自适应表面网格生成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于偏微分方程的数值模拟在工程与科学计算中有着广泛应用,作为其前处理关键步骤,网格生成一直以来是相关学科研究的热点。表面网格(包括平面网格和曲面网格)是表面问题建模的主要构成元素,也是三维实体问题建模的输入条件,其质量对整个数值模拟至关重要,一直是网格生成研究的主要对象之一。此外,表面网格在计算机图形学、地理信息系统等领域也有重要应用。
     实际应用中,几何模型通常包含大量几何特征,网格生成时应在它们附近生成小尺寸的网格单元,保证网格离散的几何精度和单元质量;在其余部分生成大尺寸单元,避免网格规模不必要扩大。利用人工的网格尺寸控制手段达到上述目的费时且易错,开展自适应网格生成研究可有效缓解上述瓶颈问题。
     本文围绕自适应表面网格生成这一主要目标,结合黎曼度量和Delaunay方法,提出并实现了一系列算法和框架,对包括平面、连续曲面和离散曲面在内的各种表面问题域的自适应网格生成进行了研究。另外,本文还讨论了平面并行网格生成
     首先研究自适应表面网格生成的基础算法,其重点是平面各向异性网格生成和自适应网格尺寸控制。在各向同性算法中引入黎曼度量表征单元尺寸,计算两点距离,获得黎曼度量场下的Bowyer-Watson增量插点内核,实现平面各向异性Delaunay网格生成。分别使用欧拉度量下和黎曼度量下边界采样点集的约束Delaunay三角化计算形体中轴,据此实现形体邻近特征识别,结合曲率计算,可实现平面问题和曲面问题的自适应网格生成。特别地,基于曲面邻近特征和曲率特征,融合传统网格尺寸控制技术,创建曲面自适应尺寸场并自适应地离散曲面边界,形成一个通用的自适应曲面网格生成框架。
     以组合Coons参数曲面为例,将上述基础算法应用于连续曲面模型的网格生成。重点讨论两种黎曼度量的计算:(1)参数曲面内在度量用于识别邻近特征,结合曲率特征,可自动识别参数曲面的几何特征,实现自适应;(2)融合尺寸控制的黎曼度量用于控制参数平面各向异性网格生成。上述计算结合基于映射法的曲面网格生成算法,实现了组合连续曲面的自适应网格生成。
     以STL模型为例,将上述基础算法应用于离散曲面模型的网格生成。首先给出一类非自适应的STL曲面网格生成方法,它采用保特征的子域识别方法将模型分割为多个子域,并为每个子域构建参数平面,利用各向同性方法生成参数平面网格。在此基础上通过为子域重建G~1连续三角B-B曲面,给出子域参数平面上点的黎曼度量计算方法。考虑映射畸变,基于黎曼度量在参数平面生成各向异性网格;使用黎曼度量下边界采样点集的约束Delaunay三角化计算曲面邻近特征,结合曲率估算实现自适应网格生成。
     最后,针对大规模数值模拟的需要,在序列化算法基础上,利用预置的几何区域分解过程,实现了一个稳定、高效、可扩展的并行平面Delaunay网格生成算法。新算法在并行网格生成前定义表征子域连接关系的子域图,利用子域图分区实现负载平衡和通信最小化,可在并行网格生成结束时得到高分区质量的分布式网格。与传统的基于网格图分区的算法相比,新算法可降低甚至消除网格重分区的代价,当网格规模非常庞大时,这将显著提高整个并行求解过程的效率。
Mesh generation is the key pre-process of numerical simulations based on partial differential equations in engineering and scientific computing. One of its important research areas is surface mesh generation. Not only could surface mesh be applied directly to surface modeling, but also it is the input of volume mesh generation. Besides numerical simulations, surface mesh generation also is of many other applications in various fields, such as computer graphics and geographic information systems.
     As an input of surface mesh generation, complex geometry models usually contain many features. To generate good meshes for numerical analyses, the mesh size should be small near the features to achieve high geometry accuracy and element quality, and large elsewhere to avoid increasing the number of mesh elements unnecessarily. However, manual size control on complex models is time consuming and prone to errors to achieve such goals. Instead, adaptive mesh generation is capable of overcoming this bottleneck problem, effectively.
     Based on the Delaunay method and Riemannian metric, in this thesis, adaptive mesh generation for all kinds of surfaces, including planes, continuous curved surfaces and discrete curved surfaces, is systematically studied. Additionally, a parallel algorithm for planar mesh generation is also presented.
     Firstly, some fundamental algorithms for adaptive surface mesh generation are discussed, mainly including planar anisotropic mesh generation algorithms and adaptive mesh size control algorithms. Riemannian metric is introduced to define mesh sizes and to calculate point-to-point distances, thus a traditional isotropic Bowyer-Watson kernel for Delaunay mesh generation is revised for Riemannian context of planar anisotropic mesh generation. To recognize shape proximity over plane or curved surfaces, constrained Delaunay triangulations of sample points on boundary curves are used to produce the discrete medial axes, with help of Euclid metric for planes or Riemannian metric for curved surfaces, respectively. Coupled with curvature calculations, adaptive surface meshes of planar or curved surfaces can be produced. Moreover, by combining adaptive and traditional mesh size control strategies, a general framework for adaptive mesh generation over curved surfaces is presented.
     Taking composite Coons surfaces as an example, the above fundamental algorithms are applied for continuous curved surface mesh generation. The approaches to calculate Riemannian metric and curvature are studied, and two kinds of Riemannian metrics are discussed: (1) The intrinsic metric is used to recognize proximity, for adaptive mesh size control together with curvatures. (2) The Riemannian metric coupled with mesh sizes is used to generate anisotropic meshes on parametric planes. Combining these two kinds of metrics and a surface mesh generation algorithm based on mapping transformation, an adaptive mesh generator for continuous curved surfaces is implemented.
     Taking STL surfaces as an example, the above fundamental algorithms are applied for discrete curved surface mesh generation. Firstly, a fast surface mesh generation algorithm is proposed. The initial model is divided into many sub-domains with features preserved at sub-domain boundaries, and then the parametric plane for every sub-domain is constructed to dedimension the sub-domain mesh generation, where a planar isotropic algorithm is applied. To enhance this algorithm, G~1 continuous triangular B-B surfaces are reconstructed for sub-domains to calculate the Riemannian metrics for points on parametric planes. In the Riemannian context, high quality isotropic surface meshes are generated with anisotropic meshes generated in parametric planes, and constrained Delaunay triangulations for sample points on surface boundaries are computed to recognize proximity. Coupled with curvature calculation, adaptive meshes for STL models can be generated.
     Parallel mesh generation is used to generate large-scale meshes for engineering and scientific computing. With a geometry domain decomposition as the pre-process, a stable, effective and scalable parallel planar Delaunay mesh generator is built on the serial isotropic mesh generation algorithm. It defines Sub-Domain Graph (SDG) to represent the sub-domain connections, then partitions the graph dynamically to achieve dual goals of loading balance and communication minimization, and finally generates distributed meshes with high partitioning quality simultaneously with parallel mesh generation. Compared with traditional algorithms based on mesh graph partitioning, this algorithm can reduce or eliminate the cost of mesh repartitioning, which can accelerate the whole simulation process significantly for large-scale meshes.
引文
[1]http://www.andrew.cmu.edu/user/sowen/meshtrends5/presentations/gessner.ppt.
    [2]Bern M,Plassmann P,editors.Mesh Generation:Elsevier Science,1999.
    [3]http://www.imr.sandia.gov/papers/tumg4/owen-short-course.zip.
    [4]Castro-Diaz MJ,Hecht F,Mohammadi B.New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations.Proceedings of 4th International Meshing Roundtable.Albuquerque,New Mexico,USA,1995.pp.73-85.
    [5]Dirichlet PGL.Ober die Reduktion der Positiven Quadratischen Formen mit Drei Unbestimmten Ganzen Zahlen.Journal f(u|¨)r die Reine und Angewandte Mathematik 1850;40:209-27.
    [6]Vorono(i|¨) G.Nouvelles Applications des Parametres Continus a la Theorie des Formes Quadratiques,Premier Memoire:Sur Quelques Proprietes des Formes Quadratiques Positive Parfaits.Journal f(u|¨)r die Reine und Angewandte Mathematik 1907;133:97-178.
    [7]Vorono(i|¨) G.Nouvelles Applications des Parametres Continus a la Theorie des Formes Quadratiques,Deuxieme Memoire:Recherches sur les Parallelloedres Primitives.Journal f(u|¨)r die Reine und Angewandte Mathematik 1908;134:198-287.
    [8]Delaunay B.Sur la Sphere Vide,Izvestia Akademii Nauk SSSR.Otdelenie Matematicheskii i Estestvennyka Nauk 1934;7:793-800.
    [9]Larwood BG,Weatherill NP,Hassan O,Morgan K.Domain Decomposition Approach for Parallel Unstructured Mesh Generation.International Journal for Numerical Methods in Engineering 2003;58(2):177-88.
    [10]Said R,Weatherill NP,Morgan K,Verhoeven NA.Distributed Parallel Delaunay Mesh Generation.Computer Methods in Applied Mechanics and Engineering 1999;177(1-2):109-25.
    [11]Cougny HLd,Shephard MS.Parallel Unstructured Grid Generation.In:Thompson JF,Soni BK,Weatherill NP,editors.Handbook of Grid Generation:CRC Press,Inc.,1999.pp.24.1-.18.
    [12]陈建军.非结构化网格生成及其并行化的若干问题研究.浙江大学博士学位论文,2006.
    [13]陈立岗.面向工程与科学计算的表面网格处理方法的若干问题研究.浙江大学博士学位论文,2008.
    [14]Bowyer A.Computing Dirichlet Tessellations.The Computer Jounal 1981;24(2):167-72.
    [15]Watson D.Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes.The Computer Journal 1981;24(2):167-72.
    [16]Thacker WC.A Brief Review of Techniques for Generating Irregular Computational Grids.International Journal for Numerical Methods in Engineering 1980;15(9):1335-41.
    [17]Shephard MS.Approaches to the Automatic Generation and Control of Finite Element Meshes.Applied Mechanics Reviews 1988;41(4):169-85.
    [18]Shephard MS,Grice KR,Lo JA,Schroeder WJ.Trends in Automatic Three-Dimensional Mesh Generation.Computers & Structures 1988;30(1-2):421-9.
    [19]胡恩球,张新访,向文,周济.有限元网格生成方法综述.计算机辅助设计与图形学学报1997;9(4):378-83.
    [20]Bern M,Plassmann P.Mesh Generation.In:Sack JR,Urrutia J,editors.Handbook of Computational Geometry:Elsevier Science,1999.
    [21]Lo SH.Finite Element Mesh Generation and Adaptive Meshing.Progress in Structural Engineering and Materials 2002;4(4):381-99.
    [22]Owen SJ.A Survey of Unstructured Mesh Generation Technology.Proceedings of 7th International Meshing Roundtable.Dearborn,Michigan,USA,1998.pp.239-67.
    [23]Teng SH,Wong CW.Unstructured Mesh Generation:Theory,Practice,and Perspectives.International Journal of Computational Geometry and Applications 2000;10(3):227-66.
    [24]关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报2003;15(1):1-14.
    [25]Thompson JF,Soni BK,Weatherill NP.Handbook of Grid Generation.New York:CRC Press,Inc.,1999.
    [26]http://www.cs.wm.edu/-nikos/papers/pmesh-survey.pdf.
    [27]Thompson JF,Warsi ZUA,Mastin CW.Numerical Grid Generation:Foundations and Applications.New York,USA:North-Holland,1985.
    [28]Borouchaki H,Laug P,George PL.Parametric Surface Meshing Using a Combined Advancing-Front Generalized Delaunay Approach.International Journal for Numerical Methods in Engineering 2000;49(1):233-59.
    [29]Lee CK.Automatic Adaptive Mesh Generation Using Metric Advancing Front Approach.Engineering Computations 1999;16(2):230-63.
    [30]Tristano JR,Owen SJ,Canann SA.Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition.Proceedings of 7th International Meshing Roundtable.Sandia National Labs,Dearborn,Michigan,1998.pp.429-45.
    [31]Lee CK.Automatic Metric Advancing Front Triangulation over Curved Surfaces.Engineering Computations 2000;17(1).48-74
    [32]关振群,单菊林,顾元宪.基于黎曼度量的复杂参数曲面有限元网格生成方法.计算机学报 2006;29(10):1423-33.
    [33]L(o|¨)hner R.Extensions and Improvements of the Advancing Front Grid Generation Technique.Communications in Numerical Methods in Engineering 1996;12(10):683-702.
    [34]宋超.非结构化自适应有限元网格网格生成的AFT方法.大连理工大学博士学位论文,2004.
    [35]Peraire J,Peiro J,Morgan K.Advancing Front Grid Generation.In:Thompson JF,Soni BK,Weatherill NP,editors.Handbook of Grid Generation,1999.pp.17.1-.22.
    [36]George AJ.Computer Implementation of the Finite Element Method.Stanford University,1971.
    [37]Lo SH.A New Mesh Generation Scheme for Arbitrary Planar Domains.International Journal for Numerical Methods in Engineering 1985;21(8):1403-26.
    [38]L(o|¨)hner R,Parikh P.Generation of Three-Dimensional Unstructured Grids by the Advancing-Front Method.International Journal for Numerical Methods in Fluids 1988;8(10):1135-49.
    [39]单菊林.自适应有限元网格生成算法研究与应用.大连理工大学博士学位论文,2007.
    [40]Peiro J.Surface Grid Generation.In:Thompson JF,Soni BK,Weatherill NP,editors.Handbook of Grid Generation,1999.pp.19.1-.20.
    [41]Guan Z,Shan J,Zheng Y,Gu Y.An Extended Advancing Front Technique for Closed Surfaces Mesh Generation.International Journal for Numerical Methods in Engineering 2007;74 (4):642-67.
    [42] Ito Y, Shih AM, Erukala AK, Soni BK, Chemikov A, Chrisochoides NP, Nakahashi K. Parallel Unstructured Mesh Generation by an Advancing Front Method. Mathematics and Computers in Simulation 2007;75 (5-6):200-9.
    [43] Pirzadeh S. Unstructured Viscous Grid Generation by Advancing-Layers Method. AIAA Paper 1993:420-34.
    [44] Blacker TD, Stephenson MB. Paving: A New Approach to Automated Quadrilateral Mesh Generation. International Journal for Numerical Methods in Engineering 1991;32 (4):811-47.
    [45] Cass RJ, Benzley SE, Meyers RJ, Blacker TD. Generalized 3-D Paving: An Automated Quadrilateral Surface Mesh Generation Algorithm. International Journal for Numerical Methods in Engineering 1996;39 (9): 1475-89.
    [46] Tautges TJ, Blacker T, Mitchell S. The Whisker-Weaving Algorithm: A Connectivity Based Method for Constructing All-Hexahedral Finite Element Meshes. International Journal for Numerical Methods in Engineering 1996;39 (19):3327-49.
    [47] Blacker TD, Meyers RJ. Seams and Wedges in Plastering: A 3D Hexahedral Mesh Generation Algorithm. Engineering with Computers 1993;9 (2):83-93.
    [48] Yerry MA, Shephard MS. Automatic Three-Dimensional Mesh Generation by the Modified-Octree Technique. International Journal for Numerical Methods in Engineering 1984;20(11):1965-90.
    [49] Shephard MS, Georges MK. Automatic Three-Dimensional Mesh Generation by Finite Octree Technique. International Journal for Numerical Methods in Engineering 1991;32 (4):709-49.
    [50] Schroeder WJ, Shephard MS. A Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh Generation. International Journal for Numerical Methods in Engineering 1990;29(1):37-55.
    [51] McMorris H, Kallinueris Y. Octree-Advancing Front Method for Generation of Unstructured Surface and Volume Meshes. AIAA Journal 1997;35 (6):976-84.
    [52] Schneiders R, Schindler R, Weiler F. Octree-Based Generation of Hexahedral Element Meshes.Proceedings of 5th International Meshing Roundtable. Pittsburgh, 1996. pp. 205-16.
    [53] Cougny HLd, Shephard MS. Parallel Volume Meshing Using Face Removals and Hierarchical Repartitioning. Computer Methods in Applied Mechanics and Engineering 1999; 174(3-4):275-98.
    [54] Lohner R. A Parallel Advancing Front Grid Generation Scheme. International Journal for Numerical Methods in Engineering 2001;51 (6):663-78.
    [55] Borouchaki H, George PL, Hecht F, Laug P, Saltel E. Delaunay Mesh Generation Governed by Metric Specifications, Part I. Algorithms. Finite Element Analysis and Design 1997;25(1-2):61-83.
    [56] Zheng Y, Lewis RW, Gethin DT. Three-Dimensional Unstructured Mesh Generation: Part 1.Fundamental Aspects of Triangulation and Point Creation. Computer Methods in Applied Mechanics and Engineering 1996; 134 (3-4):249-68.
    [57] Zheng Y, Lewis RW, Gethin DT. Three-Dimensional Unstructured Mesh Generation: Part 2.Surface Meshes. Computer Methods in Applied Mechanics and Engineering 1996; 134(3-4):269-84.
    [58] Zheng Y, Lewis RW, Gethin DT. Three-Dimensional Unstructured Mesh Generation: Part 3. Volume Meshes. Computer Methods in Applied Mechanics and Engineering 1996;134 (3-4):285-310.
    [59]Chen H,Bishop J.Delaunay Triangulation for Curved Surfaces.Proceedings of 6th International Meshing Roundtable,1997.pp.115-27.
    [60]熊英,胡于进,赵建军.基于映射法和Delaunay方法的曲面三角网格划分算法.计算机辅助设计与图形学学报2002;14(1):56-60.
    [61]李吉刚,杨钦,孟宪海.2D约束Delaunay剖分生成表面模型的表面网格.北京航空航天大学学报 2005;31(11):1185-9.
    [62]Zhao J,Wang Q,Zhong Y,Zhou J,Zhao Y.Delaunay Triangulation Method of Curved Surfaces Based on Riemannian Metric.Chinese Journal of Mechanical Engineering 2003;16(1):91-3.
    [63]Cougny HLD,Shephard MS.Surface Meshing Using Vertex Insertion.Proceedings of 5th International Meshing Roundtable,1996.pp.243-56.
    [64]Sun K.Improved Delaunay Triangulation for Trimmed Nurbs Surface.Transactions of Nanjing University of Aeronautics & Astronautics 2004;21(2):98-105.
    [65]徐永安.约束Delaunay三角化的关键问题研究与算法实现及应用.浙江大学博士学位论文,1999.
    [66]Shewchuk JR.Delaunay Refinement Mesh Generation.Computer Science Department:Carnegie Mellon University,1997.
    [67]George PL,Borouchaki H,Laug P.An Efficient Algorithm for 3D Adaptive Meshing.Advances in Engineering Software 2002;33(7):377-87.
    [68]Du Q,Wang D.Recent Progress in Robust and Quality Delaunay Mesh Generation.Journal of Computational and Applied Mathematics 2006;195(1-2):8-23.
    [69]Borouchaki H,Frey PJ.Adaptive Triangular-Quadrilateral Mesh Generation.International Journal for Numerical Methods in Engineering 1998;41(5):915-34.
    [70]http://gid.cimne.upc.es/2004/papers/P230.pdf.
    [71]Chrisochoides N,Nave D.Parallel Delaunay Mesh Generation Kernel.International Journal for Numerical Methods in Engineering 2003;58(2):161-76.
    [72]Chrisochoides N,Nave D.Simultaneous Mesh Generation and Partitioning for Delaunay Meshes.Proceedings of 8th International Meshing Roundtable.South Lake Tahoe,CA,1999.pp.55-66.
    [73]Nave D,Chrisochoides N,Chew LP.Guaranteed-Quality Parallel Delaunay Refinement for Restricted Polyhedral Domains.Computational Geometry:Theory and Applications 2004;28(2-3):191-215.
    [74]Chemikov AN,Chrisochoides NP.Generalized Delaunay Mesh Refinement:From Scalar to Parallel.Proceedings of 15th International Mesh Roundtable,2006.pp.563-80.
    [75]Mobley AV,Carroll MP,Tristano JR.A 3D Surface Meshing Algorithm Using Riemann Calculations with 2D Delaunay in Parametric Space.In:Generation TISoG,editor.Numerical Grid Generation in Computational Field Simulations,2000.pp.729-42.
    [76]Bechet E,Cuilliere JC,Trochu F.Generation of a Finite Element Mesh from Stereolithography (STL) Files.Computer-Aided Design 2002;34(1):1-17.
    [77]Su P,Drysdale RLS.A Comparison of Sequential Delaunay Triangulation Algorithms.Proceedings of the 11th Annual Symposium on Computational Geometry.Vancouver,British Columbia,Canada,1995.pp.61-70.
    [78]Watson D.Computing the N-Dimensional Delauney Tessellation with Application to Vorono(i|¨) Polytopes. The Computer Journal 1981;24 (2): 167-72.
    [79] Lawson CL. Software for C1 Surface Interpolation. In: Rice JR, editor. Mathematical Software III. New York: Academic Press, 1977. pp. 161-94.
    [80] Baker TJ. Three-Dimensional Mesh Generation by Triangulation of Arbitrary Point Sets. AIAA 8th Computational Fluid Dynamics Conference. Hawaii, USA, 1987. pp. 255-71.
    [81] Baker TJ. Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delaunay Triangulation. Engineering with Computers 1989;5 (3-4):161-75.
    [82] Borouchaki H, Lo SH. Fast Delaunay Triangulation in Three Dimensions. Computer Methods in Applied Mechanics and Engineering 1995; 128 (1):153-67.
    [83] George PL. Improvements on Delaunay-Based Three-Dimensional Automatic Mesh Generator.Finite Elements in Analysis and Design 1997;25 (3-4):297-317.
    [84] Guibas LJ, Stolfi J. Primitives for the Manipulation of General Subdivisions and the Computation of Vorono(?) Diagrams. ACM Transactions on Graphics 1985;4 (2):74-123.
    [85] Joe B. Construction of Three-Dimensional Delaunay Triangulations Using Local Transformations. Computer Aided Geometric Design 1991;8 (2):123-42.
    [86] Joe B, editor. Three-Dimensional Boundary-Constrained Triangulations: Elsevier Science,1992.
    [87] Weatherill NP. The Integrity of Geometrical Boundaries in the Two-Dimensional Delaunay Triangulation. Communications in Applied Numerical Methods 1990;6 (2):101-9.
    [88] George PL, Hecht F, Saltel E. Automatic Mesh Generator with Specified Boundary. Computer Methods in Applied Mechanics and Engineering 1991;92 (3):269-88.
    [89] Borouchaki H, George PL. Aspects of 2-D Delaunay Mesh Generation. International Journal for Numerical Methods in Engineering 1997;40 (11):1957-75.
    [90] Wright JP, Jack AG Aspects of Three-Dimensional Constrained Delaunay Meshing.International Journal for Numerical Methods in Engineering 1994;37 (11): 1841-61.
    [91] Du Q, Wang D. Boundary Recovery for Three Dimensional Conforming Delaunay Triangulation. Computer Methods in Applied Mechanics and Engineering 2004;193(23-26):2547-63.
    [92] Weatherill NP, Hassan O. Efficient Three-Dimensional Delaunay Triangulation with Automatic Point Creation and Imposed Boundary Constraints. International Journal for Numerical Methods in Engineering 1994;37 (12):2005-39.
    [93] Borouchaki H, Hecht F, Saltel E, George PL. Reasonably Efficient Delaunay Based Mesh Generator in 3 Dimensions. Proceedings of 4th International Meshing Roundtable.Albuquerque, New Mexico, USA, 1995. pp. 3-14.
    [94] Rebay S. Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm. Journal of Computational Physics 1993;106 (1):125-38.
    [95] Chew LP. Guaranteed-Quality Triangular Meshes. Technique Report TR-89-983: Cornell University, 1989.
    
    [96] Chew LP. Guaranteed-Quality Mesh Generation for Curved Surfaces. Proceedings of 9th annual symposium on Computational geometry. San Diego, California, United States, 1993.pp. 274-80.
    
    [97] Ruppert J. A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation.Proceedings of 4th Annual ACM-SIAM Symposium on Discrete Algorithms, 1993. pp. 83-92.
    [98] Ruppert J. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation. Journal of Algorithms 1995;18(3):548-85.
    [99]Frey PJ,Borouchaki H,George PL.3D Delaunay Mesh Generation Coupled with an Advancing-Front Approach.Computer Methods in Applied Mechanics and Engineering 1998;157(1):115-31.
    [100]Talmor D.Well-Spaced Points for Numerical Methods.School of Computer Science:Carnegie Mellon University,1997.
    [101]Li X.Sliver-Free Three Dimensional Delaunay Mesh Generation.University of Illinois,2000.
    [102]Lee CK.On Curvature Element-Size Control in Metric Surface Mesh Generation.International Journal for Numerical Methods in Engineering 2001;50(4):787-807.
    [103]Borouchaki H,George PL,Mohammadi B.Delaunay Mesh Generation Governed by Metric Specifications.Part Ⅱ.Applications.Finite Elements in Analysis and Design 1997;25(1-2):85-109.
    [104]Frey PJ,Alauzet F.Anisotropic Mesh Adaptation for CFD Computation.Computer Methods in Applied Mechanics and Engineering 2005;194(48-49):5068-82.
    [105]Miranda ACO,Martha LF.Mesh Generation on High-Curvature Surfaces Based on a Background Quadtree Structure.Proceedings of 11th International Meshing Roundtable,2002.pp.333-42.
    [106]Cuilliere JC.An Adaptive Method for the Automatic Triangulation of 3D Parametric Surfaces.Computer-Aided Design 1998;30(2):139-49.
    [107]Laug P,Borouchaki H.Interpolating and Meshing 3D Surface Grids.International Journal for Numerical Methods in Engineering 2003;58(2):209-25.
    [108]Borouchaki H,Frey PJ,George PL.Unstructured Triangular-Quadrilateral Mesh Generation.Application to Surface Meshing.Proceedings of 5th International Meshing Roundtable,1996.pp.229-42.
    [109]Laug P,Borouchaki H.Molecular Surface Modeling and Meshing.Engineering with Computers 2002;18(3):199-210.
    [110]谭永基,陈华,崔灵伟.参数曲面的有限元网格化.计算机应用与软件 2001;18(11):53-5.
    [111]Tremei U,Deister F,Hassan O,Weatherill NP.Automatic Unstructured Surface Mesh Generation for Complex Configurations.International Journal for Numerical Methods in Fluids 2004;45(4):341-64.
    [112]陈文亮,孙立波,张胜.复杂曲面混合网格的生成算法.中国图形图象学报 2004;9(8):1014-8.
    [113]Rypl D,Bittnar Z.Direct Triangulation of 3d Surfaces Using the Advancing Front Technique.Numerical Methods in Engineering,ECCOMAS'96,1996.pp.86-99.
    [114]Wang D,Hassan O,Morgan K,Weatherill N.EQSM:An Efficient High Quality Surface Grid Generation Method Based on Remeshing.Computer Methods in Applied Mechanics and Engineering 2006;195(41-43):5621-33.
    [115]Wang D,Hassan O,Morgan K,Weatherill N.Enhanced Remeshing from STL Files with Applications to Surface Grid Generation.Communications in Numerical Methods in Engineering 2007;23(3):227-39.
    [116]Owen SJ,White DR,Tautges TJ.Facet-Based Surfaces for 3d Mesh Generation.Proceedings of 11th International Meshing Roundtable,2002.pp.297-311.
    [117]梅中义,范玉青,胡世光.NURBS曲面的有限元网格三角剖分.计算机辅助设计与图形 学学报 1997;9(4):289-94.
    [118]Lau TS,Lo SH.Finite Element Mesh Generation over Analytical Curved Surfaces.Computers and Structures 1996;59(2):301-9.
    [119]Nakahashi K,Sharov D.Direct Surface Triangulation Using the Advancing Front Method.AIAA Paper,1995.pp.442-51.
    [120]Rypl D,Krysl P.Triangulation of 3D Surfaces.Engineering with Computers 1997;13(2):87-98.
    [121]Lee CK.Automatic Metric 3D Surface Mesh Generation Using Subdivision Surface Geometrical Model.Part 1:Construction of Underlying Geometrical Model.International Journal for Numerical Methods in Engineering 2003;56(11):1593-614.
    [122]Lee CK.Automatic Metric 3D Surface Mesh Generation Using Subdivision Surface Geometrical Model.Part 2:Mesh Generation Algorithm and Examples.International Journal for Numerical Methods in Engineering 2003;56(11):1615-46.
    [123]Marchant MJ,Weatherill NP,Turner-Smith E,Zheng Y,Sotirakos M.A Parallel Simulation User Environment for Computational Engineering.Proceedings of 5th International Conference on Numerical Grid Generation in Computational Field Simulations.Mississippi State University,MS,USA,1996.pp.741-51.
    [124]FLITE-3D User Manual.Singleton Park,Swansea SA2 8PP,U.K.:Computational and Civil Engineering Department,University of Wales Swansea.
    [125]Zheng Y,Weatherill NP,Hassan O.Topology Abstraction of Surface Models for Three-Dimensional Grid Generation.Engineering with Computers 2001;17(1):28-38.
    [126]Deister F,Tremel U,Hassan O,Weatherill NP.Fully Automatic and Fast Mesh Size Specification for Unstructured Mesh Generation.Engineering with Computers 2004;20(3):237-48.
    [127]Ito Y,Nakahashi K.Direct Surface Triangulation Using Stereolithography(STL) Data.AIAA Paper 2000-924.Reno,NV,USA,2000.
    [128]Ito Y,Nakahashi K.Surface Triangulation for Polygonal Models Based on CAD Data.International Journal for Numerical Methods in Fluids 2002;39(1):75-96.
    [129]Rypl D,Bittnar Z.Generation of Computational Surface Meshes of STL Models.Journal of Computational and Applied Mathematics 2006;192(1):148-51.
    [130]成学文,李德群,周华民.基于STL的注塑模CAE前处理系统的实现.塑料科技2002(1):11-3.
    [131]李海生,杨钦,陈其明.根据STL文件生成三维四面体网格.中国机械工程2003;14(11):926-9.
    [132]杨晓东,冯晓峰,申长雨.注塑模CAE用实体模型的表面网格模型生成方法.塑料工业2004;32(5):26-8.
    [133]Peraire J,Peiro J,Formaggia L,Morgan K,Zienkiewicz OC.Finite Element Euler Computations in Three Dimensions.International Journal for Numerical Methods in Engineering 1988;26(10):2135-59.
    [134]Zhu JZ,Zienkiewicz OC,Hinton E,Wu J.A New Approach to the Development of Automatic Quadrilateral Mesh Generation.International Journal for Numerical Methods in Engineering 1991;32(4):849-66.
    [135]Canann SA,Liu YC,Mobley AV.Automatic 3D Surface Meshing to Address Today's Industrial Needs.Finite Elements in Analysis and Design 1997;25(1-2):185-98.
    [136]Owen SJ,Saigal S.Surface Mesh Sizing Control.International Journal for Numerical Methods in Engineering 2000;47(1-3):497-511.
    [137]Zheng Y,Weatherill NP,Turner-Smith EA.An Interative Geometry Utility Environment for Multi-Disciplinary Computational Engineering.International Journal for Numerical Methods in Engineering 2002;53(6):1277-99.
    [138]黄晓东,杜群贵,叶邦彦.三维实体有限元自适应网格规划生成.计算机辅助设计与图形学学报2005;17(7):1446-51.
    [139]Zhu J,Blacker T,Smith R.Background Overlay Grid Size Functions.Proceedings of 11th International Meshing Roundtable.Ithaca,New York,2002.pp.65-74.
    [140]Sch(o|¨)berl J.NETGEN - An Advancing Front 2D/3D-Mesh Generator Based on Abstract Rules.Computing and Visualization in Science 1997;1(1):41-52.
    [141]Quadros WR,Owen SJ,Brewer M,Shimada K.Finite Element Mesh Sizing for Surfaces using Skeleton.Proceedings of 13th International Meshing Roundtable.Williamsburg,Virginia,2004.pp.389-400.
    [142]Cunha A,Canann SA,Saigal S.Automatic Boundary Sizing For 2D and 3D Meshes.Trends in Unstructured Mesh Generation.Evanston,Illinois,1997.pp.65-72.
    [143]Persson P.PDE-Based Gradient Limiting for Mesh Size Functions.Proceedings of 13th International Meshing Roundtable.Williamsburg,Virginia,2004.pp.377-88.
    [144]黄晓东,杜群贵,叶邦彦.二维几何特征自适应有限元网格生成(一)——几何特征识别.计算机辅助设计与图形学学报2004;16(7):923-8.
    [145]杜群贵,刘邵宏,黄晓东.二维几何特征自适应有限元网格生成(二)——算法描述.计算机辅助设计与图形学学报2004;16(7):929-34.
    [146]Quadros WR,Shimada K,Owen SJ.Skeleton-Based Computational Method for the Generation of a 3D Finite Element Mesh Sizing Function.Engineering with Computers 2004;20(3):249-64.
    [147]张洪梅,赵国群,程联军.基于STL文件的变密度三维全六面体网格自动生成方法.中国机械工程2006;17(19):1997-2001.
    [148]Bellenger E,Coorevits P.Adaptive Mesh Refinement for the Control of Cost and Quality in Finite Element Analysis.Finite Elements in Analysis and Design 2005;41(15):1413-40.
    [149]Li X,Shephard MS,Beall MW.3D Anisotropic Mesh Adaptation by Mesh Modification.Computer Methods in Applied Mechanics and Engineering 2005;194(48-49):4915-50.
    [150]Bank RE,Smith RK.Mesh Smoothing Using a Posteriori Error Estimates.SIAM Journal on Numerical Analysis 1997;34(3):979-97.
    [151]Park YM,Kwon OJ.A Parallel Unstructured Dynamic Mesh Adaptation Algorithm for 3-D Unsteady Flows.International Journal for Numerical Methods in Fluids 2005;48(6):671-90.
    [152]Biswas R,Oliker L,Sohn A.Global Load Balancing with Parallel Mesh Adaptation on Distributed-Memory Systems.Proceedings of the 1996 ACM/IEEE conference on Supercomputing(CDROM) 1996.pp.17-22.
    [153]Alauzet F,Li X,Seol ES,Shephard MS.Parallel Anisotropic 3D Mesh Adaptation by Mesh Modification.Engineering with Computers 2006;21(3):247-58.
    [154]Quadros WR,Vyas V,Shimada K,Brewer M,Owen SJ.A Computational Framework For Generating Sizing Function In Assembly Meshing.Proceedings of 14th International Meshing Roundtable.Springer-Verlag,2005.pp.55-72.
    [155]Zhu J.A New Type of Size Function Respecting Premeshed Entities.Proceedings of 12th International Meshing Roundtable,2003.pp.403-13.
    [156]Touheed N,Jimack PK.Improved Parallel Mesh Generation Through Dynamic Load-Balancing.Advances in Computational Mechanics with Parallel and Distributed Processing,1997.pp.105-11.
    [157]L(a|¨)mmer L,Burghardt M.Parallel Generation of Triangular and Quadrilateral Meshes.Advances in Engineering Software 2000;31(12):929-36.
    [158]L(o|¨)hner R.Parallel Unstructured Grid Generation.Computer Methods in Applied Mechanics and Engineering 1992;95(3):343-57.
    [159]Chae SW,Jeong JH.Unstructured Surface Meshing Using Operators.Proceedings of 6th International Meshing Roundtable.Park City,Utah,USA,1997.pp.281-91.
    [160]Nowottny D.Quadrilateral Mesh Generation via Geometrically Optimized Domain Decomposition.Proceedings of 6th International Meshing Roundtable.Park City,Utah,USA,1997.pp.309-20.
    [161]Sarrate J,Huerta A.Efficient Unstructured Quadrilateral Mesh Generation.International Journal for Numerical Methods in Engineering 2000;49(10):1327-50.
    [162]http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.
    [163]Dobrzynski C,Frey P.Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations.Proceedings of 17th International Meshing Roundtable.Pittsburgh,Pennsylvania,2008.pp.177-94.
    [164]Xie L,Zheng Y,Chen J,Zou J.Enabling Technologies in the Problem Solving Environment HEDP.Communications in Computational Physics 2008;4(5):1170-93.
    [165]朱心雄.自由曲线曲面造型技术:科学出版社,2000.
    [166]Ferguson JC.Multivariable Curve Interpolation.Seattle,Washington:The Boeing Co.,1963.
    [167]Opera J.Differential Geometry and Its Applications,Second Edition:China Machine Press,2005.
    [168]刘金义,侯宝明.STL格式实体的快速拓扑重建.工程图学学报2003;24(4):34-9.
    [169]戴宁,廖文和,陈春美.STL数据快速拓扑重建关键算法.计算机辅助设计与图形学学报2005;17(11):2447-52.
    [170]王坚,周来水,张维中.基于三角片拼合的STL网格模型重建算法.计算机辅助设计与图形学学报2006;18(11):1758-64.
    [171]Botsch M,Steinberg S,Bischoff S,Kobbelt L.OpenMesh - A Generic and Efficient Polygon Mesh Data Structure.In:OpenSG Symposium,2002.
    [172]Chen L,Zheng Y,Chen J,Liang Y.An Improved Laplacian Smoothing Approach for Surface Meshes.Proceedings of 7th International Conference on Computational Science.Beijing,China,2007.pp.318-25.
    [173]Frey PJ.About Surface Remeshing.Proceedings of 9th International Meshing Roundtable.New Orleans,Louisiana,USA,2000.pp.123-36.
    [174]Farin G.Triangular Bernstein-Bezier Patches.Computer Aided Geometric Design 1986;3(2):83-128.
    [175]Piper BR.Visually Smooth Interpolation with Triangular B'ezier Patches.In:Farin G,editor.Geometric Modeling:Algorithms and New Trends:SIAM,1987.pp.221-33.
    [176]Walton DJ,Meek DS.A Triangular Gl Patch from Boundary Curves.Computer Aided Design 1996;28(2):113-23.
    [177]Frey PJ,Borouchaki H.Geometric Surface Mesh Optimization.Computing and Visualization inScience 1998;1(3):113-21.
    [178] Coupez T, Digonnet H, Ducloux R. Parallel Meshing and Remeshing. Applied Mathematical Modeling 2000;25 (2): 153-75.
    [179] Hodgson DC, Jimack PK. Efficient Parallel Generation of Partitioned, Unstructured Meshes.Advances in Engineering Software 1996;27 (l-2):59-70.
    [180] http://glaros.dtc.umn.edu/gkhome/views/metis.
    [181] Tarn TKH, Armstrong CG 2D Finite Element Mesh Generation by Medial Axis Subdivision.Advances in Engineering Software 1991;13 (5-6):313-24.
    [182] Chen J, Zheng Y, Ning X. Scalable Parallel Quadrilateral Mesh Generation Coupled with Mesh Partitioning. Proceedings of the PDCAT, 2005. pp. 966-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700