Cu掺杂对Ti-Si系燃烧合成反应路径及产物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高熔点的金属间化合物在航空、航天和军工等领域倍受青睐。在众多金属间化合物中,由于Ti_5Si_3具有高熔点、低密度和抗高温氧化以及良好的热力学稳定性等诸多优异性能,而被认为是新型高温结构候选材料之一。但是,由于Ti_5Si_3属于复杂六方D88结构,对称性差,导致其具有很大的室温脆性和较低的断裂韧性。因此,如何解决其脆性问题是Ti_5Si_3能否成功应用的最大挑战。
     目前,国际上已开展了针对Ti-Si体系掺杂第三组元来改善Ti_5Si_3综合性能的研究工作,以期解决其本质脆性问题。第一性原理计算研究表明,在Ti_5Si_3中掺杂金属元素Nb、V和Cr可以提高Ti_5Si_3的体模量或降低剪切模量,进而有效改善其韧性。实验研究表明在Ti-Si体系中掺杂Fe、Ni和Al等金属组元可以与Ti或Si形成二元或三元的共晶液相,改变反应路径;反应结束后金属组元还可以作为粘结剂分布在晶界处,有助于提高Ti_5Si_3的综合性能。
     在Ti-Si体系中掺杂金属组元Cu不仅可以降低反应的开始温度,使反应更容易进行,而且还可以细化晶粒,提高致密性,进而有利于改善材料的性能。简而言之,通过掺杂第三金属组元Cu来改善Ti_5Si_3的组织和性能具有重要意义。然而,目前对于Cu-Ti-Si体系燃烧合成(Combustion Synthesis,简称CS)反应路径及其反应产物的研究较少。因此,本文基于绝热燃烧温度计算,研究了Cu含量和反应物粒度对Cu-Ti-Si体系CS反应路径的影响规律以及动力学因素(Cu含量、配比和粒度)对该体系CS反应产物的相组成和组织形貌的影响。此外,还利用(Combustion Synthesis plus Quick Press,简称CS/QP)方法制备了具有较高致密性的原位Ti_5Si_3和TiB2增强Cu基复合材料,并初步探讨了复合材料的微观组织和力学性能。本文的主要研究结果如下:
     (1) Cu-Si和Cu-Ti-Si液相的形成降低了反应的开始温度;Cu-Ti-Si体系的反应路径为:首先Cu和Si通过固固扩散反应形成Cu3Si;随着温度的升高,Cu3Si和Si在共晶温度附近(~802oC)发生反应,形成Cu-Si液相;随后Ti扩散到二元液相中形成Cu-Ti-Si三元液相;随着Ti和Si的不断溶解,大量的Ti_5Si_3通过溶解-反应-析出机制从饱和液相中析出;反应路径归纳为:Cu_((s))+Ti_((s))+Si_((s))→Cu_3Si_((s))+Ti_((s))+Si_((s))→(Cu–Si)(l)+Ti_((s))→(Cu–Ti–Si)_((l))→Cu_((l))+Ti_5Si_3_((s))。
     (2) Ti和Si粒度对反应路径有较大影响:Ti_([15])Si_([15])Cu_([45])(下标为反应物尺寸,μm)体系中,在~795oC时,细Ti粉较容易扩散到Cu-Si液相中形成Cu-Ti-Si三元液相,随后在液相的辅助下,β-Ti和Si在~917oC反应形成了大量的Ti_5Si_3;在Ti[150]Si[15]Cu[45]体系中,粗Ti较难扩散到Cu-Si液相中,阻碍了三元液相的形成,因此使反应推迟到~948oC;对于Ti_([15])Si_([150])Cu_([45]0体系,粗Si粉阻碍了Cu-Si液相的形成;相反,Cu-Ti在~960oC更容易形成共晶液相。Si扩散到Cu-Ti液相中形成Cu-Ti-Si液相,最后Ti_5Si_3从三元饱和液相中析出。
     (3)当Cu含量从10增加至50wt.%,反应产物均为Ti_5Si_3和Cu,但Ti_5Si_3晶粒尺寸从~15减小至~2μm,且形貌从长条状转变为光滑的鹅卵石状;此外,反应产物体积有先膨胀后收缩的趋势,Cu含量为20wt.%时,膨胀率达到最大值14.7%。Cu能够置换Ti原子固溶到Ti_5Si_3中。Cu粉和Ti粉粒度对产物种类、尺寸和形貌影响不大,Ti_5Si_3颗粒均为鹅卵石状或多边形状;而Si粉粒度对Ti_5Si_3形貌影响较大,当Si粉粒度从15增加到150μm,Ti_5Si_3颗粒从表面光滑的多边形状转变为表面有空洞的莲藕状。
     (4)通过CS/QP法能够制备出较高致密性的高体积分数原位Ti_5Si_3、TiB2和Ti_5Si_3+TiB_2颗粒增强Cu基复合材料,孔隙率分别为1.1%、5.0%和1.7%;Ti_5Si_3/Cu、TiB2/Cu和(Ti_5Si_3+TiB_2)/Cu复合材料的最大强度σUCS(屈服强度,σ0.2)分别为1040(686)、1262(1009)和1234(876) MPa,最大断裂应变εf分别为13.6、5.9和5.5%。
Recently, high-melting intermetallic compounds have attracted considerable attentionbecause of their potential applications in many fields including aviation, aerospace, military,and so on. Among various intermetallics, titanium silicide (Ti_5Si_3) has been regarded as oneof the most promising high temperature structure materials on account of its high meltingtemperature, low density and excellent thermal stability. However, due to its complexhexagonal structure (D88), Ti_5Si_3shows very low fracture toughness, which severely limitsits application. Hence, the major challenge in applying Ti_5Si_3is to reduce its brittleness orimprove the fracture toughness.
     More recently, researchers have conducted a sequence of work including doping thethird element in Ti-Si system to improve the mechanical properties of Ti_5Si_3. First-principlescalculation indicates that some alloying elements, such as Nb, V or Cr can increase bulkmodulus or reduce shear modulus of Ti_5Si_3, which could improve the ductility of Ti_5Si_3effectively. Experimental results suggest that doped metal elements, such as Fe, Ni and Alcan form binary or ternary eutectic liquids with Ti or Si in the Ti-Si system, whichparticipates in the reaction process or even changes the reaction pathway. As a result, metalelements serve as bonding agents distributing in boundaries of Ti_5Si_3grains after the reaction,thereby contributing to improving the performance of Ti_5Si_3materials.
     Some studies suggest that Cu doping in Ti-Si system can not only decrease the reactiontemperature of combustion synthesis (CS), promoting the rate of reaction, but also refineTi_5Si_3particulates, improving the density. In short, it is of considerable significance to studythe influence of Cu doping on the improvement of Ti_5Si_3properties. However, less researcheffort has been carried out on the CS reaction pathway and products of Cu-Ti-Si system.Consequently, in the present study, based on the calculation of the adiabatic combustiontemperature, influences of Cu addition as well as Ti and Si particle sizes on the CS reaction pathway of Cu-Ti-Si system are investigated. Besides, particular attention is also paid to theinfluence of dynamic factors, such as Cu content, ratio of reactants and particle sizes, on thephase compositions and microstructures of CS reaction products of Cu-Ti-Si systems. Inaddition, the study also fabricated in situ Ti_5Si_3and TiB2reinforced Cu matrix compositeswith high densification by combustion synthesis plus quick press (CS/QP) process andinvestigated the microstructures and mechanical properties of composites. Results of the
     present studies are as follows:
     (1) The formation of Cu-Si and Cu-Ti-Si liquids is significantly reducing the reactiononset temperatue; the reaction pathway of Cu-Ti-Si system during CS could be described as:the Cu3Si was formed initially via solid state diffusion reaction between Cu and Si particles;with the temperature increasing, Cu-Si eutectic liquid was formed at about802oC betweenCu3Si and Si; and then Ti diffused into the surrounding Cu-Si liquid and led to the formationof Cu-Ti-Si ternary liquid; meanwhile, once the liquid reached a saturation stage with [Ti]and [Si] in the course of continuous dissolution, plenty of Ti_5Si_3could be developed from theliquids by a solution–reaction–precipitation mechanism. The reaction pathway of Cu-Ti-Sisystem is: Cu_((s))+Ti_((s))+Si_((s))→Cu3Si_((s))+Ti_((s))+Si_((s))→(Cu–Si)(l)+Ti_((s))→(Cu–Ti–Si)(l)→Cu(l)+Ti_5Si_3_((s)).
     (2) The Ti and Si particle sizes have a great influence on the reaction pathway inCu-Ti-Si system: for Ti_([15])Si_([15])Cu_([45])system, fine Ti particle easily dissolves into Cu-Sibinary liquid to form Cu-Ti-Si ternary liquid at~795oC, which further participates intothe reaction of β-Ti and Si to yield abundant Ti_5Si_3particulates at~917oC; ForTi[150]Si[15]Cu[45]system, however, it is relatively difficult for coarse Ti particles to reactwith the Cu-Si liquid to form the ternary liquid and, thereby delaying the formation ofTi_5Si_3to~948oC; for Ti_([15])Si_([150])Cu_([45])system, coarse Si particle results in the formationof insufficient Cu-Si liquid initially, while Cu-Ti liquid forms at~960oC instead, whichfurther reacts with coarse Si to form the Cu-Ti-Si liquid, and the Ti_5Si_3are precipitated outof the ternary liquid.
     (3) When Cu content increases over the range of10-50wt.%, products only consistof Ti_5Si_3and Cu phases. while the average size of Ti_5Si_3decreases significantly from~15 to~2μm and the morphology of Ti_5Si_3transforms from the long strip to thecobblestone–like shape with a relatively smooth surface. Besides, the volume of productsexpanded and followed by shrink with the increasing of Cu content and the expansion ratereached the highest value of14.7%when Cu content was20wt.%. The Cu atoms can takeplace of Ti sites in Ti_5Si_3lattices. The sizes of Cu and Ti powders had little influence onthe type, size and morphology of reaction products, and Ti_5Si_3exhibited cobblestone–likeshape or polygon shape. However, the size of Si powder had a great effect on themorphology of Ti_5Si_3. The polygon-like shape of Ti_5Si_3changed from smooth surface topolyporous surface with the size of Si increasing from15to150μm.
     (4) In situ high volume fraction Ti_5Si_3, TiB_2and Ti_5Si_3+TiB_2particulates reinforcedCu matrix composites with high densification could be successfully fabricated by CS/QPmethod. The porosities of the three composites were1.1,5.0and1.7%, respecitively.Average values of σUCS(σ0.2) and εffor Ti_5Si_3, TiB_2and Ti_5Si_3+TiB_2reinforced coppercomposites were1040(686),1262(1009) and1234(876) MPa, as well as13.6,5.9and5.5%, respectively.
引文
[1] WANG H M, CAO F, CAI L X, et al. Microstructure and tribological properties of laser cladTi2Ni3Si/NiTi intermetallic coatings [J]. Acta Materialia,2003,51:6319-6327.
    [2] MESCHEL S V, KLEPPA O J. Standard enthalpies of formation of some3d transition metalsilicides by high temperature direct synthesis calorimetry [J]. Journal of Alloys and Compounds,1998,267:128-135.
    [3] LI J L, JIANG D L, TAN S H. Microstructure and mechanical properties of in situ producedTi5Si3/TiC nanocomposites [J]. Journal of European Ceramic Society,2002,22:551-558.
    [4] YEH C L, HSU C C. An experimental study on Ti5Si3formation by combustion synthesis inself-propagating mode [J]. Journal of Alloys and Compounds,2005,395:53-58.
    [5] DU Y J, RAO K P, CHUNG J C Y, et al. Phase transitions in reactive formation of Ti5Si3/TiAl insitu composites [J]. Metallurgical and Materials Transactions A,2000,3:763-771.
    [6]刘元富,赵海云,张凌云,等.激光熔敷Ti5Si3/NiTi金属间化合物复合材料涂层组织与高温抗氧化性能研究[J].应用激光,2002,22:269-274.
    [7] KISHIDA K, FUJIWARA M, ADACHI H, et al. Plastic deformation of single crystals of Ti5Si3withthe hexagonal D88structure [J]. Acta Materialia,2010,58:846-857.
    [8] TANG Z H, WILLIAMS J J, THOM A J, et al. High temperature oxidation behavior of Ti5Si3-basedintermetallics [J]. Intermetallics,2008,16:1118-1124.
    [9] MITRA R. Microstructure and mechanical behavior of reaction hot pressed Titanium silicide andTitanium silicide-based alloys and composites [J]. Metallurgical and Materials Transactions,1998,A29:1629-1648.
    [10] RILEY D P, OLIVER C P, KISI E H. In-situ neutron diffraction of titanium silicide, Ti5Si3, duringself-propagating high-temperature synthesis [J]. Intermetallics,2006,14:33-38.
    [11]李建林,江东亮,谭寿洪.原位生成TiC/Ti5Si3纳米复合材料的显微结构研究[J].无机材料学报,2000,15:336-340.
    [12] ROSENKRANZ R, FROMMEYER G, SMARSLY W. Microstructures and properties of highmelting point intermetallics Ti5Si3and TiSi2composites [J]. Materials Science and Engineering A,1992, A152:288-294.
    [13] ZHANG X J, ZHAN Y Z, MO H L, et al. Microstructure and compressive properties of situsynthesized Ti-Si alloy composites reinforced with La2O3particles [J]. Materials Science andEngineering A,2009,526:185-189.
    [14] ZHA M, WANG H Y, LI S T, et al. Influence of Al addition on the products of self-propagatinghigh-temperature synthesis of Al-Ti-Si system [J]. Materials Chemistry and Physics,2009,114:709-715.
    [15] GUAN Q L, WANG H Y, LI S L, et al. Effect of Fe addition on self-propagating high-temperaturesynthesis of Ti5Si3in Fe-Ti-Si system [J]. Journal of Alloys and Compounds,2008,456:79-84.
    [16] WANG H Y, Lü S J, ZHA M, et al. Influence of Cu addition on the self-propagatinghigh-temperature synthesis of Ti5Si3in Cu-Ti-Si system [J]. Materials Chemistry and Physics,2008,111:463-468.
    [17] ZHANG L, WU J. Thermal expansion and elastic moduli of the silicide based intermetallic alloysTi5Si3(X) and Nb5Si3[J]. Scripta Materialia,1998,38:307-313.
    [18] SCHNEIBEL J H, RAWN C J. Thermal expansion anisotropy of ternary titanium silicides based onTi5Si3[J]. Acta Materialia,2004,52:3843-3848.
    [19] SCHNEIBEL J H, RAWN C J, PAYZANT E A, et al. Controlling the thermal expansion anisotropyof Mo5Si3and Ti5Si3silicides [J]. Intermetallics,2004,12:845-850.
    [20] WANG H Y, SI W P, LI S L, et al. First-principles study of the structural and elastic properties ofTi5Si3with substitutions Zr, V, Nb and Cr [J]. Journal of Materials Research,2010,25:2317-2324.
    [21] MERZHANOV A G, HOLT J B. Self-propagating high-temperature synthesis: Twenty years ofsearch and findings, Combustion and Plasma Synthesis of High-temperature materials [M].Weinheim and New York: VCH,1990;1.
    [22] MOORE J J, FENG H J. Combustion synthesis of advanced materials: Part I. reaction parameters [J].Progress in Materials Science,1995,39(4-5):243-273.
    [23] MOORE J J, FENG H J. Combustion synthesis of advanced materials: Part II. Classification,application and modeling [J]. Progress in Materials Science,1995,39(4-5):275-316.
    [24] RICE R W. Review: Microstructural aspects of fabricating bodies by self-propagating synthesis [J].Journal of Materials Science,1991,26:6533-6541.
    [25] Cao G, OrrùR. Self-propagating reactions for environmental protection: state of the art and futuredirections [J]. Chem. Eng. J.,2002,87:239-249.
    [26] WANG C, WANG Y, XIA Y, et al. Laser-induced self-propagating high-temperature synthesis ofamorphous-and quasycrystal-containing composite materials [J]. Journal of Non-crystalline Solids,2004,334-335:513-516.
    [27]张衍诚. Al(Cr)2O3-Cr(Mo)金属陶瓷的燃烧合成与性能[D].南京:东南大学,2005.
    [28] GENNARI S, TAMBURINI U A, MAGLIA F, et al. A new approach to the modeling of SHSreactions: Combustion synthesis of transition metal aluminides [J]. Acta Materialia,2006,54:2343-2351.
    [29] TRAMBUKIS J, MUNIR Z A. Effect of partical dispersion on the mechanism of combustionsynthesis of titanlum silicide [J]. Journal of the American Ceramic Society,1990,73:1240-1245.
    [30] SUBRAHMANYAM J, VIJAYAKUMAR M. Review: Self-propagating high-temperature synthesis[J]. Journal of Materials Science,1992,27:6249-6273.
    [31] HARDT A P, PHUNG P V. Propagation of gasless reactions in solid-part I: Analytical study ofexothermic intermetallic reaction rates [J]. Combustion Flame,1973,21(1):77-89.
    [32] LASALVIA J C, KIM D K, LIPSETT R A, et al. Combustion synthesis in the Ti-C-Ni-Mo system:Part I. Micromechanisms [J]. Metallurgical and Materials Transactions A,1995,26A:3001-3010.
    [33] GRUNER S M. Time-resolved x-ray diffraction of biological materials [J]. Science,1987,238:305-312.
    [34] WONG J, LARSON E M, HOLT J B, et al. Time-resolved x-ray diffraction study of solidcombustion reactions [J]. Science,1990,249:1406-1409.
    [35] ROGACHEV A S, MUKAS A S, MERZHANOV A G. Structural transitions in the gaslesscombustion of titanium-carbon and titanium-boron systems [J], Doklady Physics and Chemistry(Engl. Transl.),1987,297(6):1240-1243.
    [36] FAN Q C, CHAI H F, JIN Z H. Microstructural evolution of the titanium particles in the in-situcomposition of TiC-Fe by the combustion synthesis [J]. Journal of Materials Processing Technology,1999,96:102-107.
    [37] CHOI Y, RHEE S W. Reaction of TiO2-Al-C in the combustion synthesis of TiC-Al2O3[J]. Journalof the American Ceramic Society,1995,78(4):986-992.
    [38] HE X D, XU X L, HAN J C, et al. Kinetic parameters of the thermal explosion reaction of Ni-Al-Fesystem [J]. Journal of Materials Science Letter,1999,18:1201-1202.
    [39] KACHELMYER C R, KHOMENKO I O, ROGACHEV A S, et al. A time-resolved x-ray diffractionstudy of Ti5Si3product formation of during combustion synthesis [J], Journal of Materials Research,1997,12:3230-3240.
    [40] ROGACHEV A S, SHUGAEV V A, KHOMENKO I, et al. On the mechanism of structureformation during combustion synthesis of Titanium sillides [J]. Combustion Science and Technology,1995,109:53-70.
    [41] RILEY D P, OLIVER C P, KISI E H.In-situ neutron diffraction of titanium silicide, Ti5Si3, duringself-propagating high-temperature synthesis [J]. Intermetallics,2006,14:33-38.
    [42] YEH C L, CHEN W H, HSU C C. An experimental study on Ti5Si3Formation by combustionsynthesis in self-propagating mode [J]. Journal of Alloys and Compounds,2005,395:53-58.
    [43] YEH C L, WANG H J, CHEN W H. A comparative study on combustion synthesis of Ti-Sicompounds [J]. Journal of Alloys and Compounds,2008,450:200-207.
    [44] TAMBURINI U A, MAGLIA F, SPINOLO G, et al. Self-propgating reacions in the Ti-Si systems[J]. Journal of Materials Synthesis and Processing,2000,8:377-383.
    [45] WANG H Y, ZHA M, Lü S J, et al. Reaction pathway and phase transitions in Al–Ti–Si systemduring differential thermal analysis [J]. Solid State Sciences,2010,12,1347-1351.
    [46]李世龙. Ni掺杂下Ti5Si3的燃烧合成反应路径及电子结构计算[D].长春:吉林大学材料学院,2009.
    [47]关庆铃. Fe添加对Ti-Si系燃烧合成反应路径及行为的影响[D].长春:吉林大学材料学院,2009.
    [48]易丹青,杜若昕,曹昱. M5Si3型硅化物的研究及相关的物理冶金学问题[J].金属学报,2001,37:1121-1130.
    [49] WILLIAMS J J, KRAMER M J, AKINC M, et al. Thermal expansion of Ti5Si3with Ge, B, C, N, orO additions [J]. Journal of Materials Research,2000,15:1780-1785.
    [50] PARK H C, KIM M S, HWANG S K. Consolidation of Ti5Si3-Cu alloy by hot deformation ofelemental powder mixtures [J]. Scripta Materialia,1998,39:1585-1591.
    [51] NAKASHIMA T, UMAKOSHI Y. Anisotropy of electrical resistivity and thermal expansion ofTi5Si3single crystal [J]. Philosophical Magazine Letters,1992,66:317-321.
    [52] SCHNEIBEL J H, RAWN C J. Thermal expansion anisotropy of ternary titanium silicides based onTi5Si3[J]. Acta Materialia,2004,52:3843-3848.
    [53] SHAN D M, BERCZIK D, ANTON D L, et al. Appraisal of other silicides as structural materials [J].Materials Science and Engineering A,1992, A155:45-57.
    [54] EKMAN M, OZOLINS V. Electronic structure and bonding properties of titanium silicides [J].Physical Review B,1998,57:4419-4424.
    [55] ROSENKRANZ R, FROMMEYER G, SMARSLY W. Microstructures and properties of highmelting point intermetallics Ti5Si3and TiSi2composites [J]. Materials Science and Engineering A,1992,152:288-294.
    [56] COUNIHAN P J, CRAWFORD A, THADHANI N N. Influence of dynamic densification onnanostructure formation in Ti5Si3intermetallic alloy and its bulk properties [J]. Materials Science andEngineering A,1999,267:26-35.
    [57] ZHANG L, WU J. Ti5Si3and Ti5Si3-based alloys: Alloying behavior, microstructure and mechanicalproperty evaluation [J]. Acta Materialia,1998,46:3535-3546.
    [58]查敏. Al-Ti-Si体系燃烧合成反应机制及产物[D].长春:吉林大学材料学院,2010.
    [59] VOJTECH D, NOVAK M, NOVAK P, et al. Unidirectional crystallization and high-temperatureoxidation of in situ Ti3(Al,Si)-Ti5(Si, Al)3composite [J]. Materials Science and Engineering A2008,489:1-10.
    [60] ZHA M, WANG H Y, Lü S J, et al. Self-propagating high-temperature synthesis of Ti5Si3/TiAl3intermetallics [J]. ISIJ International,2009,49:453-457.
    [61] PARK K J, HONG J K, HWANG S K. Effect of Cu Addition on Consolidating Ti5Si3by theElemental Powder-Metallurgical Method [J]. Metallurgical and Materials Transactions A,1997,28:223-228.
    [62] MITRA R, RAO V V R. Elevated-temperature oxidation behavior of Titanium silicide and titaniumsilicide-based alloy and composite [J]. Metallurgical and Materials Transactions A,1998,29:1665-1675.
    [63] WANG L J, JIANG W, QIN C, et al. Effect of starting SiC particle size on in situ fabrication ofTi5Si3/TiC composites [J]. Materials Science and Engineering,2006, A425:219-224.
    [64] YEH C L, TENG G S. Use of Si3N4as a reactant in preparation of Ti5Si3composites by solid-stateshs reactions [J]. Journal of Alloys and Compounds,2007,429:126-132.
    [65] GU D D, SHEN Y F, LU Z J. Preparation of TiN-Ti5Si3in-itu composites by selective laser melting[J]. Materials Letters,2009,63:1577-1579.
    [66] KOGA T, MIZUNO M, NAGUMO M. Structural and mechanical properties of fine compositesprepared by Ti-Si3N4solid state reactions [J]. Materials Science and Engineering: A1994,179/180:153-157.
    [67] BYUN J S, SHIM J H, CHO Y W. Effect of stoichiometry on mechanochemical reaction between Tiand Si3N4powders [J]. Scripta Materialia,2004,50:279-283.
    [68] SHON I J, KIM H C, RHO D H, et al. Simultaneous synthesis and densification of Ti5Si3andTi5Si3-20vol%ZrO2composites by field-activated and pressure-assisted combustion [J]. MaterialsScience and Engineering,1999, A269:129-135.
    [69] SHON I J, MUNIR Z A. Electric field-activated combustion synthesis of Ti5Si3-Nb and Ti5Si3-ZrO2composites [J]. Journal of Materials Science,1997,32:5805-5810.
    [70] GUTMANAS E Y, GOTMAN I. Reactive synthesis of ceramic matrix composites under pressure [J].Ceramics International,2000,26:699-707.
    [71] SHU S L, QIU F, JIN S B, et al. Compression properties and work-hardening behavior ofTi2AlC/TiAl composites fabricated by combustion synthesis and hot press consolidation in theTi-Al-Nb-C system [J]. Materials and Design,2011,32:5061-5065.
    [72] BARIN I. Thermochemical Data of Pure Substances [M].3rd ed. Germany: Wiley-VCH VerlagGmbH,1995.
    [73] SUNDARAM V, LOGAN K V, SPEYER R F. Reaction path in the magnesium thermite reaction tosynthesize titanium diboride [J]. Journal of Materials Research,1997,12:2657-2664.
    [74] LIANG Y H, WANG H Y, YANG Y F, et al. Evolution process of the synthesis of TiC in theCu-Ti-C system [J]. Journal of Alloys and Compounds,2008,452:298-303.
    [75] LIANG Y H, WANG H Y, YANG Y F, et al. Reaction Path of the Synthesis of TiC-TiB2inCu-Ti-B4C System [J]. International Journal of Refractory Metals and Hard Materials,2008,26:383-388.
    [76] OLESINSKI R W, ABBASCHIAN G J. The Cu-Si (Copper-Silicon) System [J]. Alloy PhaseDiagrams,1986,7(2)170-178.
    [77] He C, STANGLE G C. A micromechanistic model of the combustion synthesis process: Mechanismof ignition [J]. Journal of Materials Research,1998,13:146-155.
    [78] BISWAS A, ROY S K, GURUMURTHY K R, et al. A study of self-propagating high-temperaturesynthesis of NiAl in thermal explosion mode [J]. Acta Mater.2002,50:757-773.
    [79] LEE S H, LEE J H, LEE Y H, et al. Effect of heating rate on the combustion synthesis ofintermetallics [J]. Mater. Sci. Eng.2000, A281:275-285.
    [80] KHOSHKHOO M S, SHAMANIAN M, SAIDI A, et al. The effect of Mo particle size on SHSsynthesis mechanism of MoSi2[J]. Journal of Alloys and Compounds,2009,475:529-534.
    [81] FAN Q C, CHAI H F, JIN Z H. Effects of particle size of reactant on characteristics of combustionsynthesis of TiC-Fe cermet [J]. Journal of Materials Science,2002,37:2251-2257.
    [82] FAN Q C, CHAI H F, JIN Z H. Dual-solution-precipitation mechanism of combustion synthesis ofTiC-Fe cermet with fine Ti powder [J]. Journal of Materials Science,2001,36:5559-5563.
    [83] BERBECARU A, NAKA M, SCHUSTER J C. On the Liquidus Surface and Reaction Scheme of theTernary System Cu-Si-Ti [J]. Solid State Phenom,2007,127:15-18.
    [84] BOCHVAR N, Du Y, KEVORKOV D, et al. Landolt-Bornstein New Series IV/11A4284-298.
    [85]殷声.燃烧合成[M].北京:冶金工业出版社,2004.
    [86] MOSSINO P. Some aspects in self-propagating high-temperatue synthesis.[J]. CeramicsInternational,2004,30:311-332.
    [87]张楠.六方结构Mg139Al4Sn1和Ti4.5Si3Me0.5广义层错能第一原理计算[D].长春:吉林大学材料学院,2012.
    [88] FATHY A, SHEHATA F, ABDELHAMEED M. Compressive and wear resistance of nanometricalumina reinforced copper matrix composites [J]. Materials and Design.2012,36:100-107.
    [89] ZHANG L, QU X H, DUAN B H, et al. Microstructure and thermo-mechanical properties ofpressureless infiltrated SiCp/Cu composites [J]. Composites Science and Technology,2008,68:2731-2738.
    [90] RATHOD S, MODI O P, PRASAD B K, et al. Cast in situ Cu–TiC composites: Synthesis by SHSroute and characterization [J]. Materials Science and Engineering A,2009,502:91-98.
    [91] RAMBO C R, TRAVITZKY N, ZIMMERMANN K, et al. Synthesis of TiC/Ti-Cu composites bypressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by3D-printing [J].Materials Letters,2005,59:1028-1031.
    [92] GUO M X, SHEN K, WANG M P. Relationship between microstructure, properties and reactionconditions for Cu-TiB2alloys prepared by in situ reaction [J]. Acta Materialia,2009,57:4568-4579.
    [93] ZHANG X H, HONG C Q, HAN J C, et al. Microstructure and mechanical properties of TiB2B/(Cu,Ni) interpenetrating phase composites [J]. Scripta Materialia,2006,55:565-568.
    [94] HORLOCK A J, MCCARTNEY D G, SHIPWAY P H, et al. Thermally sprayed Ni(Cr)-TiB2Bcoatings using powder produced by self-propagating high temperature synthesis: microstructure andabrasive wear behaviour [J]. Materials Science and Engineering A,2002,336:88-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700