A型肉毒毒素裂解SNAP-25在被川楝素阻断后仍抑制乙酰胆碱诱发离体幽门肌收缩
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:A型肉毒毒素(botulinum toxin type A.BTX-A)选择性地裂解突触相关蛋白—25(synaptosomal-associated protein of 25 kDa,SNAP-25),阻断突触囊泡中神经递质与突触前膜的融合、胞吐和释放。川楝素(toosendanin,TSN)近期被证实通过阻断BTX-A裂解SNAP-25而具有抗肉毒毒素功能。本研究依离体大鼠幽门平滑肌为实验对象,应用TSN阻断BTX-A裂解SNAP-25后,观察BTX-A是否仍对乙酰胆碱(acetylcholine,ACh)诱发的平滑肌收缩起抑制作用,以期揭示BTX-A对平滑肌存在的作用途径。
     方法:三组Sprague-Dawley大鼠的幽门离体平滑肌条在Krebs液中1g的前负荷下孵育52分钟左右,待出现自发性收缩波且平稳后分别加入ACh,BTX-A,TSN和Atropine。第一组(n=10):肌条对ACh 1001μM出现反应10分钟后,分别加入Atropine 1μM(n=5)或BTX-A 10 U/ml(n=5)记录4小时;第二组(n=10):肌条对BTX-A 10U/ml(n=5)或AtropinelμM(n=5)出现反应30分钟后,加入ACh 100μM记录4小时;第三组(n=5):肌条在含TSN 29.6μM溶液中孵育20分钟后,加BTX-A10U/ml,30分钟后再加ACh 100μM记录4小时。
     结果:第一组:ACh 100μM显著地增强了幽门收缩的张力(P<0.001)和频率(P<0.001),但振幅无显著性差异;后续加入BTX-A 10 U/ml抑制了ACh诱发的收缩作用(张力,P<0.001:频率,P<0.001;振幅,P=0.014)。然而,Atropine 1μM却完全性抑制了ACh诱发的收缩反应。这一结果显示BTX-A10 U/ml直接抑制了ACh诱发的收缩反应。
     第二组:BTX-A 10 U/ml直接抑制了幽门自发性收缩(张力,P=0.006;频率,P<0.001;振幅,P<0.001);AtropinelμM同样抑制了幽门肌的收缩。随后加入ACh100μM不能再激发幽门肌的收缩。
     第三组:TSN 29.6μM孵育20分钟,幽门平滑肌的自发性收缩末发生变化;加入BTX-A 10 U/ml后,BTX-A降低幽门肌收缩反应(张力,P<0.001;振幅,P<0.001)。虽然这种抑制作用与未加TSN时BTX-A的效应不尽相似,但是BTX-A10 U/ml仍然抑制了幽门平滑肌收缩,即使ACh 100μM也同样不能激发它再收缩。
     结论:A型肉毒毒素不仅抑制幽门平滑肌的自发性收缩,而且抑制了乙酰胆碱诱发的收缩;即使它介导SNAP-25裂解被川楝素阻断后,也同样抑制乙酰胆碱诱发的幽门部平滑肌收缩。这提示A型肉毒毒素不仅抑制胆碱能神经中乙酰胆碱的释放,而且抑制外源性乙酰胆碱与胆碱能毒蕈碱受体结合后产生的肌肉收缩反应。
Background and Aim: Botulinum toxin type A (BTX-A) selectively cleaves synaptosomal-associated protein of 25 kDa (SNAP-25) and results in inhibition of the fusion of synaptic vesicles containing neurotransmitters with the presynaptic membrane to undergo fusion with presynaptic membrane, exocytosis and release. Toosendanin (TSN) was recently demonstrated a potential antibotulismic agent by antagonizing BTX-A-mediated cleavage of SNAP-25. The study was to decide whether BTX-A effected on the pyloric smooth muscle contractility induced by acetylcholine (ACh) after BTX-A-mediated cleavage of SNAP-25 antagonized by toosendanin and investigate in which way BTX-A did.
     Methods: Three groups of Sprague-Dawley rat pyloric muscle strips were studied in vitro. All strips were allowed to equilibrate for 52 min under a basal loading tension of 1 g in Kerbs solution and its spontaneous contractile waves regularly emerging as its own control before adding respectively ACh, BTX-A, TSN and atropine. The first group (n=10), after initial response to ACh 100μM for 10 min, atropine 1μM (n=5) or BTX-A 10 U/ml (n=5) was respectively added for recording 4 h. The second group(n=10), after initial response to BTX-A 10 U/ml (n=5) or atropine 1μM (n=5) for 30 min. ACh 100μM was added for recording 4 h. The third group, after initial incubation of toosendanin (TSN) 29.6μM for 20 min, subsequent BTX-A 10 U/ml for 30 min and then ACh 100μM were added for recording 4 h.
     Results: In the first group the addition of ACh 100μM into Krebs solution enhanced significantly pyloric muscle contractile tension (P<0.001) and frequency (P<0.001), but not contractile amplitude (P=0.769) in preparations. The further addition of BTX-A 10 U/ml suppressed ACh-induced contractile responses including tension (P<0.001), frequency (P<0.001) and amplitude (P=0.014). Atropine 1μM suppressed comparably ACh-induce contractile responses. Nevertheless, the inhibition of atropine was almost complete. The results showed that BTX-A 10 U/ml directly inhibits ACh-induced pyloric contractile response.
     In the second group, BTX-A 10 U/ml inhibited directly pyloric muscle spontaneous contractions, such as contractile tension (P=0,006), frequency (P<0.001) and amplitude (P<0.001). Atropine 1μM similarly inhibited pyloric muscle contraction (unshown). Sequential addition of ACh 100μM did not agitate any more pyloric muscle contraction.
     In the third group, the addition of TSN 29.6μM in initial period of 20 min did not influence pyloric muscle spontaneous contractility, subsequently BTX-A 10 U/ml addition still decreased pyloric muscle contractile (tension, P<0.001; amplitude, P<0.001). Though this inhibition was not similar to the one BTX-A did without TSN. BTX-A 10 U/ml still inhibited pyloric smooth muscle contractility so that ACh 100μM did no longer agitate it.
     Conclusion: These data demonstrate that BTX-A inhibits not only pyloric smooth muscle spontaneous contraction but also ACh-induced contraction. Even after BTX-A-mediated cleavage of SNAP-25 antagonized by toosendanin, BTX-A inhibits ACh-induced pyloric smooth muscle contraction. Such suggest that BTX-A inhibits not only acetylcholine release from cholinergic nerves but also cholinergic muscarinic muscular transmission.
引文
Aguilera J. Clostridial neurotoxins—proposal of a common nomenclature. FEMS Microbiol. Lett. 1992; 90(2): 99-100.
    Baldwin MR, Bradshaw M, Johnson EA, Barbieri JT. The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability. Protein Expr. Purif. 2004; 37(1): 187 -195
    Benedetto AV. The cosmetic uses of botulinum toxin type A. Int. J. Dermatol. 1999; 38(9): 641-655
    Bergquist F, Niazi HS, Nissbrandt H. Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo. Brain Research 2002; 950(1-2): 245-253
    Bhidayasiri R, Truong DD. Expanding use of botulinum toxin. J. Neurol. Sci. 2005; 235 (1-2): 1-9.
    Blasi J, Chapman ER, Link E, Binz T. Yamasaki S, De Camilli P, Sudhof TC, Niemann H, Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993; 365(6442): 160-163.
    Blasi J, Chapman ER, Yamasaki S. Binz T, Niemann H, Jahn. R. Botulinum neurotoxin C_1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 1993; 12: 4821-4828.
    Breidenbach MA, Brunger AT. New insights into clostridial neurotoxin-SNARE interactions. Trends Mol. Med.2005; 11(8):377—381
    Brin MF. Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl. 1997; 6:S 146-168.
    Callaway JE. Botulinum toxin type B (Myobloc(?)): pharmacology and biochemistry. Clinics in Dermatology. 2004; 22(1):23-28
    Chaddock JA, Herbert MH, Ling RJ, Alexander FC, Fooks SJ, Revell DF, Quinn CP, Shone CC, Foster KA. Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr. Purif. 2002; 25(2):219-228
    Ding J, Xu TH. Shi YL. Different effects of toosendanin on perineurially recorded Ca~(2+) currents in mouse and frog motor nerve terminals. Neuroscience Research 2001; 41(3):243-249
    Dolly JO, Lisk G, Foran PG, Meunier F, Mohammed N, O'Sullivan G . De Paiva A (2002). Insights into the extended duration of neuroparalysis by botulinum neurotoxin A relative to the other shorter-acting serotypes: differences between motor nerve terminals and cultures neurons, in Scientific and Therapeutic Aspects of Botulinum Toxins (Brin M. Jankovic J and Hallet M eds) pp 91-102, Lippincott Williams and Wilkins, Philadelphia.
    Dolly JO. Molecular definition of neuronal targets for novel neurotherapeutics: SNAREs and Kv_1 channels. Neurotoxicology 2005; 26(5): 753-760
    Dong M, Tepp WH. Johnson EA, Chapman ER. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc. Natl. Acad. Sci. U. S. A. 2004; 101(41): 14701 -14706
    Dressier D, Saberi FA. Barbosa ER. Botulinum Toxin—Mechanisms of action. Arq. Neuropsiquiatr. 2005; 63(1):180-185
    Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci. Lett. 1998; 256(3): 135-138
    Eswaramoorthy S. Kumaran D, Swaminathan S. A novel mechanism for clostridium botulinum neurotoxin inhibition. Biochemistry 2002; 41(31):9795-9802
    Ezzeddine D, Jit R., Katz N, Gopalswamy N, Bhutani MS. Pyloric injection of botulinum toxin for treatment of diabetic gastroparesis. Gastrointest. Endosc. 2002; 55 (7), 920-923.
    Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO. Botulinum neurotoxin C_1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells—Correlation with its blockade of catecholamine release. Biochemistry 1996; 35(8): 2630-2636.
    Fujita-Yoshigaki J. Divergence and Convergence in Regulated Exocytosis: The characteristics of cAMP-dependent enzyme secretion of parotid salivary acinar cells. Cell Signal. 1998; 10(6): 371-375.
    Goonetilleke A, Harris JB. Clostridal neurotoxins. J. Neurol. Neurosurg Psychiatry. 2004; 75 Suppl 3:iii35- iii39.
    
    Gregory FD, Schweizer FE. Exocytosis with a snap. Nature neuroscience 2002; 5(1):4-6
    Grumelli C, Verderio C, Pozzi D, Rossetto O, Montecucco C, Matteoli M. Internalization and Mechanism of Action of Clostridial Toxins in Neurons. Neurotoxicology 2005; 26(5):761-767
    Herreros J, Lalli G, Montecucco C, Schiavo G. Pathophysiological properties of clostridial neurotoxins. The Comprehensive Sourcebook of Bacterial Protein Toxins (Alouf JE and Freer JH eds.) 1999; 202-228.
    
    Jahn R, Lang T, Sudhof TC. Membrane fusion. Cell 2003; 112:519-533.
    James AN, Ryan JP, Parkman HP. Inhibitory effects of botulinum toxin on pyloric and antral smooth muscle. Am. J. Physiol. Gastrointest Liver Physiol. 2003; 285 (2), 291-297.
    Jankovic J. Brin MF. Therapeutic uses of botulinum toxin. N. Engl. J. Med. 1991; 324 (17), 1186-1194.
    Keller JE, Cai F, Neale EA. Uptake of Botulinum Neurotoxin into Cultured Neurons. Biochemistry 2004; 43(2):526-532
    Keller JE, Neale EA, Oyler G, Adler M. Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Letters 1999; 456(1):137-142
    Kimura K, Kimura H, Yokosawa N. Isogai H, Isogai E, Kozaki S, Miyamoto A,Nishikawa T, Ohshika H, Kubota T, Fujii N. Negative chronotropic effect of botulinum toxin on neonatal rat cardiac myocytes. Biochem. Biophys. Res. Commun. 1998:244(1):275-279.
    Kreyden OP, Scheidegger EP. Anatomy of the sweat glands, pharmacology of botulinum toxin, and distinctive syndromes associated with hyperhidrosis. Clin. Dermatol. 2004; 22(1):40-44
    Lacy BE, Zayat EN, Crowell MD. Schuster MM. Botulinum toxin for the treatment of gastroparesis: a preliminary report. Am. J. Gastroenterol. 2002; 97 (6), 1548-1552.
    Lawrence GW, Foran P, Dolly JO. Insights into a basis for incomplete inhibition by botulinum toxin A of Ca~(2+)-evoked exocytosis from permeabilised chromaffin cells. Toxicology 2002; 181-182: 249-253.
    Li MF, Shi YL. The long-term effect of toosendanin on current through nifedipine-sensitive Ca~(2+) channels in NG108-15 cells. Toxicon 2005; 45(1):53-60
    Ma J, Shen J, Lee CA, Elsaidi GA. Smith TL, Walker FO, Rushing JT, Tan KH, Koman LA, Smith BP. Gene expression of nAChR, SNAP-25 and GAP-43 in skeletal muscles following botulinum toxin A injection: a study in rats. J. Orthop. Res. 2005; 23(2): 302-309.
    MacKenzie I, Burnstock G. Dolly JO. The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience 1982; 7(4): 997-1006. Marks JM., Bower AL, Goormastic M., Malycky JL, Ponsky JL. A comparison of common bile duct pressures after botulinum toxin injection into the sphincter of Oddi versus biliary stenting in a canine model. Am. J. Surg. 2001; 181 (1), 60-64.
    Meunier FA. Lisk G, Sesardic D, Dolly JO. Dynamics of motor nerve terminal remodeling unveiled using SNARE cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol. Cell Neurosci. 2003; 22(4): 454-466
    Meunier FA, Schiavo G, Molgo J. Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J. Physiol. Paris. 2002; 96(1-2): 105-113
    Miller LS, Szych GA, Kantor SB, Bromer MQ, Knight LC, Maurer AH., Fisher RS., Parkman HP. Treatment of idiopathic gastroparesis with injection of botulinum toxin into the pyloric sphincter muscle. Am. J. Gastroenterol. 2002; 97 (7): 1653-1660.
    Montecucco C. Schiavo G, Pantano S. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem. Sci. 2005; 30(7):367-372
    Montecucco C. Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 1995; 28(4): 423-472.
    Mowry MC. Meagher M, Smith L, Marks J, Subramanian A. Production and purification of a chimeric monoclonal antibody against botulinum neurotoxin serotype A. Protein Expr. Purif. 2004; 37(2): 399-408
    Oblatt-Montal M, Yamazaki M, Nelson R, Montal M. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Sci. 1995; 4(8): 1490-1497.
    Oyler GA, Higgins GA. Hart RA, Battenberg E, Billingsley M, Bloom FE. Wilson MC. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol. 1989; 109(6 Pt1):3039-3052.
    Pellizzari R, Rossetto O, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1999; 354(1381):259-268.
    Rao KN, Kumaran D, Binz T, Swaminathan S. Structural analysis of the catalytic domain of tetanus neurotoxin. Toxicon 2005; 45(7):929-939.
    Rossetto O, Rigoni M, Montecucco C. Different mechanism of blockade of neuroexocytosis by presynaptic neurotoxins. Toxicol Lett. 2004; 149(1-3):91-101.
    Sakaba T, Stein A, Jahn R, Neher E. Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 2005; 309(5733):491-494
    Salaun C, Gould GW, Chamberlain LH. Lipid raft association of SNARE proteins regulates xocytosis in PC12 Cells. J. Biol. Chem. 2005; 280(20): 19449-19453
    Sand J, Nordback I, Arvola P, Porsti I, Kalloo A. Pasricha P. Effects of botulinum toxin A on the sphincter of Oddi: an in vivo and in vitro study. Gut 1998; 42(4): 507-510
    Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000; 80(2):717-766.
    Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta BR, Benfenati F, Montecucco C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem. 1993; 268(32):23784-23787.
    Segelke B, Knapp M, Kadkhodayan S, Balhorn R. Rupp B. Crystal structure of clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. PNAS 2004: 101(18):6888-6893.
    Shi YL, Wang ZF. Cure of experimental botulism and antibotulismic effect of toosendaninl. Acta. Pharmacol. Sin. 2004; 25 (6): 839-848
    Shone CC, Hambleton P, Melling J. Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur. J. Biochem. 1985 15; 151(1):75-82.
    Simpson LL, Maksymowych AB. Kouguchi H, Dubois G, Bora RS, Joshi S. The role of exoproteases in governing intraneuronal metabolism of botulinum toxin. Protein J. 2005; 24(3): 155-165.
    Simpson LL. Molecular pharmacology of botulinum toxin and tetanus toxin. Annu. Rev. Pharmacol. Toxicol. 1986; 26: 427- 453.
    Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromaga H, Geromanos S, Tempst P. Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993: 362(6418): 318-324.
    
    Sudhof TC. The synaptic vesicle cycle. Annu. Rev. Neuroscience 2004; 27:509-547.
    Tsui JK. Botulinum toxin as a therapeutic agent. Pharmacol. Ther.1996; 72(1): 13-24
    Wang ZF, Shi YL. Modulation of inward rectifier potassium channel by toosendanin. a presynaptic blocker. Neurosci. Res. 2001; 40: 211-215
    Washbourne P, Pellizzari R. Baldini G, Wilson MC, Montecucco C. Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett 1997; 418(1-2): 1-5.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH. Rothman JE. SNARE pins: minimal machinery for membrane fusion. Cell 1998: 92(6):759-772.
    Zhou JY, Wang ZF. Ren XM, Tang MZ. Shi YL. Antagonism of botulinum toxin type A-induced cleavage of SNAP-25 in rat cerebral synaptosome by toosendanin. FEBS Lett. 2003; 555(2):375-379
    
    Zhou Y. Foss S, Lindo P, Sarkar H, Singh BR. Hemagglutinin-33 of type A botulinum neurotoxin complex binds with synaptotagmin II. FEBS J 2005; 272(11):2717-2726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700