数字图像滤波器在立体匹配中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确快速地获取三维场景的深度信息是很多三维应用所需的关键技术。随着三维技术的发展,诸如三维表面重建、三维电视、增强现实等应用都对深度图提出了新的要求:在精度上需要更精确的稠密深度信息,在速度上需要更高的深度获取效率。三维电视技术结合了计算机三维动画,真实场景深度获取和虚实融合等技术,舒适的观感需求对高效精确的深度获取技术提出了更高的要求。作者所在的研究团队提出了创新性的“自然三维电视”概念,旨在通过舒适的观感还原真实的三维场景。同时本文作者还提出了使用“视频+深度+增强信息”作为三维内容的表达方式。自然三维电视要求获取真实的场景信息并提取场景对应的深度信息,依靠基于深度图像的绘制方法重构出多个视点图像,实现自然的立体观看感受。而基于深度图像的绘制方法严重依赖于深度图的精确性,且实时的应用场景要求深度获取算法有更高的运算速度。
     立体匹配技术一直以来是应用最为广泛的深度获取算法之一,由于其被动获取深度的特性和生成稠密深度的能力,立体匹配技术能够适应多种场景的应用。但是由于该技术本身是一个逆向求解的病态问题,问题求解需要在一定的假设下进行。经过多年的发展,通过立体匹配技术获取稠密视差图,进而获取精确稠密的深度图的技术已经获得了长足的发展。这些算法主要分为使用全局优化的全局算法和注重局部匹配代价优化的局部算法。本文在现有算法的基础上对立体匹配算法进行了深入研究,主要创新点和贡献如下:
     1.本文提出了一种基于数字图像滤波器的局部立体匹配算法框架,实现了滤波器设计和立体匹配算法的紧密结合。算法框架将局部立体匹配中的两个关键问题:匹配代价聚合和视差图后处理统一建模为在匹配代价空间或视差空间中的保持边缘的平滑滤波问题。可以通过设计高效的图像滤波算法提升局部立体匹配算法的精度和速度。
     2.在基于图像滤波的局部立体匹配框架内,作者提出了一种“双层局部自适应”思想指导下的自适应指导图像滤波器。在原有的指导图像滤波算法基础上,提升了代价滤波的精度,从而提高了匹配算法的整体性能。同时,作者针对算法的并行运算结构特点,在NVIDIA CUDA并行计算平台上设计了算法的并行实现。提出了高效“并行积分图像”算法,有效提升了算法在并行平台上的运行效率,达到了半实时视频帧率的处理速度。
     3.为进一步提升代价滤波的性能,本文基于图像形态学的理论,提出了一种基于正交测地距离权重的全图像指导滤波器。该滤波器能够使用尽可能多的支持像素点支持图像滤波,同时能够有效地保持图像边缘。将该滤波算法应用于匹配代价滤波和视差后处理滤波,都获得了明显的效果提升。作者还根据正交测地距离计算的特点,设计了高效的算法,将原本复杂的滤波操作运算降到了极低的操作数。
     4.针对视差后处理的关键问题,本文提出了两种后处理滤波方法。使用层级联合双边滤波器对视差图直接处理,可以有效解决遮挡区域和误匹配的视差重计算问题;使用基于正交测地距离权重的全图像指导滤波器在变换后的匹配代价卷上进行滤波,在修复遮挡区域和误匹配视差的同时,还能有效处理大范围低纹理区域的错误匹配。
One of the most important technology in many3D applications is acquiring the depth of3-dimensional scenes quickly and accurately. With the development of3D technology, new requirements are raised by many new applications such as3D surface modeling,3D television and argument reality. These applications usually require more accurate dense depth map on one hand, and more efficient depth generation algorithms on the other hand.3DTV integrates many technologies such as3D computer animation, real scene depth acquisition and virtual-real fusion. The demand of flexible viewing experience requires more advanced depth generation algorithms. Based on the classic3DTV, our research team proposed a novel concept named "natural3DTV" which aims to reproduce the real3D scenes using a more comfortable way. And the author also proposed using "video+depth+enhanced information" to represent the3D scenes. Natural3DTV system captures the actual scene, generates the corresponding depth, and synthesizes multiple virtual view images using the depth image-based rendering (DIBR) technology. And the quality of virtual views generated by DIBR heavily depends on the accuracy of depth maps. Some real-time applications also ask for more efficient algorithms.
     Stereo matching is one of the widely used depth acquisition methods. It can generate dense depth maps and requiring no active projection instruments. But the problem itself is ill-posed and must be solved under certain assumptions or constraints. Many algorithms were proposed and the technology has been well developed. These algorithms can be mainly categorized into two classes:global methods that rely on the global optimization and local algorithms emphasize on local cost aggregation. Based on these existing methods, the author made a deep study of stereo matching algorithms. The main contributions of this doctoral thesis are as follows:
     1. Based on existing local stereo matching algorithms, the author successfully integrates the digital image filtering technology and proposed a novel local stereo matching framework based on image filtering. The framework uses image filtering models to carry out two main steps in local algorithms:matching cost aggregation and disparity post-processing. This allows us to improve the accuracy and efficiency of stereo matching algorithms by applying efficient image filters.
     2. Within the novel local stereo matching framework, the author proposed a new adaptive guided image filtering method directed by the novel concept of "two-level local adapta-tion". The new cost filtering method improved the accuracy of disparity maps compared to methods using the original guided image filter. The author also designed the work-efficient "parallel integral image" parallel algorithm and implemented the whole algorithm on the NVIDIA CUDA parallel computing platform. The speed of the whole matching algorithm is greatly improved.
     3. The author proposed a novel full-image guided filtering method based on orthogonal geodesic distance weight. This filtering method can utilize as many supporting pixel-s as possible and ensures strong edges being kept. By applying it to cost filtering and post-processing, both present good performance. According the the property of the or-thogonal geodesic distance, the author also designed a fast implementation to reduce the computational amount.
     4. To deal with the key problem of disparity post-processing, the author also proposed two post-processing filtering methods. One method uses novel hierarchical joint bilateral fil-tering to process the disparity map directly, the other method operates on the transformed cost volume by applying full-image guided filtering. Both methods can deal with occluded regions and mismatched pixels. The later method performs well even at large low-texture regions.
引文
[1]Scharstein D, Szeliski R. Middlebury stereo vision research page. "http://vision, middlebury.edu/stereo/eval",2002.
    [2]Woods A J, Merritt J O, Benton S A, Bolas M T. Depth-image-based rendering (dibr), compression, and transmission for a new approach on 3d-tv.2004,93-104.
    [3]Szeliski R. Computer vision:algorithms and applications[M]. Springer,2010.
    [4]He K, Sun J, Tang X. Guided image filtering. In European Conference on Computer "Vision.2010, 1-14.
    [5]Hartley R I, Sturm P. Triangulation[J]. Computer Vision and Image Understanding,1997,68(2):146-157.
    [6]Hartley R, Zisserman A. Multiple view geometry in computer vision[M], volume 2. Cambridge Univ Press,2000.
    [7]吴福朝.计算机视觉中的数学方法[M].科学出版社,2008.
    [8]Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. In IEEE Confer-ence on Computer Vision and Pattern Recognition.1999, volume 1,666-673.
    [9]Fusiello A, Trucco E, Verri A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision and Applications,2000,12(1):16-22.
    [10]Hartley R I. Theory and practice of projective rectification[J]. International Journal of Computer Vision, 1999,35(2):115-127.
    [11]Cyganek B, Siebert J P. An introduction to 3D computer vision techniques and algorithms[M]. Wiley, 2011.
    [12]Marr D, Poggio T. Cooperative computation of stereo disparity. Technical report, DTIC Document, 1976.
    [13]Harris C, Stephens M. A combined corner and edge detector. In Alvey vision conference.1988, volume 15,50.
    [14]Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Com- puter Vision,2004,60(2):91-110.
    [15]Zitova B, Flusser J. Image registration methods:a survey[J]. Image and Vision Computing,2003, 21(11):977-1000.
    [16]Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algo-rithms[J]. International Journal of Computer Vision,2002,47(1):7-42.
    [17]Brown M Z, Burschka D, Hager G D. Advances in computational stereo[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):993-1008.
    [18]Witkin A, Terzopoulos D, Kass M. Signal matching through scale space [J]. International Journal of Computer Vision,1987,1(2):133-144.
    [19]Intille S, Bobick A. Disparity-space images and large occlusion stereo. In European Conference on Computer Vision.1994, volume 801,179-186.
    [20]Geiger D, Ladendorf B, Yuille A. Occlusions and binocular stereo[J]. International Journal of Computer Vision,1995,14(3):211-226.
    [21]Fusiello A, Roberto V, Trucco E. Efficient stereo with multiple windowing. In IEEE Conference on Computer Vision and Pattern Recognition.1997,858-863.
    [22]Kang S B, Szeliski R, Chai J. Handling occlusions in dense multi-view stereo. In IEEE Conference on Computer Vision and Pattern Recognition.2001, volume 1,103-110.
    [23]Bobick A F, Intille S S. Large occlusion stereo[J]. International Journal of Computer Vision,1999, 33(3):181-200.
    [24]Boykov Y, Veksler O. Zabih R. A variable window approach to early vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,2O(12):1283-1294.
    [25]Veksler O. Fast variable window for stereo correspondence using integral images. In IEEE Conference on Computer Vision and Pattern Recognition.2003, volume 1,556-561.
    [26]Crow F C. Summed-area tables for texture mapping[J]. ACM SIGGRAPH Computer Graphics,1984, 18(3):207-212.
    [27]Zhang J, Li D, Zhang M. Fast stereo matching algorithm based on adaptive window. In International Conference on Audio Language and Image Processing.2010,138-142.
    [28]Veksler O. Stereo matching by compact windows via minimum ratio cycle. In IEEE International Conference on Computer Vision.2001, volume 1,540-547.
    [29]Jermyn I H, Ishikawa H. Globally optimal regions and boundaries as minimum ratio weight cycles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(10):1075-1088.
    [30]Lu J, Lafruit G, Catthoor F. Anisotropic local high-confidence voting for accurate stereo correspon- dence[J], Image Processing:Algorithms and Systems Ⅵ,2008,605822-1.
    [31]Zhang K, Lu J, Lafruit G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology,2009,19(7):1073-1079.
    [32]Mei X, Sun X, Zhou M, Jiao S, Wang H, Zhang X. On building an accurate stereo matching system on graphics hardware. In IEEE International Conference on Computer Vision Workshops.2011,467-474.
    [33]Zhu S, Zhang L, Jin H. A locally linear regression model for boundary preserving regularization in stereo matching. In European Conference on Computer Vision. Berlin, Heidelberg,2012,101-115.
    [34]Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2006,28(4):650-656.
    [35]Tombari F, Mattoccia S, Di Stefano L. Segmentation-based adaptive support for accurate stereo corre-spondence. In Advances in Image and Video Technology.2007,427-438.
    [36]Mattoccia S, Giardino S, Gambini A. Accurate and efficient cost aggregation strategy for stereo corre-spondence based on approximated joint bilateral filtering. In Asian Conference on Computer Vision. 2009,371-380.
    [37]Mattoccia S. A locally global approach to stereo correspondence. In IEEE International Conference on Computer Vision Workshops.2009,1763-1770.
    [38]Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In IEEE International Conference on Computer Vision.1998,839-846.
    [39]Mattoccia S. Accurate dense stereo by constraining local consistency on superpixels. In International Conference on Pattern Recognition.2010,1832-1835.
    [40]Mattoccia S. Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency of disparity fields[J]. International Symposium on 3D Data Processing, Visualization and Transmission,2010,17-20.
    [41]Richardt C, Orr D, Davies I, Criminisi A, Dodgson N. Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid. In European Conference on Computer Vision.2010,510-523.
    [42]Chen J, Paris S, Durand F. Real-time edge-aware image processing with the bilateral grid[J]. ACM Transactions on Graphics,2007,26(3).
    [43]Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision,2009,81(1):24-52.
    [44]Min D, Lu J, Do M. A revisit to cost aggregation in stereo matching:How far can we reduce its computational redundancy? In IEEE International Conference on Computer Vision.2011,1567-1574.
    [45]Hosni A, Bleyer M, Gelautz M, Rhemann C. Local stereo matching using geodesic support weights. In IEEE International Conference on Image Processing.2009,2093-2096.
    [46]Yang Q. A non-local cost aggregation method for stereo matching. In IEEE Conference on Computer Vision and Pattern Recognition.2012,1402-1409.
    [47]Rhemann C, Hosni A, Bleyer M, Rother C, Gelautz M. Fast cost-volume filtering for visual cor-respondence and beyond. In IEEE Conference on Computer Vision and Pattern Recognition.2011, 3017-3024.
    [48]Hosni A, Bleyer M, Rhemann C, Gelautz M, Rother C. Real-time local stereo matching using guided image filtering. In IEEE International Conference on Multimedia and Expo.2011,1-6.
    [49]De-Maeztu L, Mattoccia S, Villanueva A, Cabeza R. Linear stereo matching. In IEEE International Conference on Computer Vision.2011,1708-1715.
    [50]Yang Q, Li D, Wang L, Zhang M. Full-image guided filtering for fast stereo matching[J]. IEEE Signal Processing Letters,2013,20(3):237-240.
    [51]Wang L, Gong M, Yang R. How far can we go with local optimization in real-time stereo matching. In International Symposium on 3D Data Processing, Visualization, and Transmission.2006,129-136.
    [52]Gong M, Yang R, Wang L, Gong M. A performance study on different cost aggregation approaches used in real-time stereo matching[J]. International Journal of Computer Vision,2007,75(2):283-296.
    [53]Tombari F, Mattoccia S, Di Stefano L, Addimanda E. Classification and evaluation of cost aggregation methods for stereo correspondence. In IEEE Conference on Computer Vision and Pattern Recognition. 2008,1-8.
    [54]Min D, Sohn K. Cost aggregation and occlusion handling with wls in stereo matching[J]. IEEE Trans-actions on Image Processing,2008,17(8):1431-1442.
    [55]Bleyer M, Rhemann C, Carsten R. Patchmatch stereo-stereo matching with slanted support windows. In Proceedings of the British Machine Vision Conference.2011,14.1-14.11.
    [56]Gong M, Zhang Y, Yang Y. Near-real-time stereo matching with slanted surface modeling and sub-pixel accuracy[J]. Pattern Recognition,2011,44(10-11):2701-2710.
    [57]Terzopoulos D. Regularization of inverse visual problems involving discontinuities[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,1986,8(4):413-424.
    [58]Poggio T, Torre V, Koch C. Computational vision and regularization theory[J].1985,317(6035):314-319.
    [59]Scharstein D, Szeliski R. Stereo matching with nonlinear diffusion[J]. International Journal of Com-puter Vision,1998,28(2):155-174.
    [60]Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of im- ages[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
    [61]Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.
    [62]Belhumeur P N. A bayesian approach to binocular steropsis[J]. International Journal of Computer Vision,1996,19(3):237-260.
    [63]Cox I J, Hingorani S L, Rao S B, Maggs B M. A maximum likelihood stereo algorithm[J]. Computer Vision and Image Understanding,1996,63(3):542-567.
    [64]Sun J, Li Y, Kang S B, Shum H Y. Symmetric stereo matching for occlusion handling. In IEEE Conference on Computer Vision and Pattern Recognition.2005, volume 2,399-406.
    [65]Barnard S T. Stochastic stereo matching over scale[J]. International Journal of Computer Vision,1989, 3(1):17-32.
    [66]Geiger D, Girosi F. Parallel and deterministic algorithms from mrfs:surface reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(5):401-412.
    [67]Roy S, Cox I J. A maximum-flow formulation of the n-camera stereo correspondence problem. In IEEE International Conference on Computer Vision.1998,492-499.
    [68]Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(7):787-800.
    [69]Felzenszwalb P, Huttenlocher D. Efficient belief propagation for early vision[J]. International Journal of Computer Vision,2006,70(1):41-54.
    [70]Yang Q, Wang L, Yang R, Wang S, Liao M, Nister D. Real-time global stereo matching using hierar-chical belief propagation. In Proceedings of the British Machine Vision Conference.2006,989-998.
    [71]Baker H H, Binford T O. Depth from edge and intensity based stereo. In Artificial Intelligence.1981, volume 2,631-636.
    [72]Veksler O. Stereo correspondence by dynamic programming on a tree. In IEEE Conference on Com-puter Vision and Pattern Recognition.2005, volume 2,384-390.
    [73]Lei C, Selzer J, Yang Y H. Region-tree based stereo using dynamic programming optimization. In IEEE Conference on Computer Vision and Pattern Recognition.2006,2378-2385.
    [74]Deng Y, Lin X. A fast line segment based dense stereo algorithm using tree dynamic programming. In European Conference on Computer Vision.2006,201-212.
    [75]Bleyer M, Gelautz M. Simple but effective tree structures for dynamic programming-based stereo matching. In International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.2008,415-422.
    [76]Wang L, Liao M, Gong M, Yang R, Nister D. High-quality real-time stereo using adaptive cost aggre-gation and dynamic programming. In International Symposium on 3D Data Processing, Visualization and Transmission.2006,798-805.
    [77]Gong M, Yang Y H. Real-time stereo matching using orthogonal reliability-based dynamic program-ming[J]. IEEE Transactions on Image Processing,2007,16(3):879-884.
    [78]Yang Q, Wang L, Li D, Zhang M. Hybrid stereo matching by dynamic programming with enhanced cost entry for real-time depth generation. In International Conference on Audio Language and Image Processing.2012,557-563.
    [79]Yang Q, Wang L, Yang R, Stewenius H, Nister D. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(3):492-504.
    [80]Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In International Conference on Pattern Recognition.2006, volume 3, 15-18.
    [81]Tao H, Sawhney H S. Global matching criterion and color segmentation based stereo. In Fifth IEEE Workshop on Applications of Computer Vision.2000,246-253.
    [82]Tao H, Sawhney H S, Kumar R. A global matching framework for stereo computation. In IEEE International Conference on Computer Vision.2001, volume 1,532-539.
    [83]Comaniciu D, Meer P. Mean shift:A robust approach toward feature space analysis[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
    [84]Chen C W, Luo J, Parker K J. Image segmentation via adaptive k-mean clustering and knowledge-based morphological operations with biomedical applications[J]. IEEE Transactions on Image Processing, 1998,7(12):1673-1683.
    [85]Fischler M A, Bolles R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM,1981,24(6):381-395.
    [86]Bleyer M, Gelautz M. A layered stereo algorithm using image segmentation and global visibility constraints. In IEEE International Conference on Image Processing.2004, volume 5,2997-3000.
    [87]Wang Z F, Zheng Z G. A region based stereo matching algorithm using cooperative optimization. In IEEEE Conference on Computer Vision and Pattern Recognition.2008,1-8.
    [88]Zitnick C L, Kang S B, Uyttendaele M, Winder S, Szeliski R. High-quality video view interpolation using a layered representation [J]. ACM Transactions on Graphics,2004,23(3):600-608.
    [89]Zitnick C L, Kang S B. Stereo for image-based rendering using image over-segmentation [J]. Interna- tional Journal of Computer Vision,2007,75(1):49-65.
    [90]Bleyer M, Rother C, Kohli P, Scharstein D, Sinha S. Object stereo—joint stereo matching and object segmentation. In IEEE Conference on Computer Vision and Pattern Recognition.2011,3081-3088.
    [91]Sebe N, Lew M S, Huijsmans D P. Toward improved ranking metrics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1132-1143.
    [92]Bhat D N, Nayar S K. Ordinal measures for image correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(4):415-423.
    [93]Faugeras O, Hotz B, Mathieu H, Viville T, Zhang Z, Fua P, Thron E, Moll L, Berry G, Vuillemin J, Bertin P, Proy C. Real time correlation-based stereo:algorithm, implementations and application [J]. 1993.
    [94]Birchfield S, Tomasi C. A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(4):401-406.
    [95]Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence. In Euro-pean Conference on Computer Vision.1994,151-158.
    [96]Humenberger M, Zinner C, Weber M, Kubinger W, Vincze M. A fast stereo matching algorithm suitable for embedded real-time systems [J]. Computer Vision and Image Understanding,2010,114(11):1180-1202.
    [97]Viola P, Wells Ⅲ W M. Alignment by maximization of mutual information. In IEEE Conference on Computer Vision and Pattern Recognition.1995,16-23.
    [98]Hirschmuller H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2008,30(2):328-341.
    [99]Draper N R, Smith H. Applied regression analysis[M]. Wiley New York,1998,3rd edition.
    [100]Blelloch G E. Prefix sums and their applications. Technical report, School of Computer Science, Carnegie Mellon University,1990.
    [101]Harris M. Parallel prefix sum (scan) with cuda[J]. GPU Gems,2007,3(39):851-876.
    [102]Hillis W D, Steele Jr G L. Data parallel algorithms [J]. Communications of the ACM,1986, 29(12):1170-1183.
    [103]Horn D. Stream reduction operations for gpgpu applications [J]. Gpu gems,2005,2:573-589.
    [104]Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts. In IEEE International Conference on Computer Vision.2001, volume 2,508-515.
    [105]Scharstein D, Pal C. Learning conditional random fields for stereo. In IEEE Conference on Computer Vision and Pattern Recognition.2007,1-8.
    [106]Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching. In IEEE Conference on Computer Vision and Pattern Recognition.2007,1-8.
    [107]Aleksic M, Smirnov M, Goma S. Novel bilateral filter approach:Image noise reduction with sharpen-ing. In Digital Photography Ⅱ.2006,60690F-60690F-7.
    [108]Bennett E P, McMillan L. Video enhancement using per-pixel virtual exposures[J]. ACM Transactions on Graphics,2005,24(3):845-852.
    [109]Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images [J]. ACM Transactions on Graphics,2002,21(3):257-266.
    [110]Eisemann E, Durand F. Flash photography enhancement via intrinsic relighting[J]. ACM Transactions on Graphics,2004,23(3):673-678.
    [111]Elad M. Retinex by two bilateral filters. In Scale Space and PDE Methods in Computer Vision.2005, 217-229.
    [112]Yang Q, Yang R, Davis J, Nister D. Spatial-depth super resolution for range images. In IEEE Confer-ence on Computer Vision and Pattern Recognition.2007, volume,1-8.
    [113]Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K. Digital photography with flash and no-flash image pairs[J]. ACM Transactions on Graphics,2004,23(3):664-672.
    [114]Sand P, Teller S. Particle video:Long-range motion estimation using point trajectories[J]. International Journal of Computer Vision,2008,80(1):72-91.
    [115]Xiao J, Cheng H, Sawhney H, Rao C, Isnardi M. Bilateral filtering-based optical flow estimation with occlusion detection. In European Conference on Computer Vision.2006,211-224.
    [116]Kopf J, Uyttendaele M, Deussen O, Cohen M F. Capturing and viewing gigapixel images[J]. ACM Transactions on Graphics,2007,26(3).
    [117]Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction To Algorithms[M].2001.
    [118]Zitnick C L, Kanade T. A cooperative algorithm for stereo matching and occlusion detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(7):675-684.
    [119]Egnal G, Wildes R P. Detecting binocular half-occlusions:empirical comparisons of five approaches [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(8):1127-1133.
    [120]Min D, Sohn K. An asymmetric post-processing for correspondence problem[J]. Signal Processing: Image Communication,2010,25(2):130-142.
    [121]Paris S, Kornprobst P, Tumblin J, Durand F. A gentle introduction to bilateral filtering and its applica-tions. In ACM SIGGRAPH courses.2007.
    [122]Riemens A K, Gangwal O P, Barenbrug B, Berretty R P M. Multistep joint bilateral depth upsampling. In Visual Communications and Image Processing.2009,1-12.
    [123]Yang Q, Tan K, Culbertson B, Apostolopoulos J. Fusion of active and passive sensors for fast 3d capture. In IEEE International Workshop on Multimedia Signal Processing.2010,69-74.
    [124]Mueller M, Zilly F, Kauff P. Adaptive cross-trilateral depth map filtering. In 3DTV-Conference:The True Vision-Capture, Transmission and Display of 3D Video.2010,1-4.
    [125]Kopf J, Cohen M F, Lischinski D, Uyttendaele M. Joint bilateral upsampling[J]. ACM Transactions on Graphics,2007,26(3):96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700