时域积分方程混合与快速算法及其在分析复杂结构中瞬态电磁效应的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电子信息系统在功能曰渐强大的同时,也面临着电磁环境曰益复杂和恶劣的问题。随着电磁脉冲武器研制的发展,电磁兼容和电磁干扰问题成为高度研究的问题。高功率电磁脉冲可以通过天线、线缆等注入电子器件与线路,使受辐照的电子设备功能失效甚至损毁。特别是,对于舰船平台,在有限的空间需放置大量不同波段收发设备,如何深入研究外来高功率电磁脉冲对典型器件、系统的耦合机理和损毁效应显得非常迫切和重要。在研究舰船平台EMC问题时,由于真实试验条件有限,花费代价也巨大,受到诸多限制。因此,使用计算电磁学方法进行数值仿真,对问题和设计进行评估、量化和改进,可发挥重要作用。正是本着这样的目标,论文有针对性地研究了时域积分方程混合与快速算法,开发了用于分析电磁脉冲照射下瞬态电磁问题的并行平台,主要研究工作和创新点可归纳为:
     1)基于时域积分方程的特性,较为系统地研究了时间步进算法。分析了常用时间基函数波形及其特性,研究了显式和隐式算法;针对时间步进算法后时不稳定性问题,利用新型拉盖尔多项式时间基函数,提出了后时稳定的自适应阶数步进(MOD)求解方法;
     2)系统研究了复杂金属-介质组合体目标的电磁特性,建立TD-EFIE-PMCHW方程,研究介质涂覆、金属贴片等不同情形,提出一种处理金属-介质-自由空间三者的交界边(junction)的精确方法,并且研究了卷积计算加速技术,使算法更为有效;
     3)研究了时域积分方程与高频方法的混合,提出了TDIE-TDPO混合方法,有效分析了平台上多天线耦合特性;
     4)系统研究了自适应积分方法,提出了TD-AIM-MOD快速算法,包括辅助基函数投影矩阵的快速求解、FFT加速Toeplitz矩阵-向量乘积,稀疏矩阵存储技术,以及奇异值分解压缩技术;
     5)研究和开发了快速算法TD-AIM-MOD的并行程序,解决了4-D时-空FFT并行求解技术。在此基础上,研究了典型先进舰船桅杆结构及其电磁建模技术,运用并行TD-AIM-MOD方法分析了舰船桅杆典型结构模型的瞬态散射特性。
     此外,论文研究还包括了表面电流显示、Vandermonde矩阵方程快速求解、奇异和近奇异积分等技术,进一步完善时域积分积分方程方法求解大规模电磁问题的能力。
In recent years, with rapidly increasing in functionality of the electronic information systems, the electromagnetic environment they have to face becomes more and more complex and harsh. With the development of electromagnetic pulse weapons, the great attention is paid on the electromagnetic compatibility (EMC) and electromagnetic interference (EMI) problems. High-power electromagnetic pulses can be injected through the antennas, wires, cables, and etc. which will cause the electronic devices malfunction and even damaged. In particular, for the ship platform, a number of transceivers in different bands have to be placed in the limited space. So it is of vital important to deeply investigate the coupling mechanism and damage effects of high-power electromagnetic pulses on typical devices and systems. In the study of EMC problems for the ship platform, there are great restrictions on the field measurement due to the required strict testing conditions and cost of resources. Under such circumstance, the numerical simulation is able to play a key role in design evaluation, quantification and improvement of EMC problems. In this dissertation, we focus on the hybrid and fast algorihms based on time domain integral equation (TDIE), and develop the parallel computational platform for the analysis of transient electromagnetic problems under the illumination of electromagnetic pulses. The main research and academic contributions of this dissertation are summarized as follows:
     1) Based on the properties of time domain integral equation, firstly, the method of moment for solving the frequency domain integral equation is introduced. Further, the complete derivation of the time-domain integral equation is given, and the marching-on-in-time (MOT) scheme for solving TDIE is studied step by step. The commonly used temporal basis functions are discussed, then the explicit and implicit MOT schems are investigated. Three forms of TDIE formulations, incluindg electric field integral equation, magnetic field integral equation and combined field integral equations are analyzed, respectively.
     2) Due to the late time instability of marching-on-in-time scheme, the marching-on-in-degree (MOD) scheme is proposed, and it is proven to be very late time stable. The novel temporal basis function based on Laguerre polynomials is introduced, then the formulations and process of MOD for anaysing metallic and dielectric structures are derived and explained in detail. Further, an adaptive MOD scheme based on2-norms is developed, which improves the computation efficiency of MOD.
     3) The electromagnetic characteristics of dielectric-metallic composite structures are studied, and the TD-EFIE-PMCHW formulations are derived. Different circumstances are taken into account, incluing dielectric coating, metallic patch, and etc. A compact and effective treatment of junctions among dielectic, metallic component and free space is proposed. The technique of accelerating the convolution in MOD recursion is studied.
     4) The hybridization of TDIE and high frequency method, and TDIE-TDPO hybrid method are proposed. For solving the muti-scale problems, the target is divided into TDIE region and TDPO region, according to the respective advantages of the two methods. Compared to the full TDIE solution, the hybrid method reduces the calculation consumption. TDIE-TDPO method is utilized to analyze the coupling characteristics of multiple antennas on the platform.
     5) The adaptive integral method is studied systematically. Based on this, the TD-AIM-MOD fast algorithm is proposed. In the implementation of TD-AIM-MOD method, several techniques are adopted, such as fast solution of projection matrix based on auxiliary basis function, the Toeplitz matrix-vector multiplication accelerated by FFT, sparse matrix storage and sparse matrix-vertor multiplication. Due to reduce the memory requirement of the near field correction matrix, the technique of singular value decomposition compression is introduced.
     6) The parallel TD-AIM-MOD fast algorithm is developed.4-D spatial-temporal FFT is solved by parallel. Numerical examples are provided to analyze the parallel efficieny of the proposed algorithm.
     7) Some typical modern ship mast structures are studied, and the required modeling techniques for electromagnetic simulation are also investigated. Further, a series of tower mast structures for simulation are established by using3ds Max and HFSS. Numerical simulations are given to analyze the transient scattering characteristics of these typical ship mast structures by using the proposed parallel TD-AIM-MOD fast algorithm.
     In addition, in this dissertation, the surface current display, fast solution of equations formed by Vandermode matrix, singular and nearly singular integral are studied. They together improve the capabilities of TDIE method for solving large-scale electromagnetic problems.
引文
[I]C. R. Paul. Introduction to Electromagnetic Compatibility, Wiley, New York,2006.
    [2]W. A. Radasky, C. E. Baum, M. W. Wik, "Introduction to the special issue on high-power electromagnetic (HPEM) and intentional electromagnetic interference (IEMI)," IEEE Trans. Electromagn. Compat., vol.46, no.3, pp.314-321, Aug.2004.
    [3]M. Abrams, "Dawn of the E-Bomb," IEEE Spectrum,2003,40(11):24-30.
    [4]M. G. Backstrom, and K. G. Lovstrand, "Susceptibility of electronic systems to high-power microwaves:summary of test experience," IEEE Trans. Electromagn. Compat. vol.46, no.3, pp.396-403, Aug.2004.
    [5]M. Camp, H. Gerth, H. Garbe, and H. Haase, "Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis," IEEE Trans. Electromagn. Compat., vol.46, no.3. pp.368-379, Aug.2004.
    [6]H. Shall, Z. Riah, and M. Kadi, "A 3-D near-field modeling approach for electromagnetic interference prediction," IEEE Trans. Electromagn. Compat.. vol.56, no.1, pp.102-112, Feb.2014.
    [7]H. Bagci, A. E. Yilmaz, J. M. Jin, and E. Michielssen,"Fast and rigorous analysis of EMC/EMI phenomena on electrically large and complex cable-loaded structures,' IEEE Trans. Electromagn. Compat., vol.49, no.2, pp.361-381, May 2007.
    [8]T. Yang, Y. Bayram, and J. L. Volakis, "Hybrid analysis of electromagnetic interference effects on microwave active circuits within cavity enclosures," IEEE Trans. Electromagn. Compat., vol.52, no.3, pp.745-748, Aug.2010.
    [9]H. Bagci, A. C. Yucel, J. S. Hesthaven, and E. Michielssen, "A fast stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms," IEEE Trans. Electromagn. Compat., vol.51, no.2, pp.301-311, May 2009.
    [10]D. L. Sengupta, and T. K. Sarkar, "Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves," IEEE Antennas Propag. Mag., vol.45, no.2, pp. 13-19, Apr.2003.
    [11]R. F. Harrington, Time-harmonic electromagnetic fields. New York, John Wiley,2001.
    [12]盛新庆,计算电磁学要论.合肥:中国科学技术大学出版社.2008.
    [13]S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., vol.30. no.3. pp.409-418, May 1982.
    [14]X. Q. Sheng, J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., vol.46, no.11, pp.1718-1726, Nov.1998.
    [15]K. C. Donepudi, J. M. Jin, and W. C. Chew, "A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies," IEEE Trans. Antennas Propag., vol.51, no.10, pp.2814-2821, Oct.2003.
    [16]P. P. Silvester, R. L. Ferrari, Finite elements for electrical engineering, Cambridge, Cambridge University Press,1983.
    [17]J. M. Jin, The finite element method in electromagnetics, New York, Wiley,2002.
    [18]X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering." IEEE Trans. Antennas Propag., vol.46, no.3, pp.303-341, Mar.1998.
    [19]M. N. Vouvakis, Z. Cendes, and J. F. Lee, "A FEM domain decomposition method for photonic and electromagnetic band gap structures," IEEE Trans. Antennas Propag., vol.54, no.2, pp.721-733, Feb.2006.
    [20]A. Taflove and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method,3rd ed. Norwood, MA:Artech House,2005.
    [21]F. Zheng, Z. Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Mi crow. Theory. Tech., vol.48, no.9, pp.1550-1558, Sep.2000.
    [22]C. Guiffaut and K.Mahdjoubi, "A parallel FDTD algorithm using the MPI library,' IEEE Antennas Propag. Mag., vol.43, no.2, pp.94-103, Apr.2001.
    [23]J. Hamm, F. Renn, and O. Hess, "Dispersive media subcell averaging in the FDTD method using corrective surface currents," IEEE Trans. Antennas Propag., vol.62, no. 2, pp.832-838, Feb.2014.
    [24]J. Wang, and W. Y. Yin. "Development of a novel FDTD (2.4)-compatible conformal scheme for electromagnetic computations of complex curved PEC objects." IEEE Trans. Antennas Propag., vol.61, no.1, pp.299-309, Jan.2013.
    [25]J. F. Lee, R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antennas Propag., vol.45, no.3, pp.430-442, Mar.1997.
    [26]D. Jiao, and J. M. Jin, "A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations," IEEE Trans. Antennas Propag., vol.50, no.11, pp.1624-1632, Nov.2002.
    [27]R. Wang, H. Wu, A. C. Cangellaris, and J. M. Jin, "Incorporation of a feed network into the time-domain finite-element modeling of antenna arrays," IEEE Trans. Antennas Propag., vol.56, no.8, pp.2599-2612, Aug.2008.
    [28]R. Wang, and J. M. Jin, "A flexible time-stepping scheme for hybrid field-circuit simulation based on the extended time-domain finite element method," IEEE Trans. Adv. Packag., vol.33, no.4, pp.769-776, Nov.2010.
    [29]R. S. Chen, L. Du, Z. B. Ye, and Y. Yang, "An efficient algorithm for implementing the Crank-Nicolson scheme in the mixed finite-element time-domain method," IEEE Trans. Antennas Propag., vol.57, no.10, pp.3216-3222, Oct.2009.
    [30]Y. Shi, J. M. Jin, "A time-domain volume integral equation and its marching-on-in-degree solution for analysis of dispersive dielectric objects," IEEE Trans. Antennas Propag., vol.59, no.3, pp.969-978, Mar.2011.
    [31]C. C. Lu, and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antennas Propag., vol.48, no.12, pp.1866-1868, Dec.2000.
    [32]K. S. Kulpa, P. Samczynski, M. Malanowski, A. Gromek, D. Gromek, W. Gwarek, B. Salski, and G. Tanski, "An advanced SAR simulator of three-dimensional structures combining geometrical optics and full-wave electromagnetic methods,'" IEEE Trans. Geosci. Remote Sens., vol.52, no.1, pp.776-784, Jan.2014.
    [33]L. C. Potter, D. M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propag., vol.43, no.10, pp.1058-1067, Oct.1995.
    [34]H. T. Chou, H. K. Ho, and T. Y. Chung, "A discrete-time uniform geometrical theory of diffraction for the fast transient analysis of scattering from curved wedges." IEEE Trans. Antennas Propag., vol.53. no.11. pp.3633-3643. Nov.2005.
    [35]E. Y. Sun, and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. Antennas Propag., vol.42. no.1, pp.9-15, Jan.1994.
    [36]P. Y. Ufimtsev, "'The 50-year anniversary of the PTD:commnets on the PTD's origin and development," IEEE Antennas Propag. Mag., vol.55, no.3, pp.18-28, June 2013.
    [37]A. Bausssard, M. Rochdi, and A. Khenchaf, "PO/MEC-based scattering model for complex objects on a sea surface," Prog. Electromagn. Res., vol. 111, pp.229-251, 2011.
    [38]C. L. Bennet, A technique for computing approximate electromagnetic impulse response of conducting bodies, Ph.D Dissertation, Purdue University,1968.
    [39]A. J. Plggio, E. K. Miller, R. Mittra, Computer techns in electromagnetic:integral equation solution of 3-D scattering problems, Oxford, Pergamon Press,1973.
    [40]H. Mieras, "Space-time integral equations approach to dielectric targets." IEEE Trans. Antennas Propag., vol.30, no.1, pp.2-9, Jan.1982.
    [41]S. M. Rao, and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propag., vol.39, no.1. pp.56-61, Jan.1991.
    [42]D. A. Vechinski, and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propag.. vol.40, no.6, pp.661-665, June 1992.
    [43]A. Sadigh, and E. Arvas, "Treating the instabilities in marching-on-in time method from a different perspective," IEEE Trans. Antennas Propag., vol.41, no.12, pp. 1695-1702, Dec.1993.
    [44]S. M. Rao, T. K. Sarkar, R. S. Adve, T. Anjali, and J. F. Callejon, "Extrapolation of electromagnetic responses from conducting objects in time and frequency domains," IEEE Trans. Microw. Theory Tech., vol.47, no.10, pp.1964-1974, Oct.1999.
    [45]S. M. Rao, T. K. Sarkar, "Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique." Micro. Opt. Technol. Lett, vol.17, no.1, pp.66-69, Jan.1998.
    [46]G. Vecchi."Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas Propag., vol.47, no.2, pp.339-346, Feb.1999.
    [47]G. Pisharody, and D. S. Weile, "Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation," IEEE Trans. Antennas Propag., vol.53, no.6, pp.2089-2098, Jun.2005.
    [48]J. L. Hu, and C. H. Chan, "Improved temporal basis function for time domain electric field equation method," Electron. Lett., vol.35, no.11, pp.883-885, May 1999.
    [49]J. L. Hu, C. H. Chan, and Y. Xu, "A new temporal basis function for the time-domain integral equation method," IEEE Microw. Wireless Compon. Lett., vol.11, no.11, pp. 465-466, Nov.2001
    [50]D. S. Weile, G. Pisharody, N. C. Chen, B. Shanker, and E. Michielssen, "A novel scheme for the solution of the time-domain integral equations of electromagnetics,' IEEE Trans. Antennas Propag., vol.52, no.1, pp.283-295, Jan.2004.
    [51]A. C. Yucel, and A. A. Ergin, "Exact evaluation of retarded-time potential integrals for the RWG bases," IEEE Trans. Antennas Propag., vol.54, no.5, pp.1496-1502, May 2006.
    [52]G. H. Zhang, M. Y. Xia, and X. M. Jiang, "Trandient analysis of wire structures using time domain integral equation method with exact matrix elements," Prog. Electromagn. Res., vol.92, pp.281-298,2009.
    [53]Y. F. Shi, M. Y. Xia, R. S. Chen, E. Michielssen, and M. Y. Lu, "Stable electric field TDIE solvers via quasi-exact evaluation of MOT matrix elements,"" IEEE Trans. Antennas Propag., vol.59, no.2, pp.574-585, Feb.2011.
    [54]F. P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., vol.56, no.8, pp.2398-2412, Aug.2008.
    [55]H. Bagci, F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, "A Calderon multiplicative preconditioner for the combined field integral equation," IEEE Trans. Antennas Propag, vol.57, no.10, pp.3387-3392, Oct.2009.
    [56]F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, "Time domain Calderon identities and their application to the integral equation analysis of scattering by PEC objects Part II:stability,"'IEEE Trans. Antennas Propag., vol.57, no.8, pp.2365- 2375. Aug.2009.
    [57]S. Yan, J. M. Jin, and Z. P. Nie. "EFIE analysis of low-frequency problems with loop-star decomposition and Calderon multiplicative preconditioner," IEEE Trans. Antennas Propag., vol.58, no.3, pp.857-867, Mar.2010.
    [58]F. Valdes, M. G. Miab, F. P. Andriulli, K. Cools, and E. Michielssen, "High-order Calderon preconditioned time domain integral equation solvers," IEEE Trans. Antennas Propag., vol.61, no.5, pp.2570-2588, May 2013.
    [59]A. J. Pary, N. V. Nair, and B. Shanker, "Stability properties of the time domain electric field integral equation using a separable approximation for the convolution with the retarded potential," IEEE Trans. Antennas Propag., vol.60, no.8, pp.3772-3781, Aug.2012.
    [60]X. Y. Guo, M. Y. Xia, and C. H. Chan, "Stable TDIE-MOT solver for transient scattering by two-dimensional conducting structures," IEEE Trans. Antennas Propag., 2014.
    [61]Y. Beghein, K. Cools, H. Bagci, and D. D. Zutter, "A space-time mixed Galerkin marching-on-in-time scheme for the time-domain combined field integral equation,' IEEE Trans. Antennas Propag., vol.61, no.3, pp.1228-1238. Mar.2013.
    [62]G. Pisharody, and D. S. Weile, "Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations." IEEE Trans. Antennas Propag., vol.54, no.2, pp.687-697, Feb.2006.
    [63]H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, "Fast solution of mixed-potential time-domain integral equations for half-space environments,"IEEE Trans. Geosci. Remote Sens., vol.43, no.2, pp.269-279, Feb.2005.
    [64]K. Aygun, B. C. Fischer, J. Meng, B. Shanker, and E. Michielssen, "A fast hybrid field-circuit simulator for transient analysis of microwave scircuits," IEEE Trans. Microw. Theory Tech., vol.52, no.2, pp.573-583, Feb.2004.
    [65]C. Yang, and V. Jandhyala, "Combined circuit-electromagnetic simulation using multiregion time domain integral equation scheme," IEEE Trans. Electromagn. Compat., vol.48, no.1, pp.2-9, Feb.2006.
    [66]Y. S. Chung, T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Micro. Opt. Technol. Lett., vol.35. no.6, pp.493-499, Dec. 2002.
    [67]B. H. Jung, "Time domain EFIR, MF1E. and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Prog. Electromagn. Res., vol.39, pp.1-45, 2003.
    [68]Z. Ji, T. K. Sarkar, B. H. Jung, Y. S. Chung, M. S. Palma, and M. Yuan, "A stable solution of time domain electric field integral equation for thin-wire antennas using the Laguerre polynomials," IEEE Trans. Antennas Propag., vol.52, no.10, pp.2641-2649, Oct.2004.
    [69]Y. S. Chung, T. K. Sarkar, B. H. Jung, M. S. Palma, Z. Ji, S. Jang, and K. Kim, "Solution of time domain electric field integral equation using Laguerre polynomials," IEEE Trans. Antennas Propag., vol.52, no.9, pp.2319-2328, Sep.2004.
    [70]B. H. Jung, T. K. Sarkar, Y. S. Chung, M. S. Palma, Z. Ji, S. Jang, and K. Kim, Transient electromagnetic scattering from dielectric objects using the electric field integral equation with Laguerre polynomials as temporal basis functions," IEEE Trans. Antennas Propag.., vol.52, no.9, pp.2329-2340, Sep.2004.
    [71]Z. Ji, T. K. Sarkar, B. H. Jung, M. Yuan, and M. S. Palma, "Solving time domain electric field integral equation without the time variable," IEEE Trans. Antennas Propag., vol.54, no.1, pp.258-262, Jan.2006.
    [72]Z. Mei, Y. Zhang, T. K. Sarkar, B. H. Jung, A. G. Lamperez, and M. S. Palma, "An improved marching-on-in-degree method using a new temporal basis," IEEE Trans. Antennas Propag., vol.59, no.12, pp.4643-4650, Dec.2011.
    [73]B. H. Jung, Z. Ji, T. K. Sarkar, M. S. Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the TDIE solver," Prog. Electromagn. Res., vol.70, pp.281-296,2007.
    [74]M. F. Xue, and W. Y. Yin, "Wideband pulse responses of fractal monopole antennas under the impact of an EMP," IEEE Trans. Electromagn. Compat., vol.52, no.1, pp. 98-107, Feb.2010.
    [75]Z. Mei, Y. Zhang, T. K. Sarkar, M. S. Palma, and B. H. Jung, "Analysis of arbitrary frequency-dependent losses associated with conducting structures in a time-domain electric field integral equation," IEEE Antenna Wireless Propag. Lett., vol.10. pp. 678-681.2011.
    [76]Z. H. Wu, E. K.. N. Yung, D. X. Wang, and J. Bao, "Electromagnetic scattering from general bi-isotropic objects using time-domain integral equations combined with PMCHWT formulations," IEEE Trans. Antennas Propag., vol.60, no.2, pp.941-951, Feb.2012.
    [77]S. Sandeep. and A. Gasiewski, "Transient analysis of dispersive, periodic structures for oblique plane wave incidence using Laguerre marching-on-in-degree (MOD),' IEEE Trans. Antennas Propag., vol.61, no.8, pp.4132-4138, Aug.2013.
    [78]H. H. Zhang, Z. H. Fan, and R. S. Chen, "Marching-on-in-degree solver of time-domain finite element-boundary integral method for transient electromagnetic analysis," IEEE Trans. Antennas Propag., vol.62, no.1, pp.319-326, Jan.2014.
    [79]S. M. Rao, T. K. Sarkar, "Numerical solution of time domain integral equations for arbitrarily shaped conductor/dielectric composite bodies," IEEE Trans. Antennas Propag., vol.50, no.12, pp.1831-1837, Dec.2002.
    [80]S. N. Makarov, S. D. Kulkarni, A. G. Marut, and L. C. kempel. "Method of moments solution for a printed patch/slot antenna on a thin finite dielectric substrate using the volume integral equation," IEEE Trans. Antennas Propagat., vol.54, no.4. pp.1174-1184, Apr.2006.
    [81]G. H. Zhang, and M. Y. Xia, "Time domain integral equation approach for analysis of transient responses by metallic-dielectric composite bodies." Prog. Electromagn. Res., vol.87, pp.1-14,2008.
    [82]B. Shanker, M. Y. Lu, J. Yuan, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Trans. Antennas Propagat., vol.57, no.5, pp.1506-1520, May 2009.
    [83]W. J. Zhao, L. W. Li, and K. Xiao, "Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation," IEEE Trans. Antennas Propagat., vol.58, no.7, pp.2468-2473, Jul.2010.
    [84]A. A. Ergin, B. Shanker, and E. Michielssen, "The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena," IEEE Antennas Propag. Mag., vol. 41, no.4, pp.39-52, Aug.1999.
    [85]B. Shanker, A. A. Ergin, K. Aygun, and E. Michielssen. "Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm." IEEE Trans. Antennas Propag., vol.48, no.4. pp.510-523. Apr.2000.
    [86]B. Shanker, A. A. Ergin, M. Y. Lu, and E. Michielssen. "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm," IEEE Trans. Antennas Propag., vol.51, no.3, pp.628-641, Mar.2003.
    [87]B. Shanker, A. A. Ergin, and E. Michielssen,"Plane-wave-time-domain-enhanced marching-on-in-time scheme for analyzing scattering from homogeneous dielectric structures," J. Opt. Soc. Am., vol.19, no.4, pp.716-726, Apr.2002.
    [88]M. Lu, E. Michielssen, and B. Shanker,"Fast time domain integral equation solvers for analyzing tow-dimensional scattering phenomena; Part II:PWTD acceleration," Electromagnetics, vol.24, no.6, pp.451-470, Jan.2004.
    [89]K. Aygun, M. Lu, N. Liu, A. E. Yilmaz, and E. Michielssen, "A parallel PWTD accelerated time marching scheme for analysis of EMC/EMI problems," IEEE Int. Symp. Electromagn. Compat. (EMCS), pp.863-866,2006.
    [90]Y. Liu, H. Bagci, and E. Michielssen, "'Solving very large scattering problems using a parallel PWTD-enhanced surface integral equation solver," IEEE Int. Symp. Antenna Propag. (APS-URSI). pp.106, Jul.2013.
    [91]E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, "AIM:daptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., vol. 31, no.5, pp.1225-1251, Sep.-Oct.1996.
    [92]C. F. Wang, F. Ling, J. M. Song, and J. M. Jin, "Adaptive integral method solution of combined field integral equation," Micro. Opt. Technol Lett., vol.19, no.5, pp.321-328, Dec.1998.
    [93]V. I. Okhmatovski, J. D. Morsey, and A. C. Cangellaris, "Enhancement of the numerical stability of the adaptive integral method at low frequencies through a loop-charge formulation of the method-of-moments approximation," IEEE Trans. Microw. Theory Tech., vol.52, no.3, pp.962-970, Mar.2004.
    [94]W. B. Ewe, L. W. Li, and M. S. Leong, "Fast solution of mixed dielectric/conducting scattering problem using volume-surface adaptive integral method," IEEE Trans. Antennas Propag., vol.52, no.11, pp.3071-3077, Nov.2004.
    [95]W. J. Zhao, L. W. Li, E. P. Li, and K. Xiao, "Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method," IEEE Trans. Antennas Propag., vol.60, no.2, pp.1176-1181. Feb.2012.
    [96]A. Colliander, P. Y. Oijala, "Electromagnetic scattering from rough surface using single integral equation and daptive integral method," IEEE Trans. Antennas Propag., vol.55, no.12, pp.3639-3647, Dec.2007.
    [97]M. F. Wu, G. Kaur, and A. E. Yilmaz, "A multiple-grid adaptive integral method for multi-region problems," IEEE Trans. Antennas Propag., vol.58, no.5, pp.1601-1613, May 2010.
    [98]F. Ling, C. F. Wang, and J. M. Jin, "An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-imag method," IEEE Trans. Microw. Theory Tech., vol.48, no.5, pp.832-839, May 2000.
    [99]A. Yilmaz, J. M. Jin, and E. Michielssen, "Time domain adaptive integral method for surface integral equations,"IEEE Trans. Antennas Propag., vol.52, no.10, pp.2692-2708, Oct.2004.
    [100]A. Yilmaz, J. M. Jin, and E. Michielssen, "A parallel FFT accelerated transient field-circuit simulator," IEEE Trans. Microw. Theory Tech., vol.53, no.9, pp.2851-2865, Sep.2005.
    [101]A. Yilmaz, J. M. Jin, and E. Michielssen, "Analysis of low-frequency electromagnetic transients by an extended time-domain adaptive integral method," IEEE Trans. Adv. Packag., vol.30, no.2, pp.301-312, May 2007.
    [102]U. Jakobus and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propag., vol.43, no.2, pp.162-169, Feb.1995.
    [103]M. Chen, Y. Zhang, X. W. Zhao and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Trans. Antennas Propag., vol.55, no.2, pp.407-413, Feb.2007.
    [104]M. A. A. Moneum, Z. Shen, J. L. Volakis, O. Graham, "Hybrid PO-MOM analysis of large axi-symmetric radomes," IEEE Trans. Antennas Propag., vol.49, no.12, pp. 1657-1666, Dec.2001.
    [105]S. P. Walker, and M. J. Vartiainen, "Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis." IEEE Trans. Antennas Propag.. vol.46. no.3. pp.318-324. Mar.1998.
    [106]G. Kobidze. B. Shanker, and E. Michielssen, "Hybrid PO-PWTD scheme for analyzing of scattering from electrically large PEC objects," IEEE Int. Symp. Antenna Propag. (APS), pp.547-550,2003.
    [107]M. D. Zhu, X. L. Zhou, W. Luo, and W. Y. Yin, "'Hybrid TDIE-TDPO method using weighted Laguerre polynomials for solving transient electromagnetic problems," Prog. Electromagn. Res., vol.126, pp.375-398,2012.
    [108]M. Ren, D. M. Zhou, Y. Li, and J. G. He, "Coupled TDIE-PO method for transient scattering from electrically large conducting objects," Electron. Lett. vol.44, no.4, pp. 258-259, Feb.2008.
    [109]W. Luo, W. Y. Yin, M. D. Zhu, and J. Y. Zhao, "Hybrid TDIE-TDPO method for studying on transient responses of some wire and surface structures illuminated by an electromagnetic pulse," Prog. Electromagn. Res., vol.116, pp.203-219,2011.
    [110]Centre for HPC in SJTU, Available online:http://pi.sjtu.edu.cn/
    [111]L. Gurel, and O. Ergul, "Hierarchical parallelization of the multilevel fast multipole algorithm," Proc. IEEE, vol.101, no.2. pp.332-341, Feb.2013.
    [112]J. M. Taboada, M. G. Araujo, F. O. Basteiro, J. L. Rodriguez, and L. Landesa, "MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics," Proc. IEEE, vol.101, no.2, pp.350-363, Feb.2013.
    [113]F. Z. Wei, and A. Yilmaz, "A more scalable and efficient parallelization of the adaptive integral method-Part I:algorithm," IEEE Trans. Antennas Propag.. vol.62, no.2, pp. 714-726. Feb.2014.
    [114]F. Z. Wei, and A. Yilmaz, "A more scalable and efficient parallelization of the adaptive integral method-Part II:BIOEM application," IEEE Trans. Antennas Propag., vol.62, no.2, pp.727-738, Feb.2014.
    [115]王生水,“时域积分方程及其并行算法的研究与应用,”[博士论文]长沙,国防科学技术大学,2007.
    [116]王文举,“时域积分方程快速算法及并行计算的研究与应用,”[博士论文]长沙,国 防科学技术大学,2009.
    [117]尚光双,“电磁散射的时域积分方程及并行技术,”[硕士论文]南京,南京理工大学.2013.
    [118]陈明,“并行多层快速多极子算法加速技术的研究,”[博士论文]南京,南京理工大学,2012.
    [119]潘小敏,“计算电磁学中的并行技术及其应用,”[博士论文]北京,中国科学院电子学研究所,2006。
    [120]R. D. Graglia, "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., vol.41, no.10, pp.1448-1455, Oct.1993.
    [121]P. Y. Oijala, and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and nxRWG functions," IEEE Trans. Antennas Propag., vol.51, no.8, pp. 1837-1846, Aug.2003.
    [122]M. A. Khayat, and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propag., vol.53, no.10. pp.3180-3190, Oct.2005.
    [123]M. D. Zhu, X. L. Zhou, and W. Y. Yin, "Efficient evaluation of double surface integrals in time-domain integral equation formulations." IEEE Trans. Antennas Propag., vol.61, no.9, pp.4653-4664, Sep.2013.
    [124]M. G. Duffy, "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," SIAMJ. Numer. Anal., vol.19, no.6, pp.1260-1262, Dec.1982.
    [125]P. Arcioni, M. Bressan, and L. Perregrini, "On the evaluation of the double surface integrals arising in the application of the boundary integral method to 3-D problems," IEEE Trans. Microw. Theory Tech., vol.45, no.3, pp.436-439, Mar.1997.
    [126]Y. Saad, Iterative Methods for Sparse Linear System, Second Edition, Society for Industrial and Applied Mathematics,2003.
    [127]C. F. Smith, A. F. Peterson, and R. Mittra, "The biconjugate gradient method for electromagnetic scattering," IEEE Trans. Antennas Propag., vol.38, no.6, pp.938-940, June 1990.
    [128]R.W. Freund, "A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems," SIAMJ. Sci. Stat. Coomput.. vol.14, no.2. pp.470-482, Mar.1993.
    [129]I. S. Gradshteyn, and I. M. Ryzhik, Table of integrals, series, and products, Seventh Edition. New York:Academic Press,2007.
    [130]M. D. Zhu, X. L. Zhou, and W. Y. Yin, "An adaptive marching-on-in-order method with FFT-based blocking scheme," IEEE Antenna Wireless Propag, Lett., vol.9, pp. 436-439,2010.
    [131]Y. Chu, W. C. Chew, J. Zhao, S. Chen, "A surface integral equation formulation for low-frequency scattering from a composite object," IEEE Trans. Antennas Propag., vol.51, no.10, pp.2837-2844, Oct.2003.
    [132]M. Carr, E. Topsakal, and J. L. Volakis, "A procedure for modling material junctions in 3-D surface integral equation approaches," IEEE Trans. Antennas Propag., vol.52, no. 5, pp.1374-1379, May 2004.
    [133]P. Yla-Oijala, M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Prog. Electromagn. Res., vol.52, pp.81-108,2005.
    [134]CST Microwave Studio Getting Started Mannual CST Studio Suite 2009, Available online:http://www.cst.com/
    [135]W. A. Radasky, C. E. Baum, and M. W. Wik, "Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)," IEEE Trans. Electromagn. Compat., vol.46, no.3, pp.314-321, Aug.2004。
    [136]M. D. Zhu, X. L. Zhou, and W. Y. Yin, "Investigation on electromagnetic responses of double objects illuminated by a high-power EMP using hybrid TD1E-TDPO method," IEEE Int. Symp. Electronmagn. Compat., pp.244-247, Aug.2010.
    [137]S. U. Hwu, D. R. Wilton, and S. M. Rao, "Electromagnetic scattering and radiation by arbitrary wire/surface configurations," IEEE AP-S. Dig., vol.6, no.2, pp.890-893, 1998.
    [138]王晓峰,“三维目标电磁散射的自适应积分方法研究,”[硕士论文]成都,电子科技大学,2006.
    [139]叶贻才,'Vandermonde矩阵及其变形矩阵的快速求逆格式,”福建师范大学学报, vol.13,no.2, pp.15-20,1997.
    [140]M. Frigo, and S. G. Johnson, FFTW web page, Available online:http://www.fftw.org/
    [141]Sparsekit:Sparse Matrix Utility Package, Available online:http://people.sc.fsu.edu/ ~jburkardt/f_src/sparsekit/sparsekit.html.
    [142]P. Bu, and X. Ma, "Image adaptive watermarking using wavelet domain singular value decomposition," IEEE Trans. Circuits Systems for Video Technol., vol.15, no.1, pp. 96-102,Jan.2005.
    [143]R. Costantini, L. Sbaiz, and S. Su sstrunk, "Higher order SVD analysis for dynamic texture synthesis," IEEE Trans. Image Processing, vol.17, no.1, pp.42-52, Jan. 2008.
    [144]J. M. Rius, J. Parron,A. Heldring, J. M. Tamayo, and E. Ubeda, "Fast iteration solution of integral equations with method of moments and matrix decomposition algorithm-singular value decomposition," IEEE Trans. Antennas Propag., vol.56, no.8, pp.2314-2324, Aug.2008.
    [145]D. V. Ginste, E. Michielssen, F. Olyslager, and D. D. Zutter, "A high-performance upgrade of the perfectly matched layer multilevel fast multipole algorithm for large planar microwave structures," IEEE Trans. Antennas Propagat.,vol.57, no.6, pp. 1728-1739, June 2009.
    [146]J. L. Rodriguez, J. M. Taboada, M. G. Araujo,F.O. Basteiro, L. Landesa, and I. G. Tunon,"On the use of the singular value decomposition in the fast multipole method," IEEE Trans. Antennas Propag., vol.56, no.8,pp.2325-2324, Aug.2008.
    [147]吴越,“漫谈舰船桅杆,”舰载武器,vol.8, pp.79-83,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700