腐植酸钠吸收烟气中SO_2和NO_2的实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和社会的发展,燃煤烟气中的SO_2和NO_x造成的大气污染日益严重。如何经济有效的控制SO_2和NO_x的排放已成为科学研究的前沿。现行的烟气脱硫脱硝工艺中,湿法因其技术成熟、脱硫脱硝率高等优点而得到了广泛应用,但同时也存在着投资大、成本高、回收率低甚至造成二次污染等缺点,发展中国家对此难以接受。因此,研究并开发适合我国国情的烟气脱硫脱硝技术对解决我国的SO_2、NO_x污染问题具有十分重要的意义。
     本论文提出了一种腐植酸钠溶液同时吸收SO_2和NO_2的新工艺,具有成本低、能耗小、无二次污染等优点,同时副产一种复合肥料,实现了以废治废、环境保护和资源化利用。围绕该工艺的实施,开展了以下研究工作:
     (1)腐植酸钠复合脱硫剂(HA-Na/α-Al_2O_3)的制备及其脱硫性能研究。提出了一种新的脱硫剂HA-Na/α-Al_2O_3的制备方法,用FTIR、SEM、XRD、EDS等方法对脱硫剂进行了分析表征,并在自制的固定床上对其脱硫性能进行了实验研究,研究表明:氧化铝纤维负载腐植酸钠后,改善了氧化铝载体表面的孔结构,在氧化铝纤维表面形成了的腐植酸钠膜,该膜提高了载体氧化铝纤维的脱硫能力,在脱硫过程中起重要作用。HA-Na/α-Al_2O_3在浸渍氨水后,由于腐植酸对氨水的强吸附作用,可以减少氨损,提高氨的利用率,较长时间保持高的SO_2脱除率(≥98%)。脱硫后的产物是以硫酸铵、腐植酸铵、腐植酸钠为主的复合肥,脱硫产物经水洗后,氧化铝纤维获得再生,可循环使用。
     (2)腐植酸钠液相脱硫的实验及机理研究。分析了腐植酸钠脱硫的机理,在自制的鼓泡反应器上,研究了各种运行参数(如:腐植酸钠溶液浓度、pH值、温度、气流量、含氧量、SO_2入口浓度、等)对脱硫效果的影响,结果表明:腐植酸钠浓度对脱硫时间的影响较大,但对脱硫率的影响较小,0.06 g/mL为最佳浓度。提高SO_2的入口浓度可以提高SO_2气液传质的推动力。为了维持较高的脱硫效率,腐植酸钠溶液的pH值应该保持在4.5以上。随着含氧量的升高,脱硫率稍有升高。低温有利于SO_2吸收。当烟气中存在NO_2时,有利于SO_2的吸收。在最佳工况下,脱硫率可以维持在98%以上。生成的腐植酸难溶于水溶液,从脱硫液中沉淀分离、干燥后,制成肥料。脱硫后的水溶液经过腐植酸钠调节pH至中性后,可循环利用。
     (3)腐植酸钠溶液吸收NO_2的实验及机理研究。分析了腐植酸钠吸收NO_2的机理,并在鼓泡反应器内研究了各种运行参数对吸收NO_2的影响,结果表明:腐植酸钠溶液吸收NO_2的能力要强于同体积的水,也强于同pH值的NaOH溶液;NO_2的吸收效率会随着腐植酸钠浓度、氧含量、pH值的升高而增加。高温不利于NO_2的吸收。当烟气中NO_x的含量较低时(<0.1%),NO_x的吸收率与氧化度成正比。SO_2与NO_2共存时,腐植酸钠溶液会优先吸收SO_2,当SO_2吸收饱和后,腐植酸钠溶液可以继续吸收NO_2,并且维持较高的吸收率。最佳工况时NO_2的吸收率可达95%以上。腐植酸钠溶液吸收NO_2的产物主要是腐植酸、硝酸钠,分离处理后可制成腐植酸复合肥。
     (4)腐植酸钠溶液同时吸收SO_2和NO_2的实验及机理研究。在鼓泡反应器上研究了同时吸收SO_2和NO_2的吸收率,和在不同酸碱条件下的反应生成物,还重点研究了循环水溶液对同时吸收SO_2和NO_2的影响,结果表明:在碱性环境下,当NO_2浓度由0变为340 ppm时,脱硫率从96.4%增加到97.7%,但随着NO_2浓度的进一步增加,脱硫率反而稍有下降;脱硫的主要产物是SO_4~(2-)和SO_3~(2-)。碱性环境下NO_2浓度的增加, SO_4~(2-)在脱硫产物中的比例逐渐减少,但在在酸性环境会逐渐增加,说明酸性条件下有利于SO_3~(2-)的氧化。随着NO_2的浓度增加,NO_2吸收率稍有下降。碱性时,NO_2的吸收率在有SO_2存在时比无SO_2时要稍高;吸收NO_2的主要产物是NO 3-,兼有少量NO -2。
     随着循环次数的增加,脱硫率稍微减小,但NO_2吸收率相应的增加。随着循环次数的增加, SO 42-、SO_3~(2-)、NO 3-、Na+的离子浓度整体递增,并且SO 42-和Na+的浓度远大于其它离子浓度。当循环次数由1增加到6时,循环吸收液的初始pH逐渐由10降低到8.1,但是在第6次循环以后,初始pH基本不变。循环吸收SO_2和NO_2的最后pH基本不变,维持在3.3左右。同时吸收SO_2和NO_2产物主要是硫酸根、亚硫酸根、硝酸根,经过静置分层后,腐植酸沉淀可以分离出来制成腐植酸复合肥,酸性上清液在经过腐植酸钠调节pH至中性后,可循环利用。腐植酸肥料中氧元素的含量随着循环次数的增加而不断增加,说明生成腐植酸的含氧基团不断增加,腐植酸肥料的活性进一步得到了改善。
     (5)腐植酸钠鼓泡塔内脱硫传质的建模与数值模拟。根据双膜理论对腐植酸钠溶液吸收SO_2的气液传质过程进行了理论分析,建立了相应的脱硫传质模型。在实验数据的基础上,确定了传质模型中的拟一级反应速率常数、气泡平均直径、气含率、气液比相面积等参数,建立了SO_2的平衡分压的多元非线性回归模型。根据该脱硫模型对腐植酸钠吸收SO_2的传质过程进行了数值模拟,并将模拟结果与实验结果进行了对比,二者吻合较好。
     (6)腐植酸钠溶液同时吸收SO_2和NO_2的工艺设计及经济分析。概括了喷淋塔的工作原理、工艺特点、设计原则,并据此设计、制作了适用于本研究的喷淋塔,同时还设计制作了腐植酸钠同时吸收SO_2和NO_2的工艺流程装置。实验结果显示,该工艺中SO_2吸收率可达98%以上,NO_2吸收率可达95%以上,整体效果较好。通过腐植酸钠吸收SO_2和NO_2工艺模拟实验,结果表明在优化工艺运行参数后,可以实现腐植酸钠溶液高效的同时吸收SO_2和NO_2、静置分离腐植酸沉淀、酸性水的中和、循环利用等工艺过程。对腐植酸钠脱硫工艺进行了经济评价,整体经济性较好。
With the development of economy and society, the atmospheric pollution caused by SO_2 and NO_2 from the combustion of fossil fuels has been gradually more serious. Although the wet flue gas desulfurization (FGD) processes based mainly on limestone scrubbing are frequently used, they have many disadvantages such as high capital operating costs, a lager water requirement, poor quality of byproducts, and even producing second pollution, Which is difficult to accept for the developing countries. Therefore, it is important to investigate and develop the cost effective technologies of removing SO_2 and NO_x for resolving the atmospheric pollution in china.
     In this thesis, a novel process of simultaneous removing SO_2 and NO_2 by sodium humate (HA-Na) was proposed. This process is a resourceful type of environmental protection technology for flue gas desulfurization and denitrifcation (FGDD) and has many advantages including: (a) lower costs and energy requirements, (b) almost no waste sludge, (c) the recovery of sulfur and nitrogen as a useful sulfur-containing nitrogen fertilizer, and (d) the simultaneous removal of SO_2 and NO_2. Therefore, it is hopeful to be used in a large scale. For developing the novel process, investigations were conducted in this thesis as following:
     (1) Preparation of HA-Na/α-Aluminum (α-Al_2O_3) and its desulfurization properties.
     A new composite adsorbent of HA-Na/α-Al_2O_3 for FGD was prepared using the impregnation method. The desulfurization property of the adsorbent was studied in a fixed-bed. The experimental results show that the HA-Na-coating on theα-Al_2O_3 fibers improved the property ofα-Al_2O_3 support for FGD. On the other hand, the HA-Na-coating on the adsorbent of HA-Na/α-Al_2O_3 impregnated with ammonia (NH4OH) played an important role in enhancing the desulfurization property of a-Al_2O_3. Due to the strong adsorption capability of HA-Na, more NH4OH was adsorbed in the adsorbent of HA-Na/α-Al_2O_3 the longer a high SO_2 conversation rate was maintained. In addition, the desulfurization products can be flushed fromα-Al_2O_3 fibres and make into the compound fertilizer consisting of ammonium sulfate [(NH4)2SO4], ammonium humate (HA-NH4), and HA-Na. the recycling use ofα-Al_2O_3 fibres was also easily achieved.
     (2) Experiment and mechanism research of FGD by HA-Na solution.
     Experiments were carried out to examine the effect of various operating parameters, such as the HA-Na concentration, pH, temperature, gas flow rate, O_2 concentration, SO_2 inlet concentration, and NO_2 coexiting with SO_2, on the SO_2 absorption efficiency and breakthrough time in a lab-scale bubbling reactor. The experimental results indicate that the HA-Na concentration significantly influences the breakthrough time but has little effect on the SO_2 absorption efficiency. The breakthrough time increases with the HA-Na concentration reaching 0.06 g/mL, and after this value, it begins to decrease. The SO_2 absorption efficiency maintains 99% when pH is above 4.5. The low temperature is favorable to SO_2 absorption. The increase of the SO_2 inlet concentration improves the mass transfer of SO_2 and accelerates the SO_2 consumption rate. NO_2 coexisting with SO_2 can promote SO_2 absorption because it may speed up oxidation of sulfite to sulfate. HA-Na solution shows great performance in SO_2 absorption, and the SO_2 absorption efficiency can be above 98% in the optimal condition. Moreover, the desulfurization products can be made into the humic acid (HA) compound fertilizer, and recycling water can be obtained in this desulfurization process.
     (3) Experiment and mechanism research of removing NO_2 from flue gas by HA-Na solution.
     The effects of various factors like the HA-Na concentration, NO_2 inlet concentration, temperature, O_2 concentration, the oxidation extent (the NO_2 volume fraction in NO_x) and SO_2 coexiting with NO_2, have been investigated in a bubbling rector The experimental results show that the NO_2 absorption efficiency is increased with HA-Na concentration, O_2 concentration, and pH. The low absorption temperature is favorable to the absorption of NO_2. The inlet NO_2 concentration has not significant effect on the NO_2 absorption efficiency. It is concluded that SO_2 coexisting with NO_2 may go against removing NO_2 until SO_2 concentration is saturation in HA-Na solution. The NO_x absorption efficiency is proportional to the oxidation extent when the NO_2 concentration is lower than 0.1% in flue gas. HA-Na solution has strong NO_2 absorption capability, and the NO_2 absorption efficiency can be above 95%. Moreover, the denitrification products can be made into the HA compound fertilizer.
     (4) Simultaneous removal of SO_2 and NO_2 from flue gas by HA-Na solution.
     This study relates to the SO_2/NO_2 absorption efficiency and products of simultaneous removing SO_2 and NO_2 in a bubbling reactor, especially the effect of recycled water on the SO_2/NO_2 absorption. Under alkaline conditions, the sulfate content in S-containing compound decreases with the increase of NO_2 concentration, whereas there is a contrary result under acidic conditions. Whether the absorption liquid is alkaline or acidic, the presence of NO_2 improves the SO_2 absorption into HA-Na solution. The NO_2 absorption efficiency in the presence of SO_2 is more than that in the absence of SO_2.The NO_2 absorption efficiency decreases slightly with the increase of NO_2 concentration, and NO 3- is the main byproduct of absorption of NO_2.
     The NO_2 absorption efficiency can be improved with the cycle number rising due to the increasing amount of sulfite. Although all the ion concentrations of Na~+, SO_4~(2-), SO_3~(2-), and NO 3- have a gradual increase as the cycle number rises, the ion concentrations of SO_4~(2-) and Na+ are far more than that of the other ions, which results in a slight decrease of the SO_2 absorption efficiency. However, the initial pH of HA-Na solution prepared by recycled water decreases from 10 to 8.1 with the cycle number increasing from 1 to 10, whereas the final pH remains almost constant (3.3). The SO_2 absorption efficiency is above 98% and the NO_2 absorption efficiency may reach above 95% in the optimal condition in this process. The chief byproduct is a compound fertilizer consisting of HA, sulfate, and nitrate. The oxygen content in the byproducts increases with the cycle number rising, which indicates that the O-containing functional groups of HA is increased and the activity of HA is improved by oxygenolysis.
     (5) Modeling and numerical simulation of mass transferring for FGD by HA-Na in bubbling reactor.
     According to the double-film theory, the theoretical analysis of gas-liquid mass transfer process for absorption of SO_2 by HA-Na solution was carried out, and the mass-transfer model was established. The parameters in this model were determined on the basis of experimental results, such as pseudo-first-order rate constant, average bubble diameter, gas holdup, and specific gas-liquid interfacial area. The nonlinear regression model of SO_2 equilibrium pressure was constructed by the losopt-software. According to the SO_2 mass-transfer model, the SO_2 mass-transfer during the FGD by HA-Na was numerical simulated, and the simulated result is in agreement well with the experimental result.
     (6) Design and make the spray absorber and process units for the simultaneous removal of SO_2 and NO_2 process by HA-Na solution.
     According the working principle, process characteristics and design principle of spray absorber, the spray absorber and process units for removing SO_2 and NO_2 by HA-Na solution were designed and made. The results show the simultaneous removal of SO_2 and NO_2 process by HA-Na has a better performance on the whole, and the SO_2 absorption efficiency is above 98% and the NO_2 absorption efficiency is above 95% in the optimal condition. During this process, not only the high SO_2/NO_2 absorption efficiency, but also the precipitation separation of by-products, the neutralization and recycling of acidic water solution can be achieved. The economic evaluation of FGD process by HA-Na was also carried out, and this process has good economy.
引文
[1]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2009.
    [2]王淑勤.纳米助燃添加剂脱硫脱硝的实验研究[D].北京:华北电力大学, 2008.
    [3]Sumathi, S.; Bhatia, S.; Lee, K.T.; et al. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO_2 and NOx[J]. Journal of Hazardous Materials, 2010, 176(1-3): 1093-1096.
    [4]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [5]国家环保总局.2009年中国环境公报报道[EB/OL].http://jcs.mep.gov.cn/2009hjzkgb, 2010-06-04.
    [6]国家环保总局.火电厂大气污染物排放标准“升级”[S].2004.
    [7]付玉梅,禹兴利,李彩波.火电厂烟气脱硫技术进展[J].化工矿物与加工.2009,(4):35-38.
    [8]吴琼,何绪文,竹涛等.中国燃煤企业烟气脱硫技术现状与发展[J].洁净煤技术,2010,16(2):80-83.
    [9]李长海,汪颖军,孙丽丽.烟道气脱硫技术研究进展[J].西部煤化工,2007,(2):63-68.
    [10]岑超平.尿素添加剂湿法烟气同时脱硫脱氮研究[D].广州:华南理工大学,2002.
    [11]曹新鑫,高艳芳,柳菲等.煤炭燃前脱硫工艺及其进展[J].煤炭技术,2008,27(4):115-117.
    [12]Pandey, R.A.; Biswas, R.; Chakrabarti, T.; et al. Flue gas desulfurization: physicochemical and biotechnological approaches[J].Environmental Science and Technology, 2005, 35(6):571-598.
    [13]Srivastava, R. K.; Jozewicz, W. Flue gas desulfurization: the state of the art[J]. Journal of the Air & Waste Management Association, 2001, 51, 1676-1688.
    [14]Werther, J. Gaseous emissions from waste combustion[J]. Journal of Hazardous Materials, 2007, 144 (3), 604.
    [15]Xu, X. C.; Chen, C. H.; Qi, H. Y.; et al. Development of coal combustion pollution control for SO_2 and NOx in China[J]. Fuel Process. Technol. 2000, 62, 153-160.
    [16]孙小军.烟气循环流化床同时脱硫脱氮技术研究[D].北京:华北电力大学.2004.
    [17]吴济安,刘静,张文辉.可资源化烟气脱硫技术与发展[J] .中国科技产业,2006, (2):53-56.
    [18]Rajendran, N.; Latha, G.; Ravichandran, K.; et al. Flue gas desulphurization systems - A review[J]. Corrosion reviews. 1999, 17:443-465.
    [19]Kikkawa, H.; Nakamoto, T.; Morishita, M.; et al. New wet FGD process using granular limestone[J]. Industrial & Engineering Chemistry Research, 2002, 41(12):3028-3036.
    [20]Ortiz, F.J.G.; Vidal, F.; Ollero, P; et al. Pilot-plant technical assessment of wet flue gas desulfurization using limestone[J]. Industrial & Engineering Chemistry Research, 2006, 45:1466-1477.
    [21]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2004.
    [22]杨巧云.火电厂脱硫技术综述[J].环境保护科学.2008,34(3):8-11.
    [23]田贺忠,郝吉明,吉吉等.燃煤电厂烟气脱硫石膏综合利用途径及潜力分析[J].中国电力,2006, 39(2):64-69.
    [24]徐胜光,李淑仪,廖新荣等.花生施用燃煤烟气脱硫副产物研究初报[J].土壤与环境,2001,10(1):23-26.
    [25]雷士文,雷世晓,王德敏.氨法烟气脱硫脱硝的技术特征[J].电力环境保护,2006, 22(2):32-34.
    [26] He, B.S.; Zheng, X.Y.; Wen, Y.; et al. Temperature impact on SO_2 removal efficiency by ammonia gas scrubbing[J]. Energy Conversion and Management. 2003, 44(13): 2175-2188.
    [27] Mo, J.S.; Wu, Z.B.; Cheng, C.J.; et al. Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system[J]. Journal of Environmental Sciences, 2007, 19:226-231.
    [28]杨超,何绪文,竹涛等.双减法烟气脱硫技术影响因素分析[J].环境科学与管理,2010,35(7):92-96.
    [29]王幸锐,崔莲溪.PAFP烟气脱硫技术及其工程应用[C].第九届全国大气环境学术会议,2002,752-758.
    [30] Paolo, D. Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product[J]. Carbon, 2003, 41(2):277-284.
    [31]郭如新.镁法烟气脱硫联产硫酸镁肥料[J].磷肥与复肥.2010,25(1):53-55.
    [32]Urbanek, A; Kumanowski, K. Desulfurization of flue gases by the wet magnesiaimplications and performance results[J]. Environmental progress. 2003, 22(1): 67-73.
    [50]张会敏.柠檬酸钠回收低浓度SO_2的理论及试验研究[D].兰州:兰州大学,2006.
    [51]Brandt, C.; R.van Eldik. Transition metal-catalyzed oxidation of sulfur(Ⅳ) oxides atmospheric-relevant processes and mechanisms[J].Chemical Reviews,1995, 95(1):119-190.
    [52]Ma, X.X.; Kaneko, T.; Tashimo, T.; et al. Use of limestone for SO_2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science, 2000, 55: 4643-4652.
    [53]Zhang, J.; You, C.G.; Zhao, S.W.; et al. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization[J]. Environmental Science & Technology, 2008, 42, 1705–1710.
    [54]Scala, F.; D’Ascenzo, M.; Lancia, A. Modeling flue gas desulfurization by spray-dry absorption[J]. Separation and Purification Technology[J], 2004, 34:143–153.
    [55]Zhou, Y.G.; Zhu, X.; Peng, J.; et al. The effect of hydrogen peroxide solution on SO_2 removal in the semidry flue gas desulfurization process[J]. Journal of Hazardous Materials. 2009, 170(1): 436-442.
    [56]Chu, C.Y.; Hwang, S.J. Flue gas desulfurization in an internally circulating fluidized bed reactor[J]. Powder Technology, 2005, 154(1):14-23.
    [57]Hou, B.; Qi, H.Y.; Xu, X.C. Dry Desulfurization in a circulating fluidized bed (CFB) with chain reactions at moderate temperatures[J]. Energy & Fuels. 2005, 19:73-78.
    [58]王乾,段钰峰.半干法烟气脱硫技术[J].能源研究与利用.2007,(4):1-4.
    [59]Anthony, E.J.; Berry, E.E.; Blondin, J. et al. LIFAC ash–strategies for management [J].Waste Management, 2005, 25(3): 265-279.
    [60]Wang, F.; Lu, M. The study on spray dryer absorber flue gas desulfurization for industrial boiler[J]. Proc.-Annu. Int. Pittsburgh Coal Conf, 2000, (17): 1148-1153.
    [61]Wang, J.J.; Chen, D.F. Charged dry-sorbent injection(CDSI) system of desulfurization[C]. Proceedings of the International Conference on Energy and Environment, ICEE, 1998, 324-328.
    [62]王明基.一种适合我国国情的烟气脱硫技术-荷电干式吸收剂喷射脱硫系统(CDSI) [J].环境技术,2006,(2):24-26.
    [63]陈汇龙,刘新爱,邓云天等.高压电技术在烟气脱硫中的应用研究[J].高压电技implications and performance results[J]. Environmental progress. 2003, 22(1): 67-73.
    [50]张会敏.柠檬酸钠回收低浓度SO_2的理论及试验研究[D].兰州:兰州大学,2006.
    [51]Brandt, C.; R.van Eldik. Transition metal-catalyzed oxidation of sulfur(Ⅳ) oxides atmospheric-relevant processes and mechanisms[J].Chemical Reviews,1995, 95(1):119-190.
    [52]Ma, X.X.; Kaneko, T.; Tashimo, T.; et al. Use of limestone for SO_2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science, 2000, 55: 4643-4652.
    [53]Zhang, J.; You, C.G.; Zhao, S.W.; et al. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization[J]. Environmental Science & Technology, 2008, 42, 1705–1710.
    [54]Scala, F.; D’Ascenzo, M.; Lancia, A. Modeling flue gas desulfurization by spray-dry absorption[J]. Separation and Purification Technology[J], 2004, 34:143–153.
    [55]Zhou, Y.G.; Zhu, X.; Peng, J.; et al. The effect of hydrogen peroxide solution on SO_2 removal in the semidry flue gas desulfurization process[J]. Journal of Hazardous Materials. 2009, 170(1): 436-442.
    [56]Chu, C.Y.; Hwang, S.J. Flue gas desulfurization in an internally circulating fluidized bed reactor[J]. Powder Technology, 2005, 154(1):14-23.
    [57]Hou, B.; Qi, H.Y.; Xu, X.C. Dry Desulfurization in a circulating fluidized bed (CFB) with chain reactions at moderate temperatures[J]. Energy & Fuels. 2005, 19:73-78.
    [58]王乾,段钰峰.半干法烟气脱硫技术[J].能源研究与利用.2007,(4):1-4.
    [59]Anthony, E.J.; Berry, E.E.; Blondin, J. et al. LIFAC ash–strategies for management [J].Waste Management, 2005, 25(3): 265-279.
    [60]Wang, F.; Lu, M. The study on spray dryer absorber flue gas desulfurization for industrial boiler[J]. Proc.-Annu. Int. Pittsburgh Coal Conf, 2000, (17): 1148-1153.
    [61]Wang, J.J.; Chen, D.F. Charged dry-sorbent injection(CDSI) system of desulfurization[C]. Proceedings of the International Conference on Energy and Environment, ICEE, 1998, 324-328.
    [62]王明基.一种适合我国国情的烟气脱硫技术-荷电干式吸收剂喷射脱硫系统(CDSI) [J].环境技术,2006,(2):24-26.
    [63]陈汇龙,刘新爱,邓云天等.高压电技术在烟气脱硫中的应用研究[J].高压电技术.2006, 32(11):96-99.
    [64]Lickia, J.; Chmielewskib, A. G.; Illerb, E.; et al. Electronbeam flue-gas treatment for multicomponent air-pollution control[J]. Applied Energy,2003,75(3/4):145-154.
    [65]Basfar, A. A.; Fageeha, O.I.; Kunnummal, N.; et al. A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology[J]. Nukleonika, 2010,55(3):271-277
    [66]Lin, H.; Gao, X.; Luo, Z.; et al. Removal of NOx with radical injection caused by corona discharge [J]. Fuel, 2004, 83(10):1349-1355.
    [67]Basfar, A.A.; Fageeha, O.I.; Kunnummal, N.; et al. Electron beam flue gas treatment(EBFGT)technology for simultaneous removal of SO_2 and NOx from combustion of liquid fuels [J]. Fuel,2008,87(8/9):1446-1452.
    [68]Bae, W.S.; Roh. S.A.; Kim, S.D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J].Chemosphere, 2006, 65(1):170-175.
    [69] Marban, G.; Antuna, R.; Fuertes, A. B. Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides[J]. Applied Catalysis B: Environmental. 2003, 41(3):323-338.
    [70]Bueno-Lopez, A.; Garcia-Garcia, A.; Illan-Gomez, M. J.; et al. Advances in potassium catalyzed NOx reduction by carbon materials: an overview[J]. Industrial & Engineering Chemistry Research, 2007, 46 (12):3891–3903.
    [71]Liu, J.; Zhao, Z. ; Xu, C.M.; et al. Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts[J]. Applied Catalysis B: Environmental, 2008, 78: 61-72.
    [72] Tang, X.L.; Hao, J.M.; Xu, W.G.; et al. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications. 2007, 8 (3): 329-334.
    [73] Jiang, B.Q.; Liu, X.; Wu, Z.B. Low-temperature selective catalytic reduction of NO on MnOx/TiO_2 prepared by different methods[J]. Journal of Hazardous Materials. 2009, 162: 1249-1254.
    [74]Krocher, O.; Elsener, M. Combination of V2O5/WO3?TiO_2, Fe?ZSM5, and Cu?ZSM5 catalysts for the selective catalytic reduction of nitric oxide with ammonia [J]. Industrial & Engineering Chemistry Research, 2008, 47 (22): 8588–8593.
    [75]周春琼,邓先和.钴络合物液相络合NO的研究进展[J].现代化工,2005,25(9): 26-29.
    [76]Li, Y. ; Liu, Y.Z.; Zhang, L.Y.; et al. Absorption of NOx into nitric acid dolution in rotating packed bed[J]. Chinese Journal of Chemical Engineering. 2010, 18 (2):244-248.
    [77] Mao,Y.P.; Bi,W.; Long, X.L.; et al. Kinetics for the simultaneous absorption of nitric oxide and sulfur dioxide with the hexamminecobalt solution[J]. Separation and Purification Technology, 2008, 62(1):183–191.
    [78]Deshwal, B.R.; Lee, S.H.; Jung, J.H.; et al. Study on the removal of NOx from simulated flue gas using acidic NaClO_2 solution[J]. Journal of Environmental Sciences, 2008, 20(1):33-38.
    [79]Tseng, H.H.; Wey, M.Y.; Liang, Y.S.; et al. Catalytic removal of SO_2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides[J]. Carbon, 2003, 41(5): 1079-1085.
    [80]Zhang, J.H.; Sun, J.Z.; Gong, Y.; et al. A scheme for solving strongly coupled chemical reaction equations appearing in the removal of SO_2 and NOx from flue gases[J]. Vacuum, 2009, 83:133–137.
    [81]Jin, D. S.; Deshwal, B.R.; Park,Y.S.; et al. Simultaneous removal of SO_2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials B, 2006, 135: 412–417.
    [82]Zhang, H.; Tong, H.L.; Wang, S.J.; et al. Simultaneous removal of SO_2 and NO from flue gas with calcium-based sorbent at low temperature[J]. Industrial & Engineering Chemistry Research, 2006, 45, 6099-6103.
    [83]Zhao, Y.; Guo, T.X.; Chen, Z.Y.; et al. Simultaneous removal of SO_2 and NO using M/NaClO_2 complex absorbent[J]. Chemical Engineering Journal, 2010, 160(1): 42-47.
    [84]Jin, D.S.; Deshwal, B.R.; Park, Y.S.; et al. Simultaneous removal of SO_2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials, 2006, 135(1-3): 412-417.
    [85]Chien T. W, Chu H, Hsueh H. T. Kinetic study on absorption of SO_2 and NOx with acidic NaC1O_2 solutions using the spraying column[J]. Journal of Environmental Engineering, 2003, 129(11):967-974.
    [86]Long, X.L.; Xiao, W.D.; Yuan, W.K. Simultaneous absorption of NO and SO_2 intohexamminecobalt(II)/iodide solution[J]. Chemosphere, 2005, 59: 811–817.
    [87]程琰.湿式吸收法同时烟气脱硫脱氮技术进展[J].化工环保,2006,26(3):209-212.
    [88]Chang S.G., Lee G. C. LBL PhoSNOX process for combined removal of SO_2 and NOx from flue gas[J]. Environmental Progress, 1992, 11(1):66-73.
    [89]俞志兴.WSA工艺在酸性气体中的应用及问题探讨[J].硫酸工业,2006,6:19-23.
    [90]雷鸣,岑超平,胡将军.尿素/KMnO4湿法烟气脱硫脱氮的试验研究[J].环境科学研究,2006,19(1):43-45.
    [91]Cen, C.P.; Gu, G.B. Simultaneous desulfurization and denitrification from flue gas by using urea/additive solution (I): kinetic equation of urea consumption in absorption reaction[J]. Journal South China University Technology. 2004, 32:37–40.
    [92]朱振峰,张建权,李军奇等.干法同时脱硫脱硝技术的研究进展[J].广东化工.2009,36(7):80-81.
    [93]Xie, G.Y.; Liu, Z.Y.; Zhu, Z.P.; et al. Simultaneous removal of SO_2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: I. Deactivation of SCR activity by SO_2 at low temperatures[J]. Journal of Catalysis, 2004, 224(1): 36-41.
    [94]Izuqierdo, Maria Teresa; Rubio, Begona; Mayoral, Carmen; et al. Low cost coalbased carbons for combined SO_2 and NO removal from exhaust gas[J]. Fuel, 2003, 82(2):147-151.
    [95]Buena Lopez, A.; Garcia Garcia, A. Combined SO_2 and NOx removal at moderate temperature by a dual bed of potassium-containing coal-pellets and calcium-containing pellets[J]. Fuel Processing Technology, 2005, 86(16):1745-1759.
    [96]Chang, F.Y.; Wey, M.Y.; Chen, J.C. Effects of sodium modification, different reductants and SO_2 on NO reduction by Rh/Al2O3 catalysts at excess O_2 conditions[J]. Journal of Hazardous Materials, 2008,156: 348-355.
    [97]赵毅,方丹.烟气脱硫脱硝一体化技术研究概括[J].资源节约与环保.2010,(4):73-74.
    [98]李兰廷,吴涛,梁大明等.活性焦脱硫脱硝脱汞一体化技术[J].煤质技术,2009,(3):46-49.
    [99]赵毅,归毅,韩颖慧等.高活性自由基在烟气脱硫脱硝中的应用[J].电力科技与环保,2010,26(3):13-16.
    [100]Xu, F.; Luo, Z.Y.; Cao, W.; et al. Simultaneous oxidation of NO, SO_2 and HgO fromflue gas by pulsed corona discharge[J]. Journal of Environmental Sciences, 2009, 21 (3):328-332.
    [101]Ishizuka, T.; Ueno, T.; Tatani, A.; et al. Advanced flue gas treatment system using LILAC absorbent prepared from fly ash[J]. Coal Science and Technology.1995, 24: 1855-1858.
    [102]Wang, Z.H.; Zhou, J.H.; Zhu, Y.Q.; et al. Simultaneous removal of NOx, SO_2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J]. Fuel Processing Technology, 2007, 88, (8):817-823.
    [103]魏林生,周俊虎.臭氧氧化结合化学吸收同时脱硫脱硝的研究-石灰石浆液吸收特性理论分析[J].动力工程,2008,28(1):112-116.
    [104]Colle, S.; Vanderschuren, J.; Thomas, D. Pilot-scale validation of the kinetics of SO_2 absorption into sulphuric acid solutions containing hydrogen peroxide[J]. Chemmical Engineer Process. 2004 ,43:1397–1402.
    [105]Colle, S.; Vanderschuren, J.; Thomas, D. Simulation of SO_2 absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes[J]. Chemical Engineering Science. 2005, 60:6472–6479.
    [106]Liu, Y.X.; Zhang, J.; Sheng, C.D. et al. Simultaneous removal of NO and SO_2 from coal-fired flue gas by UV/H2O_2 advanced oxidation process[J].Chemical Engineering and Processing, 2010, 162(3): 1006-1011.
    [107]Chu, H.; Chien, T.W.; Li, S.Y. Simultaneous absorption of SO_2 and NO from flue gas with KMnO4/NaOH solutions[J]. Science of the Total Environment, 2001, 275 (1-3): 127-135.
    [108]郑平.煤炭腐植酸的生产和应用[M].北京:化工出版社,1991.
    [109]王红斌等.沼泽土腐植酸对亚甲基蓝的吸附脱色研究[J].环境工程,2002, 20(3): 72-74.
    [110]丁南瑚.保护和合理开发利用水资源的对策[J].净水技术,2002,21(3):1-3.
    [111]成绍鑫,武丽萍.风化煤高纯腐植酸新工艺的开发[J].腐植酸, 1995, (1):22- 31.
    [112]金鹏康.腐植酸混凝的化学成因、形态学特征及动力学研究[D].西安:西安建筑科技大学.2005.
    [113]Vernon, S. L.; David, J. Water Chemistry[M]. New York: John Willey & Sons, Inc, 1980.
    [114]李善祥,窦琇云.我国风化煤利用现状与展望[J].腐植酸,1998,1:16-20.
    [115]Uyguner, C. S.; Bekbolet, M. Evaluation of humic acid pHotocatalytic degradation by UV -vis and fluorescence spectroscopy[J]. Catalysis Today, 2005,1(3-4):267-274.
    [116]周霞萍.腐植酸应用中的化学基础[M].北京:化学工业出版社,2007.
    [117]郭晓峰.腐植酸的胶体性质[J].腐植酸,1996, (1):1-2.
    [118]成绍鑫.腐植酸类物质概论[M].北京:化学工业出版社,2007.
    [119]郭晓峰.腐植酸的表面活性问题[J].腐植酸,1999,(3):15-16.
    [120]Smejkalova, D.; Piccolo, A. Enhanced molecular dimension of a humic acid induced by photooxidation catalyzed biomimetic metalporp hyrins [J].Biomacromolecules, 2005, (6): 2120-2125.
    [121]Paolo, D. Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product[J]. Carbon, 2003, 41(2):277-284.
    [122]徐启杰,周大鹏,崔元臣.腐植酸负载Pd/Ni双金属催化剂对Heck反应催化性能的研究[J].有机化学.2007,27(12):1520-1524.
    [123]孙淑和,成绍鑫,李善祥等.煤稀硝酸氧化制取硝基腐植酸第一报制取硝基腐植酸工艺条件的考察[J].腐植酸.1983,(1):1-13.
    [124]孙淑和,成绍鑫,李善祥等.煤稀硝酸氧化制取硝基腐植酸第二报HA和NHA的组成结构[J].腐植酸.1983,(2):10-21.
    [125]费秀鲁,陈宇飞.风化煤腐植酸多种改性的机理探讨[J].腐植酸. 2001,(2):22-23.
    [126]成绍鑫,孙淑和,李善祥等.腐植酸和硝基腐植酸的结构研究[J].燃料化学学报.1983,11(2):26-39.
    [127]成绍鑫.腐植酸类物质的活化与钝化及其在绿色肥料中的应用[J].腐植酸,2003,(5):1-14.
    [128]郑平.煤炭腐植酸的磺化[J].腐植酸,1982,(3):1-5.
    [129]刘奎,孙淑和,王仙凤.腐植酸磺化度测定方法的研究[J].腐植酸,1990,(1):41-45.
    [130]朱之培.腐植酸的化学反应[J].化学世界,1980,(12):376-377.
    [131]李威,邹立壮,朱全书等.近十年腐植酸应用研究综述[J].腐植酸,2006,(3):3-8.
    [132]张翼峰,黄丽萍.腐植酸在环境污染治理中的应用与研究现状[J].腐植酸,2007,(5):16-26.
    [133]Green, J. B.; Manahan, S. E. Sulphur dioxide sorption by humic acid-fly ashmixtures[J]. Fuel, 1981, 60, 330-334.
    [134]Green, J. B.; Manahan, S. E. Adsorption of sulphur dioxide by sodium humates[J]. Fuel, 1981, 60, 488-494.
    [135]张久华,张立言.泥炭处理NOx尾气的试验探索[J].腐植酸.1983, (3): 6-15.
    [136]Zhao, R. F.; Liu, H. D.; Ye, S. F.; et al. Ca-based adsorbents modified with humic acid for flue gas desulfurization[J] . Industrial & Engineering Chemistry Research, 2006, 45, 7120-7125.
    [137]孙文寿.添加剂强化石灰石/石灰湿式烟气脱硫研究[D].杭州:浙江大学, 2001.
    [138]胡国新.利用腐植酸盐同时脱硫脱硝副产复合肥料的方法[P].中国发明专利,CN. 200710045443.2, 2008.
    [139]胡国新,孙志国,洪薇.酰胺化腐殖酸治理含NOx废气的方法[P].中国发明专利,CN.ZL200710039120.2, 2007.
    [140]胡国新,李艳红,孙志国.腐殖酸治理含硫和重金属废气并副产复合肥料的方法[P].中国发明专利,CN.ZL200710037896.0, 2007.
    [141]Zhiguo Sun, Yu Zhao, Hanyang Gao, Guoxin Hu. Removal of SO_2 from flue gas by sodium humate solution[J]. Energy & fuels, 2010, 24, 1013-1019.
    [142]Zhiguo Sun, Hanyang Gao, Guoxin Hu, Yanhong Li. Preparation of Sodium Humate/a-Aluminum Oxide Adsorbents for Flue Gas Desulfurization[J]. Environmental Engineering Science.2009, 26, 1249-1255.
    [143]孙志国,陈宏文,胡国新等.腐植酸钠复合吸附剂的制备及其脱硫性能[J].上海交通大学学报.2010, 44(4),550-554.
    [144]Guoxin Hu; Zhiguo Sun. Novel process of simultaneous removal of SO_2 and NO_2 by sodium humate solution. Environmental Science & Technology, 2010, 44, 6712-6717.
    [145]Tatzber, M.; Stemmer, M.; Spiegel, H.; et al. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures[J]. Soil Science & Plant Nutrition, 2007, 170:522-529.
    [146]Mitchell, M. B.; Sheinker, V. N.; White, M. G. Adsorption and reaction of sulfur dioxide on alumina and sodium-impregnated alumina[J]. Journal of Physical Chemitry, 1996, 100, 7550-7557.
    [147]Abdulhamid, H.; Fridell, E.; Dawody, J.; et al. In situ FTIR study of SO_2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions [J]. Journal of Catalysis, 2006, 241, 200–210.
    [148]Wang, Y.; Mohammed Saad, A. B.; Saur, O. FTIR study of adsorption and reaction of SO_2 and H2S on Na/SiO_2[J]. Applied Catalysis B: Environmental, 1998, 16, 279-290.
    [149]Petit, S.; Righi, D.; Madejova, J. Infrared spectroscopy of NH4+-bearing and saturated clay minerals: Areview of the study of layer charge[J]. Applied Clay Science, 2006, 34(1-4), 22.-30.
    [150]Xu, L. S.; Guo, J. Removal of SO_2 from O_2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3 [J].Chemosphere, 2006, 62, 823-826.
    [151]Bai, H.; Biswas, P.; Keener, T. C. SO_2 removal by NH3 gas injection: effects of temperature and moisture content [J]. Industrial & Engineering Chemistry Research, 1994, 33, 1231-1236.
    [152]He, B. S.; Zheng, X. Y.; Wen, Y. Temperature impact an SO_2 removal efficiency by ammonia gas scrubbing[J]. Energy Conversion and Management, 2003, 44, 2175-2188.
    [153]马双忱,赵毅,陈颖敏.液相催化氧化脱除烟气中SO_2和NOx的机理讨论[J].华北电力大学学报. 2001, 28(4):75-79.
    [154]姜信真.气液反应理论与引用基础[M].北京:化学工业出版社,2001.
    [155]Littlejohn, D.; Wang, Y.; Chang, S. G. Oxidation of aqueous sulfite ion by nitrogen dioxide[J]. Environmental Science & Technology, 1993, 27: 2162-2167.
    [156]Counce, R. M.; Crawford, D. B. Performance models for NOx absorbers/strippers[J]. Environmental Progress, 1990, 9:87-92.
    [157]Siddiqi, M. A.; Petersen, J. A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in the wet flue gas cleaning processes[J]. Industrial & Engineering Chemistry Research, 2001, 40, 2116-2127.
    [158]任晓莉,张雪梅,张卫江等.碱液吸收法治理含NOx工艺尾气实验研究[J].化学工程,2006, 34(9):63-66.
    [159]乔军师,胡金榜,宗润宽等.NOx空气氧化与碱液吸收工艺研究[J].2005,(23)2:37-38.
    [160]Bernard, L; Newman, G. C. Mass transfer in the absorption of nitrogen oxides in alkaline solutions[J]. AIChE Journal, 1988, 34 (7): 1191-1199.
    [161]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [162] Beattie, D. A.; Chapelet, J. K.; Grafe, M.; et al. In situ ATR FTIR studies of SO4adsorption on goethite in the presence of copper irons[J]. Environmental Science & Technology, 2008, 42, 9191-9196.
    [163]Ishizuka, T.; Kabashima, H.; Yamaguchi, T.; et al. Initial step of flue gas desulfurization- an IR study of the reaction of SO_2 with NOx on CaO[J]. Environmental Science & Technology, 2000, 34, 2799-2803.
    [164]Whitman, W. G. The two-film theory of absorption[J]. Chemical & Metal Engineer, 1923, 29, 146-150.
    [165]张成芳.气液反应和反应器[M].北京.化学工业出版社,1985.
    [166]李星,杨艳玲,李磊.石灰石脱硫反应活性的研究[J].中国环境科学,1998,18(1):97-96.
    [167] Akita, K.; Yoshida, F. Gas holdup and volumetric mass transfer coefficient in bubble columns [J]. Industrial &. Engineering Chemistry Process Design and development, 1973, 12, 76-80.
    [168] Akita, K.; Yoshida, F. Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns[J]. Industrial &. Engineering Chemistry Process Design and development, 1974, 13, 84-90.
    [169] Hikita, H.; Asai, S.; Tanigawa, K.; et al. Gas holdup in bubble column[J]. Journal of Chemical Engineering, 1980, 20, 59–67.
    [170]Nandurkar, N.S.; Bhanushali, M.J.; Jagtap, S.R.; et al. Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst[J]. Ultrasonics Sonochemistry, 2007, 14, 41-45.
    [171]刑其毅.基础有机化学[M].第3版.北京:高等教育出版社,2007.
    [172]邓永强.喷淋塔中喷嘴流体特性及脱硫特性实验研究[D].武汉:武汉大学,2005.
    [173]李铁军.喷淋式脱硫塔内流场的试验研究和数值模拟[D].北京:华北电力大学,2006.
    [174]林永明.大型石灰石-石膏湿法喷淋脱硫技术研究及其工程应用[D].杭州:浙江大学,2006.
    [175]戴永阳,舒英钢,葛介龙等.湿法烟气脱硫系统运行经济分析[J].电力环境保护.2009,25(2):26-27.
    [176]郑淑芳.氨肥法烟气脱硫、脱硝、除尘一体化技术的研究[D].北京:华北电力大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700