of power system restoration, which should be considered as a factor in the development and optimization of skeleton restoration strategy. Due to the influence of two bilateral systems for each other, the system will appear oscillation after paralleling, which is more serious when two systems are in similar scale or paralleling occurs in the initial period of power system restoration. In order to guarantee the safety and the speed of paralleling operation, we should simulate and analyze the transient process of paralleling.
     A simulation method for transient process after paralleling between bilateral systems is proposed in this paper. The method simulates the function of the automatic synchronizing devices and sets the initial state of the power grid before paralleling through altering the result of the power flow, and simulates the close of breaker through modifying the admittance matrix of power grid, and guarantees the frequency difference setting and rotor angular calculation through different setting of generators rotate speed and the same basic value of frequency. In addition, considering different grid environment has different paralleling conditions requirement, this paper further estimates the reasonable conditions for specific grid. According to the estimation results, we should set the value of automatic synchronizing devices and adjust power grid, which can make the paralleling conditions more suitable for the specific grid and be benefit for the speed and accuracy of automatic synchronizing devices.
     Based on the paralleling simulation method, this paper builds the simulation model and simulates the paralleling operation between Linyi and Rizhao subsystems in Shandong power grid restoration strategy using internal power source, and the paralleling operation on 500kV backbone skeleton in restoration strategy using external power source from Huanghua and Xin'an substation in Hebei grid. Through simulation, the security of paralleling operation and the feasibility of restoration strategy are checked. In addition, the main factors of paralleling and some adjusting measures can be obtained through simulation analysis. The simulation results demonstrate the proposed method is feasible.
     This paper also simulated the paralleling operation between the black-start testing system and the main operating system in Shandong power grid. The simulation checks the security of paralleling operation and estimates the reasonable conditions. Some improvement measures are provided through simulation calculation, such as enlarging frequency of test system suitably above the main grid, and maintain it's stability through some controlling measures, and enlarging the angle difference setting value of automatic synchronizing devices and so on. The simulation results and countermeasures are proved feasible through the comparison with experimental data.
引文
[1]Adibi M, Clelland P, Fink L, Happ H, etal. Power System Restoration-A taskforce report. IEEE Trans. on Power Systems,1987,2(2):271-277.
    [2]Kurita A, Sakurai T. The power system on July 23,1987 in Tokyo. Proceedings of the 27th Conference on Decision and Control,1988, vol.3:2093-2096.
    [3]U.S.-Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada
    [4]唐斯庆,张弥,李建设,等.海南电网“9·26”大面积停电事故的分析与总结.电力系统自动化,2006,30(1):1-7.
    [5]NERC. NETC Planning Standards,1997, North American Electric Reliability Council.
    [6]中华人民共和国国家经济贸易委员会.DL/T 723-2000.电力系统安全稳定控制技术导则.2001,北京:中国电力出版社.
    [7]Kearsley R. Restoration in Sweden and Experience Gained from the Blackout of 1983. IEEE Trans. on Power Systems,1987,2 (2):422-428.
    [8]Huang J A, Audette L, Harrison S. A Systematic Method for Power System Restoration Planning. IEEE Trans. on Power Systems,1995,10 (2):869-875.
    [9]Delfino B, Denegri G B, Bonini E C, etal. BlackStart and Restoration of Part of the Italian HV Network.IEEE Trans. on Power Systems,1996,11 (3): 1377-1379.
    [10]江长明,闫贺群,许鹏.华北电网黑启动试验.电力系统自动化,2000,24(22):57-58.
    [11]房鑫炎,郁惟镛,熊惠敏.电力系统黑启动的研究.中国电力,2000,33(1):40-43.
    [12]江长明,闰贺群,许鹏,等.华北电网黑启动实验.电力系统自动化,2000,25(24):57-58.
    [13]周云海.大停电事故后恢复控制技术研究:[博士学位论文].清华大学, 2001..
    [14]LINDSTORM R R. Simulation and Field Tests of the Black Start of a Large Coal-Fired Generating Station Utilizing Small Remote Hydro Generation. IEEE Transactions on Power Systems,1990,5(1):162-168.
    [15]ADIBI M M, MILANICZ D P, VOLKMANN T L. Remote Cranking of Steam Electric Stations. IEEE Transactions on Power Systems,1996,11(2): 1613-1618.
    [16]ADIBI M M, ALEXANDER R W, AVRAMOVIC B. Overvoltage Control during Restoration. IEEE Transactions on Power Systems,1992,7(4): 1464-1470.
    [17]ADIBI M M, BORKOSHI J N, KAFKA R J, et al. Frequency Response of Prime Movers during Restoration. IEEE Transactions on Power Systems,1999, 14(2):751-756.
    [18]ADIBI M M, FINK L H, ANDREWS C J, et al. Special Considerations in Power System Restoration. IEEE Transactions on Power Systems,1992,7(4): 1419-1427.
    [19]DELFINO B, DENEGRI G B, BONINI E C, et al. Black-start and Restoration of a Part of Italian HV Network:Modelling and Simulation of Field Test. IEEE Transactions on Power Systems,1996,11(3):1371-1378.
    [20]ADIBI M M, CLELLAND P, FINK L, et al. Power System Restoration-a Task Force Report. IEEE Transactions on Power Systems,1987,2(2):271-277.
    [21]ADIBI M M, ALEXANDER R W, MILANICZ D P. Energizing High and Extra-High Voltage Lines during Restoration. IEEE Transactions on Power Systems,1999,14(3):1121-1126.
    [22]周云海,闵勇.恢复控制中的系统重构优化算法研究.中国电机工程学报,2003,23(4):67-70.
    [23]POPOVIC D P, MIJAILOVIC S V. An Efficient Methodology for the Analysis of Primary Frequency Control of Electric Power System. International Journal of Electrical Power and Energy Systems,2000,22(5):331-341.
    [24]RODRIGUEZ J, RODRIGO A, VARGAS A. Fuzzy-Heuristic Methodology to Estimate the Load Restoration Time in MV Networks. IEEE Transactions on Power Systems,2005,20(2):1095-1602.
    [25]周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):74-79.
    [26]KOSTIC T, GERMOND A J, ALBA J J. Optimization and Learning of Load Restoration Strategies. International Journal of Electrical Power and Energy Systems,1998,20(2):131-140.
    [27]KETABI A, RANJBAR A M, FEUILLET R. New Method for Dynamically Calculation of Load Steps during Power System Restoration. In:Canadian Conference on Electrical and Computer Engineering (CCECE 2000),Vol 1. Nova Scotia:2000.158-162.
    [28]MALISZEWSKI R M, DUNLOP R D, WILSON G L. Frequency Actuated Load Shedding and Restoration-1. IEEE Transaction on Power Apparatus and Systems,1971, PAS-90(4):1452-1459.
    [29]HOROWITZ S H, POLITIS A, GABRIELLE A F. Frequency actuated load shedding and restoration-2. IEEE Transaction on Power Apparatus and Systems, 1971,PAS-90(4):1460-1468.
    [30]Gauger R H, Black start reliability. Reliability and Maintainability Symposium, 1984, Page(s):177-180.
    [31]Simbuger E J, Hubert F J. Low voltage bulk power system restoration simulation. IEEE Trans on Power Apparatus and Systems,1981,100(11): 4479-4484.
    [32]张强,高明,张力强等.大同电网利用小火电机组黑启动方案.电力系统自动化,Vol.27No.12, June.25,2003.
    [33]蔡述涛,张尧,荆朝霞.地方电网黑启动方案的制订.电力系统自动化,Vol 29, No 12, June 25,2005.
    [34]周云海,闵勇,林姿峰等.吉林电网黑启动方案的制定及仿真吉林电网黑启动方案的制定及仿真.中国电力,Vol 35, No 4, Apr,2005.
    [35]张其明,王万军.陕西电网黑启动方案研究.电网技术,Vol.26, No.4, Apr. 2002.
    [36]陈国庆.大型水力发电厂黑启动研究.电力系统自动化,Vol.27, No.10, M ay 25,2003.
    [37]程刚.葛洲坝二江电厂机组黑启动实践与分析.中国电力,Vol.35, No.11, Nov.2002.
    [38]周云海,闵勇,杨滨.黑启动及其决策支持系统.电力系统自动化,2001,10:43-46,62.
    [39]Teo C Y, Shen W. Real-time generation and supervision of a dynamic restoration plan for bulk power systems. IEEE Trans on Power Systems,2000, 53:113-122.
    [40]王洪涛,刘玉田,邱夕照.基于分层案例推理的黑启动决策支持系统.电力系统自动化,2004,28(11):49-52.
    [41]Wu J S, Liu C C.A petri net algorithm for scheduling of generic restoration actions. IEEE Trans on Power Systems,1997,12(1):69-76.
    [42]陈根军,王磊,唐国庆.基于蚁群最优的配电网络重构算法.电力系统及其自动化学报,2001,13(2):48-53.
    [43]余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构.中国电机工程学报,2000,20(9):44-49.
    [44]李路,周渝慧.随机规划在配网事故重构中的应用.电力系统及其自动化学报,2006,18(2):91-94.
    [45]孙健,江道灼.一种多目标配电网络重构新算法,电力系统自动化,2003,27(20):57-61.
    [46]Morin G. Service restoration following a major failure on the Hydro-Quebec power system. IEEE Trans. on Power Systems,1987,2(2):454-463.
    [47]王昊昊,薛禹胜,DONG Zhaoyang等.互联电网恢复控制的自适应优化.电力系统自动化,2007,31(25):1-5.
    [48]刘玉田,王春义.基于数据仓库的网架恢复群体智能决策支持系统.电力系统自动化,2009,33(1):45-50.
    [49]周云海,胡翔勇,罗斌.基于案例推理的大停电恢复系统设计.电力系统自动化,2007,31(18):87-90.
    [50]许正亚.电力系统安全自动装置.北京:中国水利水电出版社,2006,6.
    [51]杨冠城.电力系统自动装置原理.北京:中国电力出版社,2005.
    [52]戴仁昶,张伯明.电力系统解并列动态仿真.电力系统自动化,2000,24(11):1-4.
    [53]汤义勤,赵萍,季敏剑.枢纽变电站黑启动方式下同期并网问题的探讨.继电器,2008,36(10):74-77.
    [54]邓振利,姜杰,唐昆明,汪志彬.基于双处理器的自动准同期装置设计.继电器,2006,34(2):46-73.
    [55]周斌.一种适用于自动准同期装置的改进傅立叶相位差算法.继电器,2007,35(20):37-50.
    [56]彭晓涛,王少荣,程时杰.高性能微机自动准同期装置.电力系统自动化,2002.9:75-77.
    [57]张炳达,罗彬,张洁华.基于正序基波电压合成相量的发电机并网条件核算法.中国电机工程学报,2006,26(16):52-56.
    [58]D. Hazarika, A. K. Sinha. An algorithm for standing phase angle reduction for power system restoration. IEEE Transactions on Power Systems,1999.14(4): 1213-1218.
    [59]刘映尚,文传,冯永青,张伯明.黑启动过程中的负荷恢复.电网技术,2007,31(13):17-22.
    [60]东北电力集团.电力工程师手册.电气卷.北京:中国电力出版社,2009.
    [61]王锡凡.现代电力系统分析.北京:科学出版社,2003.
    [62]李先彬.电力系统自动化.北京:中国电力出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700