大型泥水盾构近距离穿越运营地铁的扰动位移特性及施工风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法隧道历经180余年的发展,迄今世界各国建造了数以千计的各种类型、各种直径的盾构,我国上海、北京、广州、深圳等地成功建设了各种大型盾构,盾构施工技术水平不断提高。当随着国内外地铁等地下管网建设的迅速发展、城市地下空间开发利用模的不断扩大,盾构法施工在不断普及和高速发展的同时不断向大深度、急曲线、长距离、大直径的趋势发展。同时,近距离穿越已建地下结构情况日益增多。尤其新建隧道将不可避免面临近距离穿越运营地铁等复杂技术难题和施工风险的挑战。
     本研究围绕大型泥水盾构隧道近距离穿越运营地铁的关键技术与理论问题,通过室内试验、数值模拟、现场试验、原位监测及理论分析,系统研究了同步注浆浆液的物理力学性质及其对盾构施工扰动位移的影响、近距离穿越施工过程土体位移特性及施工因素的影响作用、地铁运营时列车动载条件下振动位移增量场的数值解法、近距离施工扰动状态下已建地铁隧道稳定性等。取得了相应有创新意义和工程实用价值的研究成果:
     (1)通过室内试验,系统研究水泥品种、水玻璃模数及其配比对盾构同步注浆浆液物理力学特性的影响。研究显示:i)高标号水泥双液浆强度和弹性模量随水玻璃模数及其配比的提高而增大;而低标号水泥双液浆强度和弹性模量对应于水玻璃配比存在一个“最佳值”;ii)低标号水泥、模数2.8水玻璃材料配制的双液浆渗透性强且固化时间长,对及时充填盾构外部空隙、减少土体损失以及减少注浆量不利。成果对盾构施工同步注浆浆液用水泥标号、水玻璃模数、材料配比等参数选择有实用指导意义。
     (2)考虑盾构管片结构特点及其加工精度的影响,采用接触力学理论建立了隧道结构实际有效厚度的计算方法。结果表明:管片实际有效承载厚度与极限加工误差成负指数关系;隧道结构实际总体刚度减少将对土体位移场、结构变形等产生不利影响。
     (3)通过合理控制盾构切口水压、同步注浆压力等施工参数可达到控制土体损失率从而有效控制在建隧道及已建隧道的变形及位移目的:i)对近邻隧道结构位移而言,土体损失率存在“最佳值”,当土体损失率大于该值时,隧道结构产生沉降,且竖向位移逐渐增大;当土体损失率小于该临界值,隧道结构将产生“上浮”。合理控制施工参数,将土体损失率控制在“最佳值”左右一定范围内即可有效控制周边隧道结构竖向位移,满足管线保护的要求。ii)隧道下行穿越施工过程中,无论土体损失率大小,上部已建隧道顶板沉降峰值均大于其底板沉降峰值,即施工扰动区域内已建隧道断面不同程度上呈“椭圆化”。iii)穿越施工过程中,上部隧道管环结构将不同程度承受拉应力,容易到成管环接缝渗漏或局部破坏。
     (4)针对隧道近距离穿越运营地铁时列车振动荷载与穿越施工相互影响的复杂性及其求解难度,在充分考虑系统结构特点的基础上依据力学作用效果等效原则,建立了适用于工程实际的耦合动力分析模型及分段求解方法,采用自主研发的车桥耦合数值分析软件结合ANSYS通用软件分析系统相结合方法,研究已有地铁线路运行的振动对于近距离隧道施工的动态影响。结果表明:当上部隧道正常运行状态下进行隧道下行穿越施工时,由于地铁列车振动荷载作用下穿隧道及运营地铁隧道都将产生较大的竖向振动响应位移增量。成果为西藏南路隧道施工现场采用,有效地避免了工程技术风险、确保了工程安全。
     (5)通过数值模拟与现场试验进一步系统深化了开挖卸载(初始土体损失率)、孔隙水压、工作面切口压力、同步注浆压力等综合因素对盾构隧道开挖扰动位移场的影响。总结出:i)同步注浆压力(注浆量)直接影响土体分层沉降(靠近盾构注浆孔区域尤为显著)及径向水平位移,而对土体轴向水平位移的影响甚微。ii)盾构工作面前方土体位移主要受切口压力支配,当切口压力小于土体压力时,工作面前方土体处于主动土压力状态从而产生向切口方向的卸载位移,土体产生与盾构推进方向相反的位移;当切口压力等于土体压力时,工作面前方土体处于静止土压力状态从而产生轻微的“顶推”位移;切口压力大于土体压力时,工作面前方土体位移进一步增大,位移方向与盾构推进方向相同。总体上,工作面前方土体位移表现出对切口压力的高度敏感性及依存性。进一步完善了该方面的理论成果。
     (6)进一步明确了竖平面内位移场呈非对称分布规律。即:无论同步注浆压力大小,隧道底板土体均不同程度地显示出“上浮”位移模式,即隧道底板位移具有不可逆的“上浮”特性;而隧道顶板土体的隆沉则与同步注浆压力紧密相关:当同步注浆压力P≤Ps时,顶板土体产生沉降位移;当同步注浆压力P≥Ps时,顶板土体将产生“上浮”位移。成果进一步充实了盾构施工扰动位移场理论。
     综上所述,本研究进一步深化与完善了大型泥水盾构近距离穿越运营地铁相关技术及理论体系。部分成果被上海世博配套工程西藏南路隧道建设工程应用,取得了良好技术经济效益和社会效益。
Shield tunneling method has a history of more than 180 years and there are thousands of kinds of shields with different diameters in the world at present. In China, a variety of large-scale shields have been produced in Shanghai, Beijing, Guangzhou and Shenzhen and the technical level of shield construction improving constantly. Along with the quick development of underground pipe network construction and the expansion of city underground space, shield method is prevailing and developing at top speed, trend of which is towards high depth, sharp curve, long distance and big diameter. At the same time, more and more short-distance crossing in underground structure projects appears. Especially new tunnel construction will inevitably face the challenge of short-distance crossing of the subway tunnel which is operating
     This research focus on the key technology and theory problems of large-scale slurry shield short-distance crossing operating subway, by the means of laboratory experiment, numerical simulation, field experiment, in situ monitoring and theory analysis, systematically researched the physical and mechanical properties of synchronized grouting slurry and its influence on disturbed displacement, short-distance crossing soil displacement and effect of construction parameter, numerical solution of dynamic displacement increment field of operating subway train, stability of existed subway tunnel under short-distance crossing. Gained the innovative and engineering practical results:
     [1] By the means of laboratory experiment, systematically researched the influence of the type of cement, sodium silicate modulus and their mixture ratio on the physical and mechanical properties of synchronized grouting slurry. The research shows: i) the strength and elastic modulus of C-S grout with high labeling cement increased with the increase of the modulus and ratio of sodium silicate; the strength and elastic modulus of C-S grout with low labeling cement have a“best value”with the ratio of sodium silicate; ii) C-S grout with low labeling cement and 2.8 sodium silicate has high permeability and long curing time, is harmful on filling the shield void, decrease the soil loss and decrease the grouting amount. The result is instructive to the choose of the cement labeling, modulus of sodium silicate and mixture ratio.
     [2] Considering the influence of the character of shield segment and its producing accuracy, established the calculation method of effective thickness of tunnel structure by contact mechanics. The result showed: segment effective thickness has negative exponent relationship with ultimate machining error; the decrease of structure general rigidity do harm on the soil displacement field and structure deformation.
     [3] The deformation and displacement of tunnel under-construction and in-built could be effectively controlled by reasonable control on the parameter of shield cut water pressure and the synchronized grouting slurry pressure: i) to the neighboring tunnel structure, the soil loss existed a“best value”, when soil loss is above the critical value, settlement of tunnel structure occurred, and the vertical displacement increased gradually; when soil loss is under the critical value, uplift of tunnel structure occurred. Surrounding structure vertical displacement could be effectively controlled by controlling the parameter to make the soil loss at the“best value”. ii) During the construction of downline tunnel, no matter the value of soil loss, the roof settlement of upper existed tunnel is always big than floor settlement, which means the existed tunnel section turned“elliptical change”. iii) During the crossing, upper tunnel segment beared tensile stress in different degree, which could cause leak of seam and local failure.
     [4] Aim at the complex and solution difficulty of coupling of crossing construction and operating subway train vibration during short-distance crossing, seriously considered the system structure character, based on the equivalent principle of mechanism, established a proper coupling dynamic model and segmentation solution method, adopted independently developed vehicle-bridge coupling numerical analysis software and ANSYS, researched dynamic influence of operating subway vibration on the short-distance tunnel construction. Result showed: During the lower tunnel crossing construction when upper tunnel was normal operating, because of the subway train vibration, the tunnel under construction and in-built both had large vertical vibration responding displacement increment. The result is adopted in the South Xizang Road tunnel construction, effectively avoided engineering risk, made sure the engineering safety.
     [5] By means of numerical simulation and field experiment, further systematically deepen the influence of excavation unloading (initial soil loss), pore water pressure, work face cut pressure and synchronized grouting pressure on the disturbed displacement field of shield tunnel excavation. Giving the summary: I) Synchronized grouting pressure (grouting amount) directly affected the soil layered settlement (especially the zone near grouting hole) and radial horizontal displacement, and had little influence on the soil axial horizontal displacement. II) The soil displacement before the working face was mainly affected by cut pressure, when cut pressure was smaller than the earth pressure, the soil before the working face was under active earth pressure, so occurred unloading displacement towards the working face, soil had opposite direction displacement with shield advancing; when cut pressure was equal to the earth pressure, the soil before working face was under earth pressure at rest, so occurred slight“push”displacement; when cut pressure was bigger than the earth pressure, the soil displacement before the working face increased further, direction was the same with the shield advancing. As a whole, soil displacement before working face showed out highly sensitivity and dependency on cut pressure. Further perfected theory results on this field.
     [6] Further clarified unsymmetry of vertical displacement field. That is: no matter the magnitude of synchronized grouting pressure, tunnel floor soil all showed“uplift”, which means tunnel floor had irreversible“uplift”character; and the uplift or settlement of the proof was closely related to the grouting pressure: when synchronized grouting pressure P≤Ps, proof soil showed settlement; when synchronized grouting pressure P≥Ps, proof soil showed“uplift”. The result further fulfilled the disturbed displacement filed of shield construction.
     In summary, this research further deepened and perfected related technology and theory of large-scale slurry shield short-distance crossing operating subway. Part of the achievements was adopted in 2010 Shanghai Expo matching project South Xizang Road tunnel, acquired fine technology economy benefit and social benefit.
引文
[1]徐前卫,尤春勇,李大勇.盾构近距离穿越已建隧道的施工影响分析[J].岩土力学, 2004, 25(增): 95-98.
    [2]白廷辉.江中段近距离盾构施工相互影响及治理[J].上海建设科技, 1999, 04: 20-22.
    [3]仇文革.地下下工程近接施工力学原理与对策的研究[D].成都:西南交通大学, 2002.
    [4]潘晓马.邻近隧道施工对既有隧道的影响[D].成都:西南交通大学, 2002.
    [5]徐俊杰.土压平衡盾构施工引起的地表沉降分析[D].成都:西南交通大学, 2004.
    [6]马涛.隧道施工引起的地层位移及其对邻近地下管线的影响分析[D].长沙:长沙理工大学, 2005.
    [7]吴波.复杂条件下地市地铁隧道施工地表沉降研究[D].成都:西南交通大学, 2003.
    [8]张海波.地铁隧道盾构法施工对周围环境影响的数值模拟[D].南京:河海大学, 2005.
    [9]蔡佳骏.联拱隧道结构稳定性分析及施工监控监测技术研究[D].武汉:武汉理工大学, 2005.
    [10]张兵兵.联拱隧道施工工序动态模拟及施工监控监测技术研究[D].武汉:武汉理工大学, 2005.
    [11]朱忠隆,张庆贺.盾构法施工对地层扰动的试验研究[J].岩土力学, 2000, 21(1): 45-52.
    [12]徐永福,陈建山,傅德明.盾构掘进对周围土体力学性质的影响[J].岩石力学与工程学报, 2003, 22(7): 1174-1179.
    [13]徐永福,孙钧.隧道盾构掘进施工对周围土体的影响[J].地下工程与隧道, 1999, 2: 9-13.
    [14]徐永福,孙钧.外滩观光隧道盾构的扰动分析[J].土木工程学报, 2002. 35(2): 70-43.
    [15]廖少明,刘建航.邻近建筑及设施的保护技术[M].基坑工程手册,北京中国建筑工业出版社, 1997.
    [16]蒋洪胜,侯学渊.盾构掘进对隧道周围土层扰动的理论与实测分析[J].岩石力学与工程学报, 2003, 22(9): 1514-1520.
    [17]徐方京,侯学渊.盾尾间隙引起地层移动的机理及注浆方法[J].地下工程与隧道, 1993, 03: 12-20.
    [18] Negro, A., Queiroz, B.I.P., 2000 Prediction and performance of soft ground tunnels. In: Geotechnical Aspects of Underground Construction in Soft Ground, 1999. Balkema, Tokyo, Japan, pp. 409-418.
    [19] Pant, M., Guenot, A., 1982. Analysis of convergence behind the face of a tunnel. In: Proceedings of the International Symposium. Tunneling’82, pp. 187-204.
    [20] Ghaboussi J, Ranken. R. E., Karshenas M. Analysis of subsidence over soft ground tunnels[J]. Evaluation and Prediction of Subsidence, 1978, 182-196.
    [21] Ito T, Histake M. Surface displacements caused by tunnel driving in anisotuopic viscoelastic ground[A]. 4th International Conference Rock mechanics[C]. 1997, 1: 677-684.
    [22] Ito T, Histake K.隧道掘进引起的三维地面沉陷分析[J].隧道译从, 1985, 9: 46-67.
    [23] Ghaboussi J, Hansmire W H, Parker H W. Finite element simulation of tunneling over subways[J]. Journal of Geotechnical Engineering, 1983, 109(3): 318-334.
    [24]李桂花.盾构法施工引起的地面沉陷的估算方法[J].同济大学学报, 1986, 14(2):253-261.
    [25] Lee, K.M., Rowe, R.K. Finite element modeling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils. PartⅠ.Methods of analysis[J]. Computers and Geotechnics, 1990, 2(2): 87-110.
    [26] Lee, K.M., Rowe, R.K. Finite element modeling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils. PartⅡ.Results[J]. Computers and Geotechnics, 1990, 2(2): 111-138.
    [27] Lee, K.M., Rowe, R.K. An analysis three-dimensional ground movements:The thunder bay tunnel[J]. Canadian Geotechnical Journal, 1991, 28: 25-41.
    [28] Row. R.K., and Lee, K.M. An evaluation of simplified techniques for estimating three dimensional undrained ground movements due to tunnelling in soft soils[J]. Computers and Geotechnics, 1992, 2(2): 87-110.
    [29]孙钧.城市工程活动引起土体沉降对环境公害的预测与控制[A].二十一世纪城乡建设中产关键问题[C].北京: [s.n.], 1996.
    [30]曾晓清.地铁工程双线隧道平行推进的相互作用及施工力学的研究[D].上海:同济大学, 1995.
    [31]阮林旺.软土盾构推进对相邻土层及桩体影响的三维有限元分析[D].上海:同济大学, 1997.
    [32]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报, 2002, 30(4):379-385
    [33]李强,曾德顺.垂直交叉隧道的计算分析[J].现代隧道技术, 2001, 38(3): 29-33
    [34] D.G.Lin, C.T.Tseng, N. Phienwej & S.Suwanwawat. 3-D Deformation analysis of earth pressure balance shield tunnelling in Bangkok subsoil[J]. Journal of the Southeast Asian Geochemical Society, April 2002,13-27.
    [35]季亚平.考虑施工过程的盾构隧道地层位移与土压力研究[D].南京:河海大学, 2004.
    [36] W.Q.Ding. et al. Analysis of shield tunnel, Int. J. Numer. Anal. Meth. Geomech., 2004; 28:57-91.
    [37]于宁,朱合华.盾构法隧道施工数值模拟.岩土力学. 2004,25(2):292-296.
    [38]俞涛.地铁盾构隧道近接施工影响的数值模拟及模型试验研究[D].成都:西南交通大学, 2005.
    [39]江志峰.新建隧道对既有隧道及周围环境影响的数值模拟分析[D].天津:天津大学, 2005.
    [42]曾桅栋.深圳地铁重叠隧道信息化施工技术研究[D].成都:西南交通大学, 2003.
    [43]闻毓民.两孔平行盾构隧道近接施工的力学行为分析[D].成都:西南交通大学, 2005.
    [45]周文波,胡珉.隧道叠交施工地层移动的数学模型[J].地下工程与隧道, 2000, 4: 46-50.
    [46]贾蓬,张晋毅.近距离平行隧道开挖的三维有限元数值分析[J].现代隧道技术, 2006, 43(1): 7-11.
    [47] MartosF, Concerming an approximate equation 0f subsidence trough and its time factors,Proc.of the Inter-national strata Control Congress,Leipzig,1958.
    [48] Hansmire, W.H., Parker, H.W., Ghaboussi, J., Casey, E.F. and Lentell, R. L., Effects of shield tunneling over subways, Proc.3rd Rapid Exca. And Tunneling Conf., Shear Strength of Cohesive Soils, Boulder, Colo., 1981, pp:254~276.
    [49] Lo, K.W., Chong, L.K., Leung, C.F., Lee, S.L., Makino, H., and Tajima, H.. Field Instrumentation of a Multiple tunnels Interaction Problem. Tunnels & Tunnelling, 1998, (6).
    [50] Lo, K.W., Lee, S.L., Makino, H., Chang, L.K., Leung, C.F., and Mihara,T., Tunnels in close proximity, Proc. Singapore MRT Conf., Singapore, 1987, pp:275~281
    [51] Terzaghi, H., Liner-plate tunnels on the Chicago subway, Proc. ASCE, 1942, 68, NO.6, pp:862~899
    [52]尹旅超,朱振宏,李玉珍等.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999.
    [53]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版,2004.
    [54] AttewellP.B.,VeatesJ.and Sdby A.R.,Soil movements induced by tunneling and the effects 0n pipelines and structures.Blackie And Son,London,1986.
    [55]徐方京.软土隧道与深开挖引起孔隙水压力与地层移动分析[D].同济大学申请博士学位论文,1991,7.
    [56]刘招伟,王梦恕,董新平.地铁隧道盾构法施工引起的地表沉降分析.岩土力学与工程学报.2003,08.
    [57]孙统立,张庆贺,胡向东,朱继文.双圆盾构隧道施工土体扰动特性及实测分析.岩土力学与工程学报.2005,11. l297~130
    [58]张清波,潘庆林,张志伟.盾构掘进施工引起的交叉隧道沉降监测分析.工程勘察. 2006 ,12.
    [59] Litwiniszyn J, Fundamental principles of the mechanics of stochastic medium, Proc. 0f 3th Conf. Theo.Appl.Mech.,Bongalore,India,1957
    [60]徐永福.盾构推进引起地面变形的分析[J].地下工程与隧道,2000 (1):21~25.
    [61] Muir wood A M. The circular tunnel in elastic ground. Geotechnique. 1975, 25(1):115~127
    [62] Pender M J. Elastic solutions for a deep cireulartunne1. Geotechnique, l979, 29(2):216~222.
    [63]徐永福.隧道盾构施工对周围土体扰动影响的研究[R].同济大学博士后出站报告,2000.
    [64] Verruijt A,Booker J R,Surface settlement due to deformation of a tunnel in an elastic half plane.Geotechnique,1999,46(4):751~756
    [65]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993,(4):24~92.
    [66] N. Loganathan, H. G. Poulos. Pile response caused by tunneling ASCE, Journal of Geotechnique and Geoenviromental Engineering. 1999,125(3).
    [67]魏纲.顶管工程土与结构的性状及理论研究[J].浙江大学博士学位论文,2005,11
    [68] Kim, S.H., Model testing and analysis of interactions between tunnels in clay, D.Phil. Thesis, University of Oxford, 1996
    [69]西南交通大学土木工程学院.深圳地铁一期工程重叠隧道技术研究初步报告. 1999, 05.
    [70]张少夏.隧道工程风险分析方法及工期损失风险研究[D].上海:同济大学, 2002.
    [71]雷升祥,张守同.隧道施工中的风险预测与安全技术[J].铁道建筑技术, 2002, 4: 15-19.
    [72]王慨慷.近距离铁路复线隧道施工的风险分析及对策[J].铁道建筑技术, 2005, 3: 38-43.
    [73]黄宏伟.隧道及地下工程建设中和风险管理研究进展[J].地下空间与工程学报, 2006, 2(1): 13-20.
    [74]周红波,何锡兴,蒋建军,蔡来炳.软土地铁盾构法隧道工程风险识别与应对[J].现代隧道技术, 2006, 43(2): 10-14.
    [75]陈龙,黄宏伟.上中路隧道工程风险管理的实践[J].地下空间与工程学报, 2006, 2 (1): 66-73.
    [76]胡志平,冯紫良,刘学山,陈枫.盾构隧道管片衬砌结构稳定性风险分析[J].同济大学学报, 2004, 32 (5): 596-600.
    [77]上海隧道工程股份有限公司.叠交隧道盾构掘进模拟实验及数据分析.外滩观光隧道施工技术研究鉴定材料之八, 1999.
    [78]上海第二市政工程有限公司,西藏南路施工组织设计,2006
    [79] HKS,inc. Abaqus/CAE User’s Manual: Interactive Version, Hibbitt, Karlsson & Sorensen, USA.
    [80] HKS,inc. ABAQUS/Standard User’s Manual: Interactive Version, Hibbitt, Karlsson & Sorensen, USA.
    [81] Hibbitt, Karlsson & Sorensen, INC.庄茁译. ABAQUS/Explicit有限元软件入门.清华大学大学出版, 1999.
    [82] Hibbitt, Karlsson & Sorensen, INC.庄茁译. ABAQUS/Standard有限元软入门.清华大学大学出版, 1999.
    [83]河海大学,钱家欢,殷宗泽.土工原理与计算[M].(第二版)北京:中国水利水电出版社, 1996.
    [84]杨曼娟. ABAQUS用户材料程序开发及应用[D].武汉:华中科技大学, 2005.
    [85]李昊.基于ABAQUS平台的四渡河悬索桥隧道锚固系统数值仿真[D].武汉:华中科技大学, 2005.
    [86]于开平,周传月,谭惠丰. HyperMesh从入门到精通.科学出版社, 2005
    [87]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [88]刘洪洲.交叠隧道盾构法施工的相互影响及其环境土工问题的数值法研究.同济大学博士后研究工作报告, 2002.01
    [89]孙均等。城市环境土工学。上海,上海科学技术出版社,2005.
    [90]周健,刘文白等.环境岩土工程[M].上海:人民交通出版社, 2004.
    [91] Soliman, E., Duddeck, H., Ahrens, H. Two-and Three-dimensional Analysis of Close Spaced Double-tube Tunnels. Tunneling and Underground Space Technology, 1993, 8(1): 13~18
    [92] Yamaguchi, I., Yamazaki, I., Kiritani, Y. Study of Ground-Tunnel Interactions of Four Shield Tunnels Dricen in Close Proximity, in Relation to Design and Construction of Parallel Shield Tunnels. Tunneling and Underground Space Technology, 1998, 13(3): 289~304.
    [93] Swoboda, G., Abu-Krisha, A. Three-Dimensional numerical modellling for TBM tunneling in consolidated clay, Tunneling and Underground Space Technology, 1999, 14(3): 327~333.
    [94]黄绍铭,高大钊.软土地基与地下工程[M](第二版).北京:中国建筑工业出版社,2004,06.
    [95]郑颖人,沈珠江,龚晓南.广义塑性力学-岩土塑性力学原理[M].北京:中国建筑工业出版社, 2002.11.
    [96]李广信.高等土力学[M].北京:清华大学出版社,2004,07.
    [97]刘招伟,赵运臣.城市地下工程施工监测与信息反馈技术[M].北京:科学出版社, 2006, 05.
    [98]张学言.岩土塑性力学[M].北京:人民交通出版社,1993.
    [99]梁朝霞.三维弹塑性有限元和动态规划技术在地下工程中的应用[M].同济大学硕士论文, 1999
    [100]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991. 329–369.
    [101] Peck R B. Deep excavations and tunnelling in soft ground[A]. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering[C]. Mexico City:Sociedad Mexicana de Mecanica de Suelos,A. C,1969. 225–290.
    [102] Mair R J,Taylor R N. Bored tunnelling in the urban environment[A]. In:Proceedings of 14th International Conference on Soil Mechanics and Foundation Engineering(Vol.4)[C]. Hamburg:Balkema,1997.2 353–2 385.
    [103] Lee K M,Rowe R K,Lo K Y. Subsidence owing to tunnelling. I.estimating the gap parameter[J]. Canadian Geotechnical Journal,1992,29(1):929-940.
    [104] Lee K M,Rowe R K,Lo K Y. Subsidence owing to tunnelling. evaluation of a prediction technique[J]. Canadian Geotechnical Journal,1992,29(1):941-953.
    [105] Komiya K,Soga K,Akagi H,et al. Finite element modelling of excavation and advancementprocess of a shield tunneling machine[J].Soils and Foundations. 1999,39(3):37–52.
    [106] Lin D G,Tseng C T,Phienwej N,et al. 3D deformation analysis of earth pressure balance shield tunnelling in Bangkok subsoil[J]. Journal of the Southeast Asian Geotechnical Society,2002,(1):13–27.
    [107]王敏强,陈胜宏..盾构推进隧道结构三维非线性有限元仿真[J].岩石力学与工程学报,2002,21(2):228-232.
    [108]刘元雪,施建勇等.盾构法施工数值模拟.岩土工程学报.2004,26(2), 239-243.
    [109]张志强,何川,佘才高.南京地铁盾构掘进施工的三维有限元仿真分析.铁道学报.2005,27(1),84-89.
    [110] O. Y. Ezzeldine.Estimation of the surface displacement field due to contruction of Cairo Metro Line EI Khalafawy-St.Therses.Tunneling and underground space technology, 1999,14(3).
    [111]孙钧,周健,龚晓南,张弥.受施工扰动影响土体环境稳定理论与变形控制[J].同济大学学报(自然科学版), 2004,32(10).
    [112]从恩伟,北京地铁盾构法施工引起地表沉降的分析与预测研究,天津大学建筑工程学院硕士学位论文, 2004,12.
    [113]李曙光,方理刚,赵丹.盾构法地铁隧道施工引起的地表变形分析,中国铁道科学, 2006,27(5),87-92.
    [114]于宗飞,盾构掘进过程的三维有限元数值模拟分析,天津大学建筑工程学院学位论文, 2003,12.
    [115]于宝疆,吴江滨,陈雪晶.盾构掘进中地面和地层变形分析与控制方法,工程实践, 2006 (05),62-65
    [116]李园,盾构施工地层变形的三维数值模拟及试验研究,天津大学硕士学位论文, 2004,01.
    [117]张印涛,陶连金,边金.盾构隧道开挖引起地表沉降数值模拟与实测分析,北京工业大学学报, 2006,32(4),332-337.
    [118]姜忻良,崔奕,李园,赵志民.天津地铁盾构施工地层变形实测及动态模拟,岩土力学, 2005,26(10),1612-1616.
    [119] Peck,R.B, Deep excavation and tunneling in soft ground,7th ICSMEF
    [120]尹旅超等编译,II本隧道盾构新技术。华中理工人学出版社,1999
    [121] Fang,Y S, Lin J S, So C S.(1994). An estimation of ground settlement due to shield tunneling by the Peck- Fujita method. Canadian Geotechnique Jounral,Vol31(431-443)
    [122] Atewell,P.B. and Woodman,J.P.(1982). Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering, Vo l.15,No.8(32-41).
    [123] Fang,Y S , Lin,S .J.,an dL in,J. S.19 93.Time and settlement in EPB shield tunneling.Tunnels&Tunnclling,1993- 25 (11): 27 -28
    [124] Moh,Z.C. Ju,D.H. and Hwang,R.N.(1996). Ground movements around tunnels in soft ground. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London, Balkema(725-730).
    [125] Nomoto,T., Mori,H. and Matsumoto,M.(1995). Overview on ground movements during shield tunneling-a survey on Japanese shield tunneling. Underground Construction in Soft Ground(edsK .Fujitaa nd O.K usakabe),Balkema.(367-374)
    [126] Ata,A.A.(1996). Ground settlements induced by slurry shield tunneling in stratified soils. Proc. North American Tunnelling'96,ed.LOzdemir,Vol..1(43-50)
    [127]陶履彬、侯学渊,圆形隧道的应力场和位移场。隧道及地下工程。1986, 7(1): 9-19
    [128] Clough,GW, and Schmidt,B.(1981). Design and performance of excavations and tunnels in soft clay. In Soft C lay Engineering, Elsevier.(569-634).
    [129]久武胜保,软岩隧道的非线性弹塑性状态。隧道译丛,1992 (1): 11-18
    [130] Veruijt,A and Booker, Surface Settlements due to Deformation of a Tunnelin an Elastic half Plane, Geotechnique ,London,England,46(4),pp7 53.756
    [131] Swoboda,G(1979).Finite element analysis of the New Austrian Tunneling M ethods(NATM).Pr oc.3" Int. Conf. on Numerical Methods in Geomechanics, Aachen, V ol,2.(581-586)
    [132] G.Oell, R.F.Stark, GHofsteter软土地层中圆形隧道的分析,隧道译从,1988 (2): 52-58
    [133] Lee,K.M.an dR o.c,R.K.(1989.Efects of undrained strength anisotropy on surface subsidences induced the construction of shallow tunnels. Canadian Geotechnical Jo urnal,26(279-291)
    [134] Gunn,M.J.(1993).The predictive of surface settlement profiles due to tunneling. Predictive Soil Mechanics Proc Wroth Memorial Symposium. Oxford1 992.Thomas T elford.(304-316)
    [135] Simpson,N., Atkinson, J.H. and Jovieic, V(1996). The influence of anisotropy on calculations of ground settlements above tunnels. Proc .Int. Symposium onGeotechnical Aspects of Underground Construction in Soft Ground. London (eds,R.J.Mairan dR.N.Taylor), Balkema.(591-594).
    [136] Addenbrooke,TI., Pots, D.M. and Puzrin, A.M.(1997). The influence of pre-failure soil stiffness on the Numerical analysis of tunnel construction. Geotechnique47,No.3.(693-712)
    [137] Grant,R.J. and Taylor,R.N.(1996). Centrifuge modeling of ground movements due to tunneling in layered ground. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London( eds .R .J.Mairan dR .N.Taylor),B alkema.(507-512).
    [138] Chambon,l.F.and Corte,J.F.(1994).Shallow tunnels in cohesionlesss soil stability of tunnel face. Journal of Geotechnical engineering, ASCE, Vol.120,No.7, July1 994.(1150-1163)
    [139] Imamura,S.,Nommo,T,Mito,K.,Ueno,K.and Kusakabe,0.(1996).Design and development of underground construction equipment in a centrifuge. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London (eds.R.J.MairandR .N.Taylor),Balkema.(531-536)
    [140] Nomoto,T, Mito,K. Imamura,S., Ueno,K. and Kusakabe,O.(1996). Centrifuge modeling o# construction Processes of shield tunnel .Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground , London (eds.R.J.Mairan dR.N.Taylor), Balkema.(567-572)
    [141] Bolton.M.D., Lu,YC. and Shanna,J.S.(1996). Centrifuge models of tunnel construction and compensation grounting. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London( eds .R .J.Mairan dR .N.Taylor),Balkema.(471-478)
    [142]大家将夫、藤田,盾构掘进中地层及房屋建筑的动态.隧道译丛,1991 (1)
    [143] Yi,X., Rowe,R.K. and Lee,K.M.(1993). Observed and calculated pore pressures and deformation. Induced by an earth b a lance shield, Canadian Geotechnical Jo unral,30 :476--490.
    [144]黄宏伟、朱忠隆,盾构法施工中土体扰动的静力触探试验研究。武汉城市建设学院学报,1999 (2):39 -4 3
    [145]张庆贺、朱忠隆等,盾构推进引起土休扰动理论分析及试验研究。岩石力学与工程学报, 1999 (6):69 9- 70 3
    [146]黄宏伟、孙钧,盾构施工对软粘土的扰动机理分析。同济大学学报,2000 (3): 277-281
    [147] Atewell,RB., and Yeates,l., and Selby,A.R.(1986). Soil movements induced by tunneling and their effects on pipe lines and structures. Glasgow
    [148] HKS,inc. Getting Started with ABAQUS/Standard: Interactive Version, Hibbitt, Karlsson & Sorensen, USA.
    [149] Broere 2001, Influence of excess pore pressures on the stability of the tunnelface. In Kyoto, Japan, Modern Tunneling Science and Technology, pp. 629–634.
    [150] Broere, W. 2001. Tunnel Face Stability & New CPT Applications. PhD thesis,Geotechnical Laboratory, Delft University of Technology, Delft.
    [151] Broere,W.&A.F. vanTol 2000. Influence of infiltration and groundwater flow on tunnel face stability. In Kusakabe, O., K. Fujita & Y.Miyazaki (eds), Geotechnical Aspects of Underground Construction in Soft Ground, pp. 339–344. Balkema.
    [152] Anagnostou, G. & K. Kovári 1996. Face stability in slurry and EPB shield tunneling. In Mair, R.J. & R.N. Taylor(eds), Geotechnical Aspects of Underground Construction in Soft Ground, pp. 453–458.
    [153] Bruggeman, G.A. 1999. Analytical Solutions in Geohydrological Problems. Elsevier.
    [154] Broere, W. 1998. Face stability calculations for a slurry shield in heterogeneous soft soils. In Jr., Negro & Ferreira(eds), Tunnels and Metropolises, pp. 215–218.
    [155] Anagnostou, G. & Kovári, K. 1994 The face stability of Slurry-shield-driven Tunnels, Tunelling and Underground Space Technology, Vol9. No.2., pp. 165-174
    [156] Bakker, K.J.; de Boer, F.; Kuiper, J.C. 1999 Extensive independent research programs on 2nd Heinenoord tunnel and Botlek Rail tunnel, Proc. XII ECSMGE, Amsterdam
    [157] Huisman, M. 1998 Static plastering, Theory and experiments, BTLreport 34, WL/Delft Hydraulics J1384 (in Dutch)Jancsecz, S. & Steiner, W. 1994 Face support for a large Mix-shield in heterogeneous ground condtiontions, Tunneling’94, pp. 531-550
    [158] Bezuijen, A.; Talmon, A.M.; Kaalberg, F.J.; Plugge,R. 2004 Field measurements on grout pressures during tunnelling, Soils and Foundations
    [159] Bezuijen, A. 1997 Plastering and mud spurt during drilling (inDutch),BTL,report 27
    [160] Bezuijen, A. & Talmon, A.M. 2004 Grout pressures around a tunnel lining, influence of grout consolidation and loading on lining, Proc. ITA 2004, Singapore
    [161] Broere, W.; van Tol, A.F. 2000 Influence of infiltration and fround water flow on Tunnel stability, Proc. Int. Conf. on geotechnical aspects of underground construction in soft grounds,eds. Kusakabe O.; Fujita, K.; Niyazaki, YCUR/COB 2000
    [162] Bezuijen, A.; Pruiksma, J.P.; van Meerten, H.H. 2001 Pore pressures in front of tunnel, measurements, calculations and consequences for stability of tunnel face,Proc. Int. Symposium. on Modern Tunneling Scienceand Techn., Kyoto
    [163]项兆池,楼如岳,傅德明,最新泥水盾构技术,上海隧道工程股份有限公司科技施工技术研究所科技情报室,2001
    [164]王金昌,陈页开,ABAQUS在土木工程中的应用,浙江大学出版社,2006
    [165]洪硫康,土质学与土力学,人民交通出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700