污泥基炭的重金属吸附性能及其对污泥堆肥的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着污水处理率的提高,剩余污泥产量迅速增加,由于缺乏合理有利的处置技术,大量污泥堆积造成二次污染。污泥中氮、磷、钾等含量丰富,农用是最有效的资源化利用方式,但是污泥中的重金属等有毒有害物质限制了其在土地中的利用。污泥生产堆肥和制备活性炭是比较理想的资源化利用方式,本论文以剩余污泥为原料制备生物质炭,考察了其对重金属Cr(VD和Cu(Ⅱ)的吸附效果,在此基础上,利用制备的生物质炭和高温固体菌剂进行污泥堆肥,探讨其对堆肥中氮素损失、腐熟时间及重金属钝化的影响,主要研究结果如下:
     (1)以Cr(Ⅵ)吸附容量为衡量指标,优化出生物质炭的最佳制备工艺条件为:炭化温度500℃、活化剂H28O4浓度40%、浸渍比例1:1、浸渍时间8h、炭化时间30min。红外光谱分析表明制备的生物质炭表面具有羟基、羧基、内酯基等基团及Si-O-C结构。
     (2)通过单因素实验优化了生物质炭对Cr(Ⅵ)和Cu(Ⅱ)的吸附条件。在25℃、pH1.0、生物质炭投加量1.4gL-1的条件下,生物质炭对Cr (Ⅵ)的最大吸附容量为61.3mgg-1;吸附容量随着pH的降低而增加;热力学分析⊿HH0>0、⊿G0>0,说明生物质炭对Cr(Ⅵ)的吸附是吸热过程,吸附不能自发进行;在35℃、pH5.6、生物质炭投加量0.4g L-1条件下,生物质炭对Cu(Ⅱ)的最大吸附容量为136.5mgg-1。生物质炭对Cr(Ⅵ)和Cu(Ⅱ)的吸附动力学均可以用二级动力学方程拟合,说明吸附以化学吸附为主,Langmuir等温线拟合说明生物质炭表面较为均匀,吸附为单分子层吸附。
     (3)添加不同含量的污泥基生物质炭进行污泥好氧静置堆肥,结果表明,添加生物质炭可以减少堆肥中氮素的损失,生物质炭保氮效果与添加量成正比,添加8%生物质炭处理中氮素损失率为25%,相对于对照处理的44.3%,保氮效果显著。生物质炭和高温腐熟菌剂均可以加快堆肥升温速率,提高堆肥温度,加快堆肥腐熟。生物质炭的添加可以降低堆肥中重金属的生物有效性,添加量为8%时,不稳定态铬和铜所占的比例分别下降了10%和1.3%,对照处理中不稳定态铬比例下降了4%,不稳定态铜反而升高了2%,重金属生物有效性的降低可能与生物质炭表面的羟基、羧基等基团有关,这些基团之间以氢键构成网络,与重金属离子或者重金属氧化物相互作用,达到吸附钝化重金属的效果。
With the increasing number of wastewater treatment plants, more and more municipal sewage sludge is produced. Due to the lack of reasonable and effective disposal technologies, large amounts of sewage sludge accumulated caused secondary pollution. Since sludge is rich in nitrogen, phosphorus, potassium and other elements, the agricultural use is the most effective way of its resource utilization, but the toxic and hazardous substances such as heavy metals in the sludge limit its application in the land. So there is an urgent need for a safe disposal option. In this thesis, for this reason, the adsorption of bio-charcoal from sewage sludge on Cr (Ⅵ) and Cu (Ⅱ) was explored and the influence of bio-charcoal on nitrogen loss, maturity time and heavy metal bioavailability during the sludge composting was also discussed. The main conclusions were showed as follows:
     (1) Based on the adsorption capacity of Cr (Ⅵ), the conditions of bio-charcoal preparation were optimized. The results were as follows:the activation temperature of500℃、40%of the concentration of H2SO4、impregnation ratio of1:1、impregnation time of8h、carbonization time of30min. According to the analysis of IR spectra, there may be hydroxy1、carboxy1、lactone and structure of Si-O-C on the surface of bio-charcoal.
     (2) The adsorption conditions of bio-charcoal on Cr (Ⅵ) and Cu (Ⅱ) was optimized through single factor experiments. The maximum adsorption capacity of bio-charcoal on Cr (Ⅵ) was61.3mg g-1under the condition of25℃、pH1.0and dosage of1.4g L'1. The adsorption capacity increased with the decrease of pH. The thermodynamic analysis of△H0>0and△G0>0illustrated that the adsorption of bio-charcoal on Cr (Ⅵ) was an endothermic process and didn't occurre spontaneously. The maximum adsorption capacity of bio-charcoal on Cu (Ⅱ) was136.5mg g-1under the condition of35℃、pH5.6and dosage of0.4g L"1. The adsorption of bio-charcoal on Cr (Ⅵ) and Cu (Ⅱ) were fitted well with second-order kinetics, which indicated that the adsorption was mainly chemical. The fitting of Langmuir isotherm showed that the surface of bio-charcoal was uniform and the adsorption was monolayer.
     (3) The sludge composting results indicated that the additive bio-charcoal in the compost could reduce the loss of total nitrogen and the effect was proportional to the amount of bio-charcoal added. The inhibition of nitrogen losses was most significant with8%bio-charcoal added. After40days of composting the nitrogen loss rate was25%in compost with8%bio-charcoal and was44.3%in control compost. The amendment of bio-charcoal and thermophilic bacteria could speed up the compost heating rate, improve the temperature and accelerate the composting. The incorporation of bio-charcoal into the sludge composting material could inhibit the bioavailability of heavy metals in the compost. The proportion of chromium and copper in the unstable state decreased10%and1.3%, separately, in compost with8%bio-charcoal. However, in the no bio-charcoal amendment control, the proportion of copper in the unstable state increased2%and the proportion of chromium in the unstable state only decreased4%. This may be assigned to hydroxyl, carboxyl and other groups on bio-charcoal surface. The network structure formed through hydrogen bonds between these groups and the reaction between surface groups and metal ions or heavy metal oxides could reduce bioavailability of heavy metals.
引文
[1]张少强.基于微生物隐性生长的嗜热菌污泥减量化技术研究[D].湖南大学,2007.
    [2]赵伟.城市污泥资源化处理制砖技术研究[D].东南大学,2005.
    [3]汪启光.污泥臭氧破解及其减量的机理与效能研究[D].浙江大学,2006.
    [4]柯建明,王凯军,田宁宁.城市污水污泥的处理和处置方法问题研究[Z].深圳:2003.
    [5]唐淦海.不同秸秆污泥堆肥施用土壤-植物效应研究[D].西南大学,2011.
    [6]薛澄泽,张增强.我国污泥土地利用的展望[J].农业环境与发展,1997(4):2-8.
    [7]花莉.城市污泥堆肥资源化过程与污染物控制机理研究[D].浙江大学,2008.
    [8]Wei Y J, Liu Y S. Effects of sewage sludge compost application on crops and cropland in a 3-year field study[J]. Chemosphere,2005,59(9):1257-1265.
    [9]Bergkvist P, Jarvis N, Berggren D, et al. Long-term effects of sewage sludge applications on soil properties, cadmium availability and distribution in arable soil[J]. Agriculture Ecosystems & Environment,2003,97(1-3):167-179.
    [10]张桥,吴启堂,黄焕忠等.施用污泥堆肥对作物和土壤的影响[J].土壤与环境,2000(4):277-280.
    [11]上海市政工程设计研究总院,上海市城市排水有限公司,上海市园林科学研究所.城镇污水处理厂污泥处置分类[P].
    [12]张贺飞,徐燕,曾正中等.国外城市污泥处理处置方式研究及对我国的启示[J].环境工程,2010(81):434-438.
    [13]普大华,吴学伟,李洁.城市污泥处理处置技术对比[J].中国水运(学术版),2007(2):73-74.
    [14]邓晓林,王国华,任鹤云.上海城市污水处理厂的污泥处置途径探讨[J].中国给水排水,2000,16(5):19-22.
    [15]史听龙,陈绍伟.城市污水污泥的处置与利用[J].环境保护,2001(3):45-46.
    [16]蒋旭光,严建华.用于处理污泥的异重流化床焚烧锅炉[J].余热锅炉,1997(2):7-11.
    [17]王涛.污泥焚烧技术现状-存在问题与发展趋势[J].西南给排水,2007,29(1).
    [18]王绍文,秦华.城市污泥资源利用与污水土地处理技术[M].北京:中国建筑工业出版社,2007:386.
    [19]潘玉.添加粉煤灰堆肥化及淋滤对污泥重金属影响研究[D].兰州大学,2011.
    [20]Uk. Statutory Instrument 1989 No.1263. The Sludge (Use in Agriculture) (Amendment) Regulations[Z].1990.
    [21]US EPA.40 CFR Part 503. Standards for the use or disposal of sewage sludge[Z].1992.
    [22]姚刚.德国的污泥利用和处置(Ⅰ)[J].城市环境与城市生态,2000(1):43-47.
    [23]王欢,王幸锐,刘芳.剩余活性污泥资源化利用技术及发展趋势[z].中国四川成都,2009,151-157.
    [24]李海波,柳青,孙铁珩等.中国城市污泥资源化利用研究进展[J].三峡环境与生态,2008,1(2):42-47.
    [25]李必琼.作物秸秆与城市污泥高温好氧堆肥过程中碳氮磷及重金属转化研究[D].西南大学,2010.
    [26]Xiang-Yang Z, Xing-Wu W. Study on Composting of Sewage Sludge with Matured Compost[C].2011.
    [27]孙西宁.污泥堆肥过程中重金属形态变化的研究p].西北农林科技大学,2007.
    [28]李国学,张福锁.固体废物堆肥化与有机复合肥生产[M].北京:化学工业出版社,2000.
    [29]Davis R D. The impact of EU and UK environmental pressures on the future of sludge trement and disposal[J]. Water Environment Manage,1996,10(2):65-69.
    [30]Babel S, Dacera D D. Heavy metal removal from contaminated sludge for land application: A review[J]. Waste Management,2006,26(9):988-1004.
    [31]涂剑成.污水厂污泥中重金属脱除技术及污泥特性变化的研究[D].哈尔滨工业大学,2011.
    [32]黑亮,胡月明,吴启堂等.用固定剂减少污泥中重金属污染土壤的研究[J].农业工程学报,2007(8):205-209.
    [33]Bojner G. Thermal and activated carbon treatment[Z].1973.
    [34]阳听.污泥基吸附剂的制备与应用研究[D].哈尔滨工业大学,2011.
    [35]叶平伟,栾志强,张忠良等.微波加热对活性炭表面性质的影响[J].炭素技术,2004(2):5-9.
    [36]近藤精一,石川达雄,安部郁夫编著.吸附科学[M].北京:化学工业出版社,2006.
    [37]杜亚平.高硫延迟焦水蒸汽活化法制取活性炭的研究[D].华东理工大学,2001.
    [38]杨勃.市政污泥制备吸附剂的初步研究[D].华中科技大学,2011.
    [39]Nickerson R D.Making Active Carbons from Sewage Sludge[P].1975.
    [40]Rio S, Le Coq L, Faur C, et al. Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment[J]. Process Safety and Environmental Protection,2006,84(B4SI):258-264.
    [41]王红亮,司崇殿,郭庆杰.污泥衍生活性炭制备与性能表征[J].山东化工,2008(2):1-5.
    [42]刘项.烟草废弃物提制硫酸烟碱及活性炭的研究[D].重庆大学,2004.
    [43]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [44]Sutherland G. Preparation of Activated Carbonaceous Material from Sewage Sludge and Sulfuric Acid[P].1976.
    [45]Chen X G, Jeyaseelan S, Graham N. Physical and chemical properties study of the activated carbon made from sewage sludge[J]. Waste Management,2002,22(7):755-760.
    [46]Rozada F, Calvo L F, Garcia A I, et al. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems[J]. Bioresource Technology,2003,87(3):221-230.
    [47]Hwang H R, Choi W J, Kim T J, et al. The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent[J]. Journal of Analytical and Applied Pyrolysis,2008,83(2):220-226.
    [48]张德见,魏先勋,曾光明等.化学活化法制取污泥衍生吸附剂的实验研究[J].安全与环境学报,2003(5):44-46.
    [49]任爱玲,王启山,贺君.城市污水处理厂污泥制活性炭的研究[J].环境科学,2004(S1):48-51.
    [50]余兰兰,钟秦.污水厂污泥制备活性炭吸附剂及其应用[J].水处理技术,2006(5):61-64.
    [51]赵芝清,汪辉,苏国栋等.以不同污泥为原料制备活性炭及其对Cr(Ⅵ)的吸附[J].安全与环境工程,2008,15(2):61-63,68.
    [52]范艳青,冯晓锐,陈雯等.活性炭制备技术及发展[J].昆明理工大学学报(理工版),2002(5):17-20.
    [53]Khalili N R, Campbell M, Sandi G, et al. Production of micro- and mesoporous activated carbon from paper mill sludge:I.Effect of zinc chloride activation[J]. Carbon,2000,38(14): 1905-1915.
    [54]Sandi G, Khalili N R, Lu W Q, et al. Electrochemical performance of carbon materials derived from paper mill sludge[J]. Journal of Power Sources,2003,119(SI):34-38.
    [55]Wang X N, Zhu N W, Yin B K. Preparation of sludge-based activated carbon and its application in dye wastewater treatment[J]. Journal of Hazardous Materials,2008,153(1-2): 22-27.
    [56]张蔓.剩余污泥制备吸附材料处理重金属废水研究[D].西华大学,2010.
    [57]青岛市城市排水监测站.城市污水处理厂污泥检验方法[S].2005.
    [58]孙颖,陈玲,赵建夫等.测定城市生活污泥中重金属的酸消解方法研究[J].环境污染与防治,2004(3):170-172.
    [59]封勇,陈杰,吴亦红.城市污泥中总氮的测定方法[J].河北化工,2005(6):74-75.
    [60]Wu Z J, Li S Y, Wan J F, et al. Cr(Ⅵ) adsorption on an improved synthesised cross-linked chitosan resin[J]. Journal of Molecular Liquids,2012,170:25-29.
    [61]张君.污泥含碳吸附材料的制备及其对Cu2+、Pb2+的吸附研究[D].西华大学,2010.
    [62]Pehlivan E, Kahraman H, Pehlivan E. Sorption equilibrium of Cr(Ⅵ) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents[J]. Fuel Processing Technology,2011,92(l):65-70.
    [63]Raji C, Anirudhan T S. Batch Cr(Ⅵ) removal by polyacrylamide-grafted sawdust:Kinetics and thermodynamics[J]. Water Research,1998,32(12):3772-3780.
    [64]Rozada F, Otero M, Moran A, et al. Adsorption of heavy metals onto sewage sludge-derived materials[J]. Bioresource Technology,2008,99(14):6332-6338.
    [65]赵启涛,陈雯,刘中华.活性炭的应用与研究进展[J].昆明理工大学学报,2000,25:8-12.
    [66]Ho Y S, Mckay G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal,1998,70(2):115-124.
    [67]Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr(Ⅵ) by Mucor hiemalis[J]. Biochemical Engineering Journal,2005,23(2):185-192.
    [68]Dong X L, Ma L, Li Y C. Characteristics and mechanisms of hexavalent chromium removal by bio-charcoal from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190(1-3): 909-915.
    [69]张再利,况群,贾晓珊.花生壳吸附Pb2+、Cu2+、Cr3+、Cd2+、Ni2+的动力学和热力学研究[J]. 生态环境学报,2010,19(12):2973-2977.
    [70]皮广洁,唐书源.农业环境监测原理与应用[M].成都:成都科技大学出版社,1998.
    [71]张雪英,周立祥,沈其荣等.城市污泥强制通风堆肥过程中的生物学和化学变化特征[J].应用生态学报,2002(4):467-470.
    [72]Roca-Perez L, Martinez C, Marcilla P, et al. Composting rice straw with sewage sludge and compost effects on the soil-plant system[J]. Chemosphere,2009,75(6):781-787.
    [73]张亚宁.堆肥腐熟度快速测定指标和方法的建立[D].中国农业大学,2004.
    [74]曹喜涛,黄为一,常志州等.鸡粪堆制过程中氮素损失及减少氮素损失的机理[J].江苏农业学报,2004(2):106-110.
    [75]李必琼,贺亮,赵秀兰.微生物菌剂对城市污泥堆肥过程中氮素转化的影响研究[J].西南师范大学学报(自然科学版),2009(6):61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700