热—电—力耦合作用下铁基粉末成形过程的建模及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末冶金技术作为一项绿色制造技术,相比于传统的制造工艺,具有低成本、高效率以及近净成形等优势。粉末冶金工艺可以更为精确地控制微观组织、密度选择及合金成分等材料性能。粉末冶金零件的大量需求也进一步促进了粉末冶金技术的推陈出新,涌现出了包括热等静压(HIP)、粉末喷射成形、放电等离子烧结(SPS)等一批先进技术。因此,采用数值模拟的方法来研究粉末成形的过程并改进粉末成形的工艺成为了该领域的一个研究热点。
     本文主要针对金属粉末的压制成形过程以及放电等离子烧结过程进行了数值模拟和有限元建模,对相关实验研究进行了讨论和分析,并验证了模拟中所采用的理论模型的准确性。
     基于粉末材料的椭球形屈服准则和塑性流动理论,建立了增量形式的热弹塑性本构模型;采用返回映射的算法得到了粉末材料在加载、卸载条件下的弹塑性应力、应变关系;采用岩土塑性力学的研究方法,对比了不同屈服曲面在静水应力和Mises等效应力平面上的表现形式;采用Mises等效应力和等效静水应力的比值定性地分析了粉末的剪切屈服对椭球形屈服准则所造成的误差。
     运用商业有限元软件Marc开发了粉末材料本构模型的子程序,适用于复杂三维零件的粉末成形过程的模拟。通过与铁粉材料的压制实验的对比,新模型能够更好地描述铁粉在冷压工艺下的致密化过程。相比于其他模型,新模型可以更精确地计算粉末材料流动应力的变化。由于模型中采用了更为合理的粉末材料参数,所以能够很好地权衡偏应力和静水应力的影响,从而在压制的后期阶段,更准确地反映了载荷与位移的实际变化关系。
     研究并分析了金属粉末材料在放电等离子烧结工艺下出现的孔洞击穿的实验现象,通过试样的微观组织分析得出结论,在SPS烧结过程中可能出现的局部烧结致密化的行为将显著改变后续烧结过程中的电能、应力及温度的分布,从而为研究烧结过程中的不均匀压坯密度分布及电流分布所导致的粉末局部致密化对SPS有限元模拟的重要性提供了有力的证据。
     基于SPS实验现象的研究,提出了用于描述SPS烧结金属粉末材料一步成形工艺的多场耦合方案,实现了温度场、电场、应力场、位移场以及密度场的耦合模拟。该方案由热电耦合求解模块和热机耦合子程序求解模块组成。模拟结果表明,外部压力的提升有助于烧结温度的降低。在较大压力的作用下,压坯和模具间随位移场变化的接触热阻有效地抑制了粉末压坯的内部温差。而且,应力的综合作用极大地促进了压坯边缘位置低温区域的致密化进程。与实验结果的对比验证了SPS多场耦合模型的可靠性。
As an important green manufacturing technique, powder metallurgy (P/M) has many compelling advantages over the traditional manufacturing processes, such as the cost and material saving, the high production rates and the near net-shape capacity. P/M technique can control the material properties of microstructure, density and alloy compositions et al. The large demand of P/M parts promotes the innovation of P/M techniques and gives birth to a lot of advanced technologies including hot isostatic pressing (HIP), spray forming, spark plasma sintering, and so on. The finite element method (FEM) is generally applied to study and optimize the forming process of powders, which has becomed a hot spot in P/M research field.
     The numerical modeling and FEM simulation of the compaction forming and SPS processes are presented in this paper for the metal powder material. The corresponding experimental discussions and analyses are conducted to validate the accuracy of the adopted theoretical model.
     The thermal elastoplastic constitutive model in the incremental form is deduced on the basis of the ellipsoidal yield criterion and the plasticity flowing rule. The relationship of the elastoplastic stress and strain in the complex loading and unloading situations is calculated by the returning mapping algorithm. Different yield models are compared in the plane of hydrostatic stress and Mises equivalent stress. It is considered that the ratio of Mises equivalent stress and hydrostatic stress can be used to analyze the error of the ellipsoidal yield criterion qualitatively which is derived from the shear yielding.
     The user subroutines of the constitutive model are integrated with the commercial FEM software Marc, which is applicable to the complex 3D simulation of the forming processes for powder materials. The simulative results show that this new model gives a better description on the densification behaviors of powders in the cold compression processes. The increase of the flowing stress can also be calculated more precisely. Because of the more rational material parameters, the influences of the deviator of the stress tensor and hydrostatic stress are weighed more veritably. As a result, the present model fits better with the experimental load-displacement curves in the later stage of the compaction process.
     A perforation phenomenon which occurs in the SPS process of the metal powder material is discussed. It can be concluded from the analyses of microstructure that the unexpected local densification behavior could affect the distributions of electrical potential, stress and temperature significantly, which demonstrates the importance of the density gradient to the SPS FEM study.
     Based on the discussions of these SPS experimental phenomena, this paper proposed a simulation scheme of the multi-physical fields, which realizes the coupling of temperature field, electric field, stress field and density field. The simulation shows that the increased outer pressure helps to decrease the sintering temperature and restrain the intrinsic radial temperature difference effectively through affecting the variational compact/die contact thermal resistance within the displacement field. Moreover, the comprehensive actions of stress promote the densification process of the colder regions in the interior of the powder compact. And the reliability of the coupled multi-physical-field FEM model is confirmed by the corresponding experiments.
引文
[1]张华诚.粉末冶金实用工艺学[M].北京:冶金工业出版社, 2004: 1~10.
    [2]大力发展粉末冶金技术,突破汽车零部件行业困局[J].新材料产业, 2008, (02): 64~66.
    [3]韩凤麟.粉末冶金——公认的绿色制造技术[J].现代零部件, 2010, (11): 28~31.
    [4]韩凤麟.亚洲粉末冶金零件产业发展与现状[J].新材料产业, 2008, (04): 25~32.
    [5]路讯.亚洲国家及地区发布粉末冶金制品产量统计及应用领域[J].粉末冶金工业, 2010,(05):1.
    [6] 2010全球粉末冶金汽车零件业正在复苏[J].工具技术, 2010, (03): 75.
    [7]刘爱强.粉末冶金技术发展趋势与粉末冶金工业企业发展现状[J].科技风, 2008, (17): 13.
    [8]陈振华.现代粉末冶金技术(第三分册)[M].北京:化学工业出版社, 2007: 35~37.
    [9]黄培云.粉末冶金原理(第2版)[M].北京:冶金工业出版社, 1997: 174~176.
    [10]汪俊,李从心,阮雪榆.粉末金属压制过程建摸方法(1)──金属塑性力学方法[J].金属成形工艺, 2000, (02).
    [11]长尾.机论[M]. 1978, 44(385):2967.
    [12] Susumu Shima. Journal of the JSTP[J]. 1986, 27 (309): 1125.
    [13] Azami A R, Khoei A R. 3D computational modeling of powder compaction processes using a three-invariant hardening cap plasticity model[J]. Finite Elements in Analysis and Design, 2006, 42(8-9): 792~807.
    [14] Doraivelu S M, Gegel H L, Gunasekera J S, et al. A new yield function for compressible materials[J]. International Journal of Mechanical Sciences, 1984, 26(9-10): 527~535.
    [15] Green R J. A plasticity theory for porous solids[J]. International Journal of Mechanical Sciences, 1972, 14(4): 215~224.
    [16] Shima S, Oyane M. Plasticity theory for porous metals[J]. International Journal of Mechanical Sciences, 1976, 18(6): 285~291.
    [17] Kuhn H A, Downey C L. Deformation characteristics and plasticity theory of sintered powder materials[J]. International Journal of Powder Metallurgy, 1971, 7(1): 15~25.
    [18] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology. 1977, ASME99: 2~15.
    [19] Li Y, Chen P, Xia W, et al. Numerical modeling and simulation of metal powder compaction of balancer[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2006, 16(3): 507~510.
    [20]张学言.岩土塑性力学[M].北京:人民交通出版社. 1993: 4~5.
    [21]龚晓南.土塑性力学[M].杭州:浙江大学出版社. 1990: 7~8.
    [22]汪俊,李从心,阮雪榆.粉末金属压制过程建模方法(2)──广义塑性力学方法和内蕴时间方法[J].金属成形工艺, 2000, (03): 1~3.
    [23] Alan C F. Constitutive modelling of powder compaction and sintering[J]. Progress in Materials Science. 2001, 46: 201~229.
    [24] Gu C, Kim M, Anand L. Constitutive equations for metal powders: application to powder forming processes[J]. International Journal of Plasticity. 2001, 17: 147~209.
    [25] Khoei A R, Lewis R W. Adaptive nite element remeshing in a large deformation analysis of metal powder forming[J]. Int J Numer Meth Engng 1999, 45: 801~820.
    [26] Han L H, Elliott J A, Bentham A C, et al. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders[J]. International Journal of Solids and Structures, 2008, 45(10): 3088~3106.
    [27] Chtourou H, Guillot M, Gakwaya A. Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation[J]. International Journal of Solids and Structures, 2002, 39(4): 1059~1075.
    [28] Khoei A R, Azizi S. Numerical simulation of 3D powder compaction processes using cone-cap plasticity theory[J]. Materials and Design, 2005, 26(2): 137~147.
    [29] Lewis R W, Khoei A R. A plasticity model for metal powder forming processes[J]. Int J Plasticity 2001 17:1659~1692 .
    [30]陈普庆.金属粉末压制过程的力学建模和数值模拟[D].华南理工大学. 2004.
    [31] Khoei A R, Biabanaki S O R, Vafa A R, et al. A new computational algorithm for 3D contact modeling of large plastic deformation in powder forming processes[J]. Computational Materials Science, 2009, 46(1): 203~220.
    [32] Khoei A R, Azami A R, Azizi S. Computational modeling of 3D powder compaction processes[J]. Journal of Materials Processing Technology, 2007, 185(1-3): 166~172.
    [33] Khoei A R, Keshavarz S, Khaloo A R. Modeling of large deformation frictional contact in powder compaction processes[J]. Applied Mathematical Modelling, 2008, 32(5): 775~801.
    [34] Gethin D T, Lewis R W. Powder MetallurgyWorld Congress[M]. Paris (1994). 689~692.
    [35] DorMohammadi H, Khoei A R. A three-invariant cap model with isotropic-kinematic hardening rule and associated plasticity for granular materials[J]. International Journal of Solids and Structures, 2008, 45(2): 631~656.
    [36] Khoei A R, DorMohammadi H, Azami A R. A three-invariant cap plasticity model with kinematic hardening rule for powder materials[J]. Journal of Materials Processing Technology, 2007, 187-188: 680~684.
    [37] Khoei A R. Computational Plasticity in Powder Forming Processes[M]. Elsevier, UK, 2005:312.
    [38] Khoei A R, Azami A R. A single cone-cap plasticity with an isotropic hardening rule for powder materials[J]. Int. J. Mech. Sci., 2005, 47, 94~109.
    [39] Lade P V, Kim M K. Single hardening constitutive model for soil, rock and concrete[J]. Int. J. Solids Struct., 1995, 32, 1963~1978.
    [40] Hedi Chtourou, Michel Guillot, Augustin Gakwaya. Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation[J]. International Journal of Solids and Structures. 2002, 39: 1059~1075.
    [41] Hedi Chtourou, Augustin Gakwaya, Michel Guillot. Modelling of the metal powder compaction process using the cap model. Part II. Numerical implementation and practical applications[J]. International Journal of Solids and Structures. 2002, 39: 1077~1096.
    [42]杜艳迎,史玉升,魏青松, et al.不锈钢粉末冷等静压数值模拟与实验验证[J].材料工程, 2010, (03).
    [43]王德广,吴玉程,焦明华, et al.不同压制工艺对粉末冶金制品性能影响的有限元模拟[J].机械工程学报, 2008, (01).
    [44]汪俊,李从心,阮雪榆.一种改进的描述铁粉粉末压制过程的数学模型[J].机械科学与技术, 2000, (02): 275~277.
    [45]汪俊,李从心,阮雪榆.粉末金属压制过程建模方法(3)──微观力学方法[J].金属成形工艺, 2000, (04): 1~3.
    [46]汪俊,李从心,阮雪榆.粉末金属压制过程数值模拟建模方法[J].机械科学与技术.2000, 19(3): 436~438.
    [47]汪俊,罗思东,李从心.金属粉末零件压制过程有限元模拟的研究[J].中国机械工程.1997, 8(4): 40~43.
    [48] Sinha T, Curtis J S, Hancock B C, et al. A study on the sensitivity of Drucker-Prager Cap model parameters during the decompression phase of powder compaction simulations[J]. Powder Technology, 2010, 198(3): 315~324.
    [49] Cunningham J C, Sinka I C, Zavaliangos A. Analysis of tablet compaction I: characterization of mechanical behaviour of powder and powder/tooling friction[J], Journal of Pharmaceutical Sciences 93 (8) (2004) 2022~2039.
    [50] Doremus P, Toussaint F, Alvain O. Simple tests and standard procedure for the characterisation of green compacted powder[C]. Proceedings of the NATO Advanced ResearchWorkshop on Recent Development in Computer Modeling of Powder Metallurgy Processes, IOS Press, 2001, 29~41.
    [51] Kim H S. Densification modelling for nanocrystalline metallic powders[J]. Journal of Materials Processing Technology, 2003, 140(1-3 SPEC.): 401~406.
    [52] Khoei A R, Lewis R W. Finite element simulation for dynamic large elastoplastic deformation in metal powder forming[J]. Finite elements in analysis and design, 1998, 30(4): 335~352.
    [53]白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术, 2007, (03): 217~223.
    [54]杨俊逸,李小强,郭亮, et al.放电等离子烧结(SPS)技术与新材料研究[J].材料导报, 2006, (06): 94~97.
    [55] Kandukuri S. A FAST winner for fully dense nano powders[J]. Metal Powder Report, 2008, 63(10): 22~27.
    [56]全锋.脉冲电流烧结氮化铝透明陶瓷[D].武汉理工大学, 2004.
    [57]马垚,周张健,姚伟志,等.放电等离子烧结(SPS)制备金属材料研究进展[J].材料导报, 2008, 22(7): 60-63.
    [58]王士维,陈立东,平井敏雄, et al.脉冲电流烧结机理的研究进展[J].无机材料学报, 2001, (06): 1055~1060.
    [59] Ozaki K, Kobayashi K, Nishio T, et al. Sintering Phenomena on Initial Stage in Pulsed Current Sintering[J]. Journal of the Japan Society of Powder and PowderMetallurgy, 2000 , 47 (3): 293.
    [60] Tamari N, Kondoh I, Tanaka T, et al. Effect of Spark Plasma Sintering on Densification, Mechanichal Properties and Micro-structure of Alumina Ceramics[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1999 , 46 (8) : 816.
    [61] Wang S W, et al. Microstructure inhomogeneity in Al2O3 sintered bodies formed during the plasma-activated sintering process[J]. Mater Sci Lett, 1999, 18: 1119.
    [62]叶永权,李元元,李小强,等.场活化烧结中场特点、影响和作用[J].粉末冶金技术, 2009, (06): 461~467
    [63] Tokita M.Mechanism of spark plasma sintering[C].Proceeding of NEDO Intemational Symposium on Functionally Graded Materials.1999,21-22:23~33.
    [64] Kim Y H, Kang J H, Kim J S. Spark Plasma Sintering of oxidized spherical Fe-powder[C]. Proceeding of NEDO International Symposium on Functionally Graded Materials. 1999, 21-22: 123~126.
    [65] Omori M.Sintering,consolidation,reaction and crystal growth by the spark plasma system(SPS)[J].Materials Science and Engineering.2000,A287:183~188.
    [66] Tokita M.Development of Large-size Cermic/Metal Bulk FGM Fabricated by Spark Plasma Sintering [J].Mater.Sci. Forum,1999,308-311:83~88.
    [67]杨俊逸. Cu-10Cr-0.5Al2O3导电复合材料的电场活化烧结行为与性能研究[D].华南理工大学, 2008.
    [68] Yanagisawa O, Kuramoto H, MatsugiK , et all. Observation of particle behavior in copper powder compact during pulsed electric discharge[J]. Materials Science& Engineering A, 2003, 350(1 /2 ): 184~ 189.
    [69] Kim H, Kwahara M, Tokita M[J]. JPN Soc Power Powder Metall, 2000, 47(8): 887.
    [70] Dobedoe R S, Wost G D, Lewis M H.Spark plasma sintering of ceramics[J].Bulletin of the European Ceramic Society.2003,1:19~24.
    [71] Wang C, Cheng L, Zhao Z. FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation[J]. Computational Materials Science, 2010, 49(2): 351~362.
    [72] Mechighel F, Pateyron B, Ganaoui M E, et al. Study of thermo-electrical and mechanical coupling during densification of a polycrystalline material using COMSOL[R]. In Proceedings of COMSOL Conference , Hannover, 2008: 1~7.
    [73] Shen Z J, Johnson M, Zhao Z, Nygen M.Spark plasma sintering ofalumina[J].Journal ofthe American Ceramic Society.2002,85(8):1921~1927.
    [74]刘雪梅.金属和金属/陶瓷粉体的SPS过程模拟及实验研究[D].北京工业大学, 2007.
    [75] Chen W, Anselmi-Tamburini U, Garay J E, et al. Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity[J]. Materials Science and Engineering A, 2005, 394(1-2): 132~138.
    [76] Hwan-tae K, Masakazu K, Masao T. Specimen Temperature and Sinterability of Ni Powder by Spark Plasma Sintering [J]. Soc. Powder Metall. 47 (8) (2000) 887~891.
    [77] Tomino H, Watanabe H, Kondo Y.Electric current path and temperature distribution for spark sintering[J].Joumal of the Japan Society of Powder and Powder Metallurgy.1 997,44(10):974~979.
    [78] Yucheng W, Zhengyi F. Study of temperature field in spark plasma sintering[J]. Materials Science and Engineering B, 2002, 90(1-2): 34~37.
    [79]宋晓艳,刘雪梅,张久兴. SPS过程中导电粉体的显微组织演变规律及机理[J].中国科学E辑, 2005, (05): 459~469.
    [80] Wang X, Casolco S R, Xu G, et al. Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress[J]. Acta Materialia, 2007, 55(10): 3611~3622.
    [81] Zhang J, Zavaliangos A, Kraemer M, et al. Numerical simulation of thermal-electrical phenomena in field activation sintering[C]. Proceedings of a symposium on Modelling the Performance of Engineering Structural Materials III, October 7, 2002 - October 10, 2002. Columbus, OH, United states: Minerals, Metals and Materials Society, 2002: 299~309.
    [82]刘雪梅,宋晓艳,张久兴, et al.放电等离子烧结制备WC-Co硬质合金温度分布的数值模拟[J].中国有色金属学报, 2008, (02): 221~225.
    [83] Vanmeensel K, Laptev A, Vander Biest O, et al. Field assisted sintering of electro-conductive ZrO2-based composites[J]. Journal of the European Ceramic Society, 2007, 27(2-3): 979~985.
    [84] Maizza G, Grasso S, Sakka Y. Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder[J]. Journal of Materials Science, 2009, 44(5): 1219~1236.
    [85] McWilliams B, Zavaliangos A. Multi-phenomena simulation of electric field assistedsintering[J]. Journal of Materials Science, 2008, 43(14): 5031~5035.
    [86] Li Y, Xia W, Zhou Z, et al. Simulation of random mixed packing of different density particles[J]. Chinese Physics B, 2010, 19(2).
    [87]庄茁,岑松.有限元方法第2卷固体力学[M].北京:清华大学出版社.2006. 1: 3~6.
    [88] Zienkiewicz O C, Taylor R L. The Finite Element Method: The Basis, Volume 1[M]. Arnold, London, 5th edition, 2000: 275.
    [89] Simo J C, Taylor R L and Pister K S. Variational and projection methods for the volume constraint in finite deformation plasticity[M]. Comp. Meth. Appl. Mech. Eng., 51, 1985: 177~208.
    [90] Washizu K. Variational Methods in Elasticity and Plasticity[M]. Pergamon Press, New York, 1982: 455.
    [91]夏志皋.塑性力学[M].上海:同济大学出版社.1991.7: 78~82.
    [92]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社.2005.6: 213~214.
    [93]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社.1997.3: 547~555.
    [94]陈火红,杨剑,薛小香,王朋波.新编Marc有限元实例教程[M].北京:机械工业出版社, 2007: 14~15, 255.
    [95]徐秉业.塑性力学[M].北京:高等教育出版社.1988.12: 107~113.
    [96] Pranab Ray et al. [J]. Planseeberichte fur Pulvermetallurgie, 1976, B.24, No. 3, 198~207.
    [97] Fleck N A, Otoyo H, Needleman A. Indentation of porous solids[J]. International Journal of Solids and Structures, 1992, 29(13): 1613~1636.
    [98] Song Y, Li Y, Zhou Z, et al. Improved model and 3D simulation of densification process for iron powder[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2010, 20(8): 1470~1475.
    [99] Huang C, Chen P, Shao M, et al. Numerical simulation in powder compaction of metallurgy component[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2006, 16(6): 1353~1357.
    [100] Zhou Z, Zhao W, Li Y, et al. Numerical simulation of warm compacted synchronous pulley[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2006,16(1): 65~70.
    [101] Wang J C. Young's modulus of porous materials. Part 1. Theoretical Derivation of Modulus-Porosity Correlation[J]. Journal of Materials Science, 1984, 19(3): 801~808.
    [102] Lee S C, Kim K T. A densification model for powder materials under cold isostatic pressing-Effect of adhesion and friction of rubber molds[J]. Materials Science and Engineering A, 2008, 498(1-2): 359~368.
    [103] Kang C S, Lee S C, Kim K T, et al. Densification behavior of iron powder during cold stepped compaction[J]. Materials Science and Engineering A, 2007, 452-453: 359~366.
    [104]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社.1998.12: 50~52.
    [105] Zhdanovich G M, Sidorov V A, Yakubovskii C A. Distribution Of Pressure And Density In Powder Compacts Of Complex Configuration. Solution Of The Pressure And Density Distribution Problem[J]. Soviet powder metallurgy and metal ceramics, 1982, 21(6): 441~446.
    [106] Tewari H N, Sharan R. Analysis Of Iron Powder Preform Forging[C]. In Horizons of Powder Metallurgy - Part II. Proceedings of the 1986 International Powder Metallurgy Conference and Exhibition: The Future of Powder Metallurgy, P/M '86 Verlag Schmid GmbH: Duesseldorf, W Ger, 1986 Vol. 2, p 921~924.
    [107]赵伟斌.金属粉末温压成形的力学建模和数值模拟[D].华南理工大学, 2005.
    [108] Lee D N, Kim H S.Plastic yield behaviour of porous metals[J].Powder Metallurgy 1992, 35(4): 275~279.
    [109] Kim H S, Estrin Y, Gutmanas E Y, et al. A constitutive model for densification of metal compacts: The case of copper[J]. Materials Science and Engineering A, 2001, 307(1-2): 67~73.
    [110] Tszeng T C, Wu W T. Study of the coefficients in yield functions modeling metal powder deformation[J]. Acta Materialia. 1996, 44: 3543.
    [111]汪俊,李从心.金属粉末体压制成形过程模型的研究[J].锻压机械,1996,(2):41.
    [112]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社.20 05.6: 199~201.
    [113] PM Modnet Methods and Measurements Group.Measurement of friction for powder compaction modeling-comparison between laboratories[J].Powder Metallurgy.2000, 43(4): 364~374.
    [114] Corporation M S. Marc 2007r1 Volume A: Theory and User Information[M]. SantaAna: MSC. Software, 2007: 517~520.
    [115]吴成义,张丽英.粉体成形力学原理[M].北京:冶金工业出版社, 2003: 92~95.
    [116] Conway J J, Nettleship I, McAfee R J and Loehlein E S,“Experimental Validation of Ashby 6.0 Model Using Interrupted HIP Cycles of P/M LC Astroloy”[J]. Advance in Powder Metallurgy and Particulate Materials 2002, vol.9, published by MPIF (2002): 1~5.
    [117]赖燕根,叶永权,杨超, et al.脉冲电流烧结羰基铁粉放电击穿现象的研究[Z]. 2011.
    [118] Grasso S, Sakka Y, Maizza G, et al. Pressure effect on the homogeneity of spark plasma-sintered tungsten carbide powder[J]. Journal of the American Ceramic Society, 2009, 92(10): 2418~2421.
    [119] Anselmi-Tamburini U, Garay J E, Munir Z A, et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies[J]. Journal of Materials Research, 2004, 19(11): 3255~3262.
    [120]高一平.粉末冶金新技术——电火花烧结[M].北京:冶金工业出版社. 1992. 12: 51~56.
    [121] Anselmi-Tamburini U, Gennari S, Garay J E, et al. Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions[J]. Materials Science and Engineering A, 2005, 394(1-2): 139~148.
    [122] Yovanovich M M, Culham J R, Teertstra P. Calculating interface resistance [J]. ElectronicsCooling, 1997, (5): 1~9.
    [123] Zavaliangos A, Zhang J, Krammer M, et al. Temperature evolution during field activated sintering[J]. Materials Science and Engineering A, 2004, 379(1-2): 218~228.
    [124] Matsugi K, Kuramoto H, Yanagisawa O, et al. A case study for production of perfectly sintered complex compacts in rapid consolidation by spark sintering[J]. Materials Science and Engineering A, 2003, 354(1-2): 234~242.
    [125] Wang D, Wu Y, Jiao M, et al. Finite element simulation to influence of compacting mode on PM product properties[J]. Fenmo Yejin Jishu/Powder Metallurgy Technology, 2008, 26(2): 88~93.
    [126] Montes J M, Cuevas F G, Cintas J. Electrical resistivity of metal powder aggregates[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38(6): 957~964.
    [127] Kim H S, Lee D N. Power-law creep model for densification of powder compacts[J].Materials Science and Engineering A, 1999, 271(1-2): 424~429.
    [128]郭亮,李元元,李小强, et al.轴向交变磁场对电场活化烧结工艺温度场影响的数值模拟[J].机械工程材料, 2007, (01): 70~73.
    [129]李元元,李小强.多场耦合下的粉末成形固结理论及关键技术[J].华南理工大学学报(自然科学版), 2007, (10): 14~19.
    [130]罗勇,夏伟,李小强, et al.磁场在金属材料制备成形中的应用[J].材料导报, 2005, (08):76~78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700