生物电信号处理及神经网络的混沌同步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学是一门研究非线性现象共性的基础科学,被誉为20世纪自然科学中的“三大革命之一”.在非线性科学中,对混沌的研究占了极大的份额。小波分析是目前国际上公认的最新时-频分析工具,在时间-频率域上具有良好的局部性,被称为“数学显微镜”.
     本文重点基于混沌理论和小波理论对生物电信号处理和神经网络的混沌同步进行了一系列的探索和研究。全文的主要研究工作包括:
     (1)对儿童癫痫脑电信号的非线性动力学特征进行了深入研究。现有关于脑电信号非线性分析的研究大多是对原始的脑电信号进行分析。癫痫脑电信号中混有较多的干扰信号,这些干扰信号极易与癲痫信号的尖波相混淆,从而导致错误的分析结果.本章首先利用独立分量分析算法将癲痫分量从原始脑电信号中分离出来,从而可以避免由干扰信号所带来的误差,简化分析过程。然后对分离出的癫痫分量的相图、功率谱、关联维数和Lyapunov指数等进行了对比研究,发现脑电独立分量的相图、功率谱、关联维数和Lyapunov指数反映了大脑的总体动态特征,它们可作为一种定量指标衡量大脑的健康状态;并且在正常的生理状态下脑电是混沌的,而在癫痫状态下则趋于有序.
     (2)提出了二维心电信号压缩算法。心电信号波形通常表现出两种类型的相关性:心跳内的相关性和心跳间的相关性。近年来大部分的心电压缩方法并没有很好地利用心跳间的相关性。本章首先将一维心电信号转化为二维序列信号,从而使心电信号的两种相关性得到充分地利用.然后对二维序列进行小波变换,根据小波系数的特点,分别将等级树集合分裂算法和矢量量化算法进行了改进,提出了两种二维心电压缩算法.利用所提算法与已有基于小波变换的压缩算法和其他二维心电信号的压缩算法,对MIT/BIH数据库中的心律不齐数据进行了对比压缩实验。结果表明:所提压缩算法适用于各种波形特征的心电信号,并且在保证压缩质量的前提下,可以获得较大的压缩比。
     (3)基于扩展的观测器理论和非线性控制方法,提出了混沌系统和超混沌系统的相同步、投影同步以及广义同步方案.理论分析和数值仿真实验进一步验证了所提出的各同步方案的可行性和有效性。主要成果包括:①基于状态观测器方法和极点配置技术,设计了一类混沌系统的相同步方法。适当地选取误差系统的特征值,即可实现系统的相同步。所提方案克服了现有基于主动控制的相同步方法的缺陷,易于工程实现,且可通过调整误差系统的特征值进而调整误差的收敛速率.②基于改进的观测器方法,设计了投影同步方法和广义同步方法。所提同步方案不仅适用于自治混沌系统,而且对于超混沌系统同样有效,具有一定的普遍性。所提方案简单易实现,不依赖于系统线性部分的特性,且具有较強的鲁棒性。③基于非线性控制方法,提出了一种超混沌系统的广义同步方案。合理地选取误差增益矩阵即可实现动力系统之间的广义同步。所设计的控制器具有一定的鲁棒性,不仅可以实现相同维数超混沌系统之间的广义同步,而且也适用于不同维数混沌系统之间的广义同步问题。
     (4)研究了神经网络的自适应同步、投影同步和广义同步等问题。首先.根据Lyapunov稳定性理论,为参数不确定的耦合神经网络系统设计了自适应控制器及参数更新规则。所提出的方法可以在不需考虑耦合强度的情况下实现耦合神经元系统的自适应同步。另外,将状态观测器的理论进行了扩展,并利用它提出了神经网络的投影同步和广义同步方案.所提同步方案易于实现,且可通过极点配置技术调整误差系统的特征值,进而调整同步的速度。通过对FitzHugh-Nagumo神经元系统、Winner-Take-All竞争型神经元系统和细胞神经网络等的数值仿真实验进一步验证了所提出的三种同步方案的有效性。
     (5)提出了延迟Cohen-Grossberg神经网络的反同步和投影同步方案。神经元之间有限的信息传输速度导致了延迟的存在。根据Lyapunov稳定性理论,分别为延迟Cohen-Grossberg神经网络设计了反同步控制器和投影同步控制器,并从理论上证明了所提同步方案的可行性.所设计的控制器收敛速度较快,合理的选择控制增益矩阵即可实现同步。数值仿真实验结果表明,所提出的两种同步方案具有一定的普适性和鲁棒性。
     (6)将自适应技术、观测器方法和模糊理论有机结合起来,设计了模糊观测器,提出了混沌系统和超混沌系统的自适应模糊同步方案。模糊控制器设计简单,适用于非线性系统,具有鲁棒性.所提方案可以实现混沌和超混沌系统的自适应同步和自适应投影同步。通过Lyapunov函数方法证明了所提出方案的可行性,并利用数值仿真实验验证了方案的有效性.
     本文得到了国家自然科学基金(60573172)以及辽宁省教育厅高等学校科学技术研究计划(20040081)联合资助。
Nonlinear science is a foundational discipline which concems the common properties of nonlinear phenomena.It is hailed as one of the three main revolutions in natural science in the 20~(th) century.Chaos theory is one important subdiscipline of nonlinear science.Wavelet analysis is the acknowledged time-frequency analysis method in the world.It has well local quality in the time-frequency fields and is named as "mathematics microscope".
     In this dissertation,based on chaos theory and wavelet theory,the electric biological signal processing and chaos synchronization of neural networks are explored and investigated. The main achievements contained in the research are as follows:
     Firstly,the nonlinear dynamics of the epilepsy electroencephalogram(EEG) of children are deeply studied.In most researches on EEG,the original EEG signals are analyzed.There is much interference in the original epilepsy EEG signals.It is easy to mix the interference with the spikes in the epilepsy signals.This will cause wrong analysis results.In this chapter, independent component analysis(ICA) is first adopted to isolate the epileptiform signals from the background EEG signals.Thus,errors caused by interference can be avoided.Then,the phase graph,power spectra,correlation dimension and Lyapunov exponents are studied comparatively.The results show that the phase graph,power spectra,correlation dimension and Lyapunov exponents of the EEG independent components reflect the general dynamical characteristics of brains,which can be taken as a quantitative index to weigh the healthy states of brains.Under normal physiological conditions,the EEG signals are chaotic;while under epilepsy conditions the signals approach regularity.
     Secondly,compression algorithms for two-dimensional(2-D) electrocardiogram(ECG) data are proposed.By studying the ECG waveforms,it can be concluded that the ECG signals generally show two types of correlation,namely the intrabeat correlation and the interbeat correlation.However,most existing ECG compression techniques do not utilize the interbeat correlation.In this chapter,a 1-D ECG data is first sliced and aligned to a 2-D data array,thus the two kinds of correlation of heartbeat signals can be fully utilized.And then 2-D wavelet transform is applied to the constructed 2-D ECG data array.Two compression methods are proposed according to the characteristics of the wavelet coefficients.Set partitioning hierarchical trees(SPIHT) algorithm and vector quantization(VQ) algorithm are modified. Records selected from the MIT/BIH arrhythmia database are tested contrastively using the proposed algorithm,some compression algorithms based on wavelet transform and the other 2-D ECG compression algorithms.The experimental results show that the proposed methods are suitable for various morphologies of ECG data,and that they can achieve higher compression ratios with the characteristic features well preserved.
     Thirdly,based on the modified observer algorithm and the nonlinear control method,the author presents the systematic design procedures for phase synchronization,projective synchronization and generalized synchronization of chaotic and hyperchaotic systems. Theoretical analyses and numerical simulations further demonstrate the feasibilities and effectiveness of the proposed synchronization schemes.Some valuable and important results are as follows:①A systematic approach to realize phase synchronization is proposed based on the state observer method and the pole placement technique.The phase synchronization of chaotic systems can be obtained by suitably selecting the eigenvalues of error systems.The proposed method overcomes the shortcomings of the phase synchronization method based on active control.It is simple and the convergence rate can be flexibly adjusted by choosing the eigenvalues.②New methods for projective synchronization and generalized synchronization are proposed based on the modified state observer method.The proposed schemes are not only suitable to autonomous chaotic systems,but also effective to hyperchaotie systems.The proposed methods are simple and robust.They are able to realize synchronization in a general class of nonlinear systems without the limitation of partial-linearity.③Using the nonlinear control theory,a control law is designed to achieve the generalized synchronization of hyperchaotic systems.If the error gain matrix is suitably chosen,the generalized synchronization between drive system and response system will be obtained.The designed controller not only can realize the generalized synchronization of hyperchaos systems with the same dimensions,but also is suitable to the generalized synchronization problems of systems with different dimensions.
     Fourthly,the problems of adaptive synchronization,projective synchronization and generalized synchronization of neural networks(NNs) are investigated.Based on the Lyapunov stability theory,an adaptive controller and the parameters update law are designed for unknown NNs.With the proposed method,synchronization of the coupled neurons can be achieved,without needing to consider the coupled strength.Furthermore,based on the modified nonlinear state observer algorithm,projective synchronization and generalized synchronization schemes are designed.The proposed schemes can be implemented easily,and the convergence rates of the errors can be adjusted by choosing the eigenvalues of the error systems.Numerical simulations of FitzHugh-Nagumo(FHN) neuron system,Winner-Take-All competitive neuron system and cellular neural network etc are provided to demonstrate the effectiveness of the proposed synchronization schemes.
     Fifthly,anti-synchronization and projective synchronization schemes are designed for delayed Cohen-Grossberg NNs.Limited speed of information transmission between neurons makes delays unavoidable.Based on the Lyapunov stability theory,controllers are designed for delayed Cohen-Grossberg NNs.Theoretical analyses verify the feasibility of the proposed schems.The convergence rate of the controller is very fast.The synchronizations can be achieved by appropriately choosing the controller gain matrices.Numerical simulations demonstrate that the proposed synchronization schemes are general and robust.
     Sixthly,combining the adaptive technique,observer algorithm and fuzzy theory,fuzzy observers are designed and adaptive fuzzy synchronization schemes for chaotic and hyperchaotic systems are proposed.Fuzzy controller is simple to design.It is robust and applicable to nonlinear systems.Adaptive synchronization and projective synchronization can be achieved by using the proposed schemes.Based on the Lyapunov stability theory,the feasibilities of the proposed schemes are proved theoretically.Numercial simulations are provided to verify the effectiveness of the schemes.
     The author would like to appreciate the joint supports to this project by the National Natural Science Foundation of China(60573172) and the Superior University Science Technology Research Project of Liaoning Province(20040081).
引文
[1]J.格莱克.混沌:开创新科学.张淑誉译.上海:上海译文出版社,1990.
    [2]郝柏林.从抛物线谈起--混沌动力学引论.上海:上海科技教育出版社,1993.
    [3]E.N.洛仑兹.混沌的本质.刘式达,刘式适,严中适译.北京:气象出版社,1997.
    [4]郝柏林.分岔、混沌、奇怪吸引子、湍流及其他.物理学进展,1983,3(3):329-416.
    [5]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [6]王兴元.复杂非线性系统中的混沌.北京:电子工业出版社。2003.
    [7]吴祥兴,陈忠.混沌学导论.上海:上海科学技术文献出版社,1996.
    [8]Chen G R,Dong X.From chaos to order:methodologies,perspectives and applications.Singapore:World Scientific,1998.
    [9]Ott E,Grebogi C,Yorke J A.Controlling Chaos.Phys.Rev.Lett.,1990,64(11):1196-1199.
    [10]Pecora L M,Carroll T L.Synchronization in chaotic systems.Phys.Rev.Lett.,1990,64(8):821-827.
    [11]Carroll T L,Pecora L M.Synchronizing chaotic circuits.IEEE Trans.Circ.Sys.,1991,38(4):453-456.
    [12]李水根,吴纪桃.分形与小波.北京:科学出版社,2002.
    [13]程正兴.小波分析算法与应用.西安:西安交通大学出版社。1997.
    [14]杨福生.小波变换的工程分析与应用.北京:科学出版社,2000.
    [15]张贤达.现代信号处理.北京:清华大学出版社,2002.
    [16]林慧琼.小波变换在生物医学信号处理中的应用.国外医学生物医学工程分册,1996,19(6):353-362.
    [17]杨胜波,于春梅.小波分析在生物医学信号/图像处理中的应用.仪器仪表学报,2002,23(3):179-181.
    [18]饶妮妮,李凌.生物医学信号处理.成都:电子科技大学出版社,2005.
    [19]C.格里博格,J.A.约克.混沌对科学和社会的冲击.杨立,刘巨斌译.长沙:湖南科学技术出版社,2001.
    [20]Kolmogorov A N.Preservation of conditionally periodic movements with small change in the Hamilton function.Dokl.Akad.Nauk SSSR,1954,98:527-530.
    [21]Moser J.On invariant curves of area-preserving mapping of an annulus.Nachr.Akad.Wiss.Gottingen Math.Phys.K1,1962,2:1-20.
    [22]Arnold V I.Proof of a theorem of A N Kolmogorov on the invariance of quasi-periodic motions under small perturbation of the Hamiltonian.Russ.Math.Surv.,1963,18:9-36.
    [23]Lorenz E N.Deterministic nonperodic flow.J.Atmos.5ci.,1963,20:130-141.
    [24]Ruelle D,Takens F.On the nature of turbulence.Commun.Math.Phys.,1971,20:167-192.
    [253 Li T Y,Yorke J.Period three implies chaos.Amer.Math.Monthly,1975,82(10):985-992.
    [26]May R M.Simple mathematical models with very complicated dynamics.Nature,1976,261:459-467.
    [27]Feigenbaum M J.Quantitative universality for a class of nonlinear transformations.Star.Phys.,1978,19(1):25-52.
    [28]Mandelbrot B B.The fractal geometry of nature.San Francisco:Freeman,1982.
    [29]Takens F.Detecting strange attractors in turbulence.Lect.Notes in Math.,1981,898:366-381.
    [30]Grassberger P,Procaccia I.Characterization of strange attractors.Phys.Rev.Lett.,1983,50(5):346-355.
    [31]Hao B L.Chaos.Singapore:World Scientific,1984.
    [32]关新平,范正平,陈彩莲等.混沌控制及其在保密通信中的应用.北京:国防工业出版社,2002.
    [33]李月,杨宝俊.混沌振子检测引论.北京:电子工业出版社,2004.
    [34]Marple S L.A new autoregressive spectrum analysis algorithm.IEEE Trans.Acoustic,Speech & Sig.Proc.,1980,28(3):441-454.
    [35]Wolf A,Swift J B,Swinney H L et al.Determing Lyapunov exponents from a time series.Physica,1985,16D:285-298.
    [36]王光瑞,于熙龄,陈式刚.混沌的控制、同步于利用.北京:国防工业出版社,2001.
    [37]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步.北京:科学出版社,2003.
    [38]张钟俊,王翼.控制理论在科学管理中的应用.长沙:湖南科学技术出版社,1984.
    [39]Shinbort T,Grebogi C,Ott E et al.Using small perturbations to control chaos.Nautre,1993,363(3):411-417.
    [40]Wu C W,Chua L O.A simple way to synchronize chaotic systems with applications to secure communication systems.Int.J.Bifur.Chaos,1993,3(6):1619-1627.
    [41]Sundar S,Minai A A.Synchronization of randomly multiplexed chaotic systems with applications to communication.Phys.Rev.Lett.,2000,85(25):5456-5459.
    [42]Feki M.An adaptive chaos synchronization scheme applied to secure communication.Chaos,Solitons & Fractals,2003,18(1):141-148.
    [43]Ditto W L,Pecora L M.Mastering chaos.Sci.Amer.,1993,269(2):62-70.
    [44]Poon L,Grebogi C.Controlling complexity.Phys.Rev.Lett.,1995,75(22):4023-4026.
    [45]Peng B,Petrov V,Showalter K.Controlling chemical chaos.J.Phys.Chem.,1991,95(13):4957-4959.
    [46]Kocarev L,Parlitz U.General approach for chaotic synchronization with applications to communication.Phys.Rev.Lett.,1995,74(25):5028-5031.
    [47]Andrievsky B.Adaptive synchronization methods for signal transmission on chaotic carriers.Math.& Compu.in Simul.,2002,58(4):285-293.
    [48]Chen S.H.Hu J.Wang C P et al.Adaptive synchronization of uncertain R(o|¨)ssler hyperchaotic system based on parameter identification.Phys.Lett.A,2004,321(1):50-55.
    [49]Yassen M T.Chaos synchronization between two different chaotic systems using active control.Chaos Solitons & Fractals,2005,23(1):131-140.
    [50]Abarbanel H D,Rulkov N F,Sushchik M M.Generalized synchronization of chaos:the auxiliary system approach.Phys.Rev.E,1996,53(5):4528-4535.
    [51]Yang T,Chua L O.Generalized synchronization of chaos via linear transformations.Int.J.Bifur.Chaos,1999,9(1):215-219.
    [52]Wang Y W,Guan Z H.Generalized synchronization of continuous chaotic system.Chaos,Solitons & Fractals,2006,27(1):97-101.
    [53]Rosenblum M G,Pikovsky A S,Kurths J.Phase synchronization of chaotic oscillators.Phys.Rev.Lett.,1996,76(11):1804-1807.
    [54]Ho M C,Hung Y C,Chou C H.Phase and anti-phase synchronization of two chaotic systems by using active control.Phys.Lett.A,2002,296(1):43-48.
    [55]Mainieri R,Rehacek J.Projective synchronization in three-dimensional chaotic systems.Phys.Rev.Lett.,1999,82(15):3042-3045.
    [56]Shahverdiev E M,Sivaprakasam S,Shore K A.Lag synchronization in time-delayed systems.Phys.Lett.A,2002,292(6):320-324.
    [57]Zhang X H,Liao X F,Li C D.Impulsive control,complete and lag synchronization of unified chaotic system with continuous periodic switch.Chaos Solitons & Fractals,2005,26(3):845-854.
    [58]陈关荣.控制非线性动力系统的混沌现象.控制理论与应用,1997,14(1):1-6.
    [59]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二).物理学进展,1996,16(2):137-196.
    [60]Kapitaniak T.Experimental synchronization of chaos using continuous control.Int.J.Bif.Chaos,1999,4(2):493-488.
    [61]Mallat S.Multifrequency channel decompositions of images and wavelet models.IEEE Trans.Acou.Sig.Speech Proc.,1989,37(12):2091-2110.
    [62]Daubechies I.Orthonormal bases of compactly supported wavelets.Com.Pure & Appl.Math.,1988,410(1):909-996.
    [63]陈武凡,杨丰,江贵平.小波分析及其在图像处理中的应用.北京:科学出版社,2002.
    [64]方锦清.驾驭混沌与发展高新技术.北京:原子能出版社,2002.
    [65]Glass L,Hunter P,McCulloch A.Theory of heart.Berlin:Springer-Verlag,1991.
    [66]刘秉正.生命科学中的混沌.长春:东北师范大学出版社,1999.
    [67]Guevara M R,Glass L,Shrier A.Phase locking period-doubling bifurcation,and irregular dynamics in periodically stimulated cardiac cells.Science,1981,214:1350-1353.
    [68]Garfinkel A,Spano M L,Ditto W L et al.Controlling cardiac chaos.Science,1992,257:1230-1235.
    [69]Glass L,Guevara M R,Belair J et al.Global bifurcations of a periodically forced biological oscillator.Phys.Rev.,1984,A29:1348-1357.
    [70]李光林,吕维雪.基于小波变换的心电信号的分析与处理.浙江大学学报(自然科学版),1998,(1):82-87.
    [71]Unser M,Aldroubi A.A review of wavelets in biomedical applications.Proc.of the IEEE,1996,84(4):626-638.
    [72]Zhang Z,Kawabata H,Liu Z Q.EEG analysis using fast wavelet transform.IEEE Int.Conf.on Sys.,Man & Cyberne.,2000:2959-2964.
    [73]沈鼎烈.临床癫痫学.上海科学技术出版社,1993.
    [74]Faure P,Korn H.Is there chaos in the brain? I.Concepts of nonlinear dynamics and methods of investigation.Life Sciences.2001,324(9):773-793.
    [75]Korn H,Faure P.Is there chaos in the brain? Ⅱ.Experimental evidence and related models.Comptes Rendus Biologies.2003,326(9):787-840.
    [76]Glass L,Mackey M C.From clocks to chaos.Princeton:Princeton University Press,1988.
    [77]Litt B,Echauz J.Prediction of epileptic seizures.Lancet Neurology,2002,1(1):22-30.
    [78]李世绰,周树舜,陈学铭等.中国六城市居民癫痫的流行病学调查.中华神经精神科杂志,1986,19(4):193-195.
    [79]Hauser W A.Recent developments in the epidemiology of epilepsy.Acta Neurol Scand Suppl.,1995,162:17-21.
    [80]Silva F H,Blanes W,Kalitzin S N et al.Dynamical diseases of brain systems:Different routes to epileptic seizures.IEEE Trans Biomed.Eng.,2003,50(5):540-548.
    [81]Alessandro M,Esteller R,Vachtsevanos G et al.Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEGelectrode contacts:A report of four patients.IEEE Trans.Biomed.Eng.,2003,50(5):603-615.
    [82]Pritchard W S,Duke D W.Measuring "chaos" in the brain:a tutorial review of EEG dimension estimation.Brain & Cognition,1995,27(3):353-397.
    [83]Ferri R,Elia M,Musumeci S A et al.Nonlinear EEG analysis in children with epilepsy and electrical status epilepticus during slow-wave sleep(ESES).Clinical Neurophysiology,2001,112(12):2274-2280.
    [84]Ferri R,Parrino L,Smerieri A et al.Nonlinear EEG measures during sleep:effects of the different sleep stages and cyclic alternating pattern.Int.J.Psychophys.,2002,43(3):273-286.
    [85]Lehnertz K,Elger C E.Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain activity.Phys.Rev.Lett.,1998,80(22):5019-5022.
    [86]Lehnertz K.Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy—an overview.Int.J.Psychophys.,1999,34(1):45-52.
    [87]Stam C J,Nicolai J,Keunen R W.Nonlinear dynamical analysis of periodic lateralized epileptiform discharges.Clin Electroencephalogr,1998,29(2):101-105.
    [88]Silva C,Pimentel I R,Andrade A et al.Correlation dimension maps of EEG from epileptic absences.Brain Topography,1999,11(3):201-209.
    [89]Sarbadhikari S N,Chakrabarty K.Chaos in the brain:a short review alluding to epilepsy,depression,exercise and lateralization.Med.Eng.& Phys.,2001,23(7):445-455.
    [90]Elger C E,Windman G,Andrzejak R et al.Nonlinear EEG analysis and its potential role in epileptology.Epilepsia,2001,41(3):34-38.
    [91]Bell A J,Sejnowski T J.An information maximization approach to blind separation and blind deconvolution.Neural Comp.,1995,7(6):1129-1159.
    [92]Lee T W.Independent component analysis using an extended informax algorithm for mixed Subgaussian and Supergaussian sources.Neural Comp.,1999,11(2):409-433.
    [93]Lee T W.Blind source separation of more sources than mixtures using overcomplete representations.IEEE Sig.Proc.Lett.,1999,6(4):87-90.
    [94]Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis.IEEE Trans.Neural Networks,1999,10(3):626-634.
    [95]Hyvarinen A,Oja E.Independent component analysis:algorithms and applications.IEEE Trans.Neural Networks,2000,13(4-5):411-430.
    [96]Comon P.Independent component analysis,anew concept? Sig.Proc.,1994,36(3):287-314.
    [97]周卫东,贾磊,李英远.独立分量分析的研究和脑电中心电干扰的消除.中国生物医学工程学报,2002,21(3):226-230.
    [98]Kobayashi K,James C J,Nakahori T.Isolation of epileptiform discharges from unaveraged EEG by independent component analysis.Clinical Neurophysiology,1999,110(10):1755-1763.
    [99]Packard N H,Crutchfield J P,Farmer J D et al.Geometry from a time series.Phys.Rev.Lett.,1980,45(9):712-716.
    [100]Kantz H,Schrieber T.Dimension estimates and physiological data.Chaos,1995,5(1):143-154.
    [101]Almog Y,Oz O.Correlation dimension estimation:Can this nonlinear description contribute to the characterization of blood pressure control in rats? IEEE Trans.Biomed.Eng.,1999,46(5):535-547.
    [102]Babloyantz A,Destexhe A.Low-dimensional chaos in an instance of epilepsy.Proc.Natl.Ncad.Sci.,1986,83(10):3513-3517.
    [103]Brandstater A,Swinney H L.Strange attractors in weakly turbulent Couette-Taylor flow.Phys.Rev.A,1987,35(5):2207-2220.
    [104]Shaw R.Strange attractors,chaotic behavior,and information flow.Z Naturf,1981,36A:80-112.
    [105]Jalaleddine S,Hutchens C,Strattan R et al.ECG data compression techniques—A unified approach.IEEE Trans.Biomed.Eng.,1990,37(4):329-343.
    [106]Cox J R,Nolle F M,Fozzard H A et al.AZTEC,a preprocessing program for real-time ECG rhythm analysis.IEEE Trans.Biomed.Eng.,1968,15 (2):128-129.
    [107]Hamilton P S,Tompkins W J.Compression of the ambulatory ECG by average beat subtraction and residual differencing.IEEE Trans.Biomed.Eng.,1991,38(3):253-259.
    [108]Nave G,Cohen A.ECG compression using long-term prediction.IEEE Trans.Biomed.Eng.,1993,40(9):877-885.
    [109]Philips W.ECG data compression with time-warped polynomials.IEEE Trans.Biomed.Eng.,1995,42(11):1095-1101.
    [110]Ahmed N,Milne P J,Harris S G.Electrocardiographic data compression via orthogonal transform.IEEE Trans.Biomed.Eng.,1975,22(6):484-487.
    [111]Shankara B R,Murthy I S N.ECG data compression using Fourier descriptors.IEEE Trans.Biomed.Eng.,1986,33(4):428-433.
    [112]Hilton M.Wavelet and wavelet packet compression of electrocardiograms.IEEE Trans.Biomed.Eng.,1997,44(5):394-402.
    [113]Ramakrishnan A G,Saha S.ECG coding by wavelet-based linear prediction.IEEE Trans.Biomed.Eng.,1997,44(12):1253-1261.
    [114]Lee H,Buckley K M.ECG data compression using cut and align beats approach and 2-D transform.IEEE Trans.Biomed.Eng.,1999,46(5):556-564.
    [115]Anant K,Dowla F,Rodrigue G.Vector quantization of ECG wavelet coefficients.IEEE Sig.Proc.Lett.,1995,2(7):129-131.
    [116]Bradie B.Wavelet packet-based compression of single lead ECG.IEEE Trans.Biomed.Eng.,1996,43(5):493-501.
    [117]Lu Z T,Kim D Y,Pearlman W A.Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm.IEEE Trans.Biomed.Eng.,2000,47(7):849-856.
    [118]Miaou S G,Yen H L,Lin C L.Wavelet-based ECG compression using dynamic vector quantization with tree codevectors in single codebook.IEEE Trans.Biomed.Eng.,2002,49(7):671-680.
    [119]Said A,Pearlman W A.A new,fast,and efficient image codec based on set partitioning in hierarchical trees.IEEE Trans.Circ.and Sys.for Video Tech.,1996,6(3):243-250.
    [120]孙圣和,陆哲明.矢量量化技术及应用.北京:科学出版社,2002.
    [121]Moody G B,Mark R G.The impact of the MIT/BIH arrhythmia database.IEEE Eng.Med.Biol.Mag.,2001,22 (3):45-50.
    [122]Okada M.A digital filter for the QRS complex detection.IEEE Trans.Biomed.Eng.,1979,26(12):700-703.
    [123]Kadambe S,Murray R,Boudreaux-Bartels G F.Wavelet transform-based QRS complex detector.IEEE Trans.Biomed.Eng.,1999,46(7):838-848.
    [124]Zigel Y,Cohen A,Katz A.The weighted diagnostic distortion (WDD) measure for ECG signal compression.IEEE Trans.Biomed.Eng.,2000,47(11):1422-1430.
    [125]Sweldens W.The lifting scheme:A custom-design construction of biorthogonal wavelets.Appl.Comput.Harmon Anal.,1996,3(2):186-200.
    [126]Calderbank A R,Daubechies I,Sweldens W.Wavelet transforms that map integers to integers.Appl.Comput.Harmon.Anal.,1998,5(4):332-369.
    [127]LindeY,Buzo A,Gray R M.An algorithm for vector quantizer design.IEEE Trans.Commun.,1980,1(1):84-95.
    [128]Bilgin A,Marcellin M W,Altbach M I.Compression of Electrocardiogram signals using JPEG2000.IEEE Trans.Con.Elec.,2003,49(4):833-840.
    [129]Tai S C,Sun C C,Yan W C.A 2-D ECG compression method based on wavelet transform and modified SPIHT.IEEE Trans.Biomed.Eng.,2005,52(6):999-1008.
    [130]Shuai J W,Durand D M.Phase synchronization in two coupled chaotic neurons.Phys.Lett.A,1999,264 (4):289-297.
    [131]Zhang Y,Sun J.Chaotic synchronization and anti-synchronization based on suitable separation.Phys.Lett.A,2004,330(6):442-447.
    [132]Schafer C,Rosenblum M G,Abel H H et al.Synchronization in the human cardiorespiratory system.Phys.Rev.E,1999,60(1):857-870.
    [133]Fitzgerald R.Phase synchronization may reveal communication pathways in brain activity.Phys.Today,1999,52(3):17-19.
    [134]Freund J A,Schimansky-Geier L,Hanggi P.Frequency and phase synchronization in stochastic systems.Chaos,2003,13(1):225-238.
    [135]Paraskevopoulos P N.Modern control engineering.New York:Marcel Dekker,2002.
    [136]Lü J H,Chen G R,ChengDZ.A new chaotic system and beyond:The generalized Lorenz-like system.Int.J.Bifur.Chaos,2004,14(5):1507-1537.
    [137]Yan J P,Li C P.Generalized projective synchronization of a unified chaotic system.Chaos,Solitons & Fractals,2005,26(4):1119-1124.
    [138]Li G H.Generalized projective synchronization of two chaotic systems by using active control.Chaos,Solitons & Fractals,2006,30(1):77-82.
    [139]Rossler O E.An equation for continuous chaos.Phys.Lett.A,1976,57(5):397-398.
    [140]Celikovsky S,Chen G R.On a generalized Lorenz canonical form of chaotic systems.Int.J.Bifur.Chaos,2002,12(8):1789-1812.
    [141]Chen G R,Ueta T.Yet another chaotic attractor.Int.J.Bifur.Chaos,1999,9(7):1465-1466.
    [142]Aziz-Alaoui M A,Chen G R.Asymptotic analysis of a new piecewise-linear chaotic system.Int.J.Bifur.Chaos,2002,12(1):147-157.
    [143]Qi G Y,Chen G R,Du S Z et al.Analysis of a new chaotic system.Phys.A,2005,352(2-4):295-308.
    [144]Gopalsamy K.Stability and oscillations in delay differential equations of population dynamics.Dordrecht:Kluwer Academic Publishers,1992.
    [145]Liu C X,Liu L,Liu T et al.A new butterfly-shaped attractor of Lorenz-like system.Chaos,Solitons & Fractals,2006,28(5):1196-1203.
    [146]Li Y X,Tang W K S,Chen G R.Generating hyperchaos via state feedback control.Int.J.Bifur.Chaos,2005,15(10):3367-3375.
    [147]黄远桂,吴声伶.临床脑电图学.西安:陕西科学技术出版社,1984.
    [148]谭郁玲.临床脑电图与脑地形图学.北京:人民卫生出版社,1997.
    [149]吴克俭,沈霞.临床脑电图速成指南.上海:第二军医大学出版社,2002.
    [150]Basar E.Brain function and oscillations Ⅰ:Brain oscillations,principles and approaches.Berlin:Springer,1999.
    [151]Basar E.Brain function and oscillations Ⅱ:Integrative brain function,neurophysiology and cognitive processes.Berlin:Springer,1999.
    [152]Yao Y,Freeman W J.Model of biological pattern recognition with spatially dynamics.Neural Networks,1990,3(2):153-170.
    [153]Haken H.Advanced synergetics:Instability hierarchies of self-organizing systems.Berlin:Springer,1983.
    [154]Kuramoto Y.Chemical oscillations,waves and turbulence.Berlin:Springer,1984.
    [155]Pikovsky A,Rosenblum M,Kurths J.Synchronization:A universal concept in nonlinear science.New York:Cambridge University Press,2001.
    [156]Zhou C S,Kurths J.Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons.Chaos,2003,13(1):401-409.
    [157]Hodgkin A L,Huxley A F.Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.J.Physiol.,1952,116(4):449-472.
    [158]Hodgkin A L,Huxley A F.The components of membrane conductance in the giant axon of Loligo.J.Physiol.,1952,116(4):473-496.
    [159]Hodgkin A L,Huxley A F.The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.J.Physiol.,1952,116(4):497-506.
    [160]Hodgkin A L,Huxley A F.A quantitative description of membrane current and its application to conduction and excitation in never.J.Physiol.,1952,117(4):500-544.
    [161]FitzHugh R.Thresholds and plateaus in the Hodgkin-Huxley nerve equations.J.Gene.Physiol.,1960,43(5):867-896.
    [162]Pikovsky A S,Kurths J.Coherence resonance in a noise-driven excitable system.Phys.Rev.Lett.,1997,78(5):775-778.
    [163]Chen S H,Lü J H.Synchronization of an uncertain unified chaotic system via adaptive control.Chaos,Solitons & Fractals,2002,14(4):643-647.
    [164]Chen S H,Hu J,Wang C P et al.Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identifyication.Phys.Lett.A,2004,321(1):50-55.
    [165]Huang D B.Synchronization-based estimateion of all parameters of chaotic systems from time series.Phys.Rev.E,2004,69(6):067201.
    [166]Thompson C J,Bardos D C,Yang Y S et al.Nonlinear cable models for cells exposed to electric fields I.General theory and Space-clamped solutions.Chaos,Solitons & Fractals,1999,10(11):1825-1842.
    [167]Bennett M V,Verselis V K.Biophysics of gap junction.Semin.Cell Biol.,1992,3(1):29-47.
    [168]Wang J,Deng B,Tsang K M.Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation.Chaos,Solitons & Fractals,2004,22(2):469-476.
    [169]Freeman W J,Yao Y,Burke G.Central pattern generating and recognizing in olfactory bulb:A correlation learning rule.Neural Networks,1988,1(4):277-288.
    [170]Zou F,Nossek J A.Bifurcation and chaos in cellular neural networks.IEEE Trans.Circ.Syst.1,1993,40(3):166-173.
    [171]Chen G R,Zhou J,Liu Z R.Global synchronization of coupled delayed neural networks with application to chaotic CNN models.Int.J.Bifurcat.Chaos,2004,14(7):2229-2240.
    [172]Hindmarsh J L,Rose R M.A model of the nerve impulse using two first-order differential equations.Nature,1982,296(11):162-164.
    [173]Holden A V,Fan Y S.From simple to simple bursting oscillatory behavior via chaos in the Rose-Hindmarsh model for neural activity.Chaos,Solitons & Fractals,1992,2(3):221-236.
    [174]Holden A V,Fan Y S.From simple to complex oscillatory behavior via intermittent chaos in the Rose-Hindmarsh model for neuronal activity.Chaos,Solitons & Fractals,1992,2(4):349-369.
    [175]Holden A V,Fan Y S.Crisis-induced chaos in Rose-Hindmarsh model for neuronal activity.Chaos,Solitons & Fractals,1992,2(6):583-595.
    [176]Fan Y S,Holden A V.Bifurcations,burstings,chaos and crises in the Rose-Hindmarsh model for neuronal activity.Chaos,Solitons & Fractals,1993,3(4):439-449.
    [177]阮炯,顾凡及,蔡志杰.神经动力学模型方法和应用.北京:科学出版社,2002.
    [178]Hsu C H,Li G.Smale horseshoe of cellular neural networks.Int.J.Bifur.Chaos,2000,10(9):2119-2127.
    [179]Lu H T.Chaotic attractors in delayed neural networks.Phys.Lett.A,2002,298(2-3):109-116.
    [180]Lu H T,He Z Y.Chaotic behavior in first-order autonomous continuous-time system with delay.IEEE Trans.Cir.Syst.,1996,43(5):700-702.
    [181]Steinmetz P N,Roy A,Fitzgerald P J et al.Attention modulates synchronized neuronal firing in primate somatosensory cortex.Nature,2000,404:187-190.
    [182]Fire P,Reynolds J H,Rorie A E et al.Modulation of oscillatory neuronal synchronization by selective visual attention.Science,2001,291:1560-1564.
    [183]Cohen M A,Grossberg S.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks.IEEE Trans.Syst.,Man & Cybern.,1983,13(5):815-826.
    [184]Cao J.Periodic oscillation and exponential stability of delayed CNNs.Phys.Lett.A,2000,270(3-4):157-163.
    [185]Lu H T.Stability criteria for delayed neural networks.Phys.Rev.E,2001,64(5):051901.
    [186]Chen T P.Global exponential stability of delayed Hopfield neural networks.Neural Networks,2001,14(8):977-980.
    [187]Zhang Y,Pheng A H,Prahlad V.Absolute periodicity and absolute stability of delayed neural networks.IEEE Trans.Circ.Syst.,2002,49(2):256-261.
    [188]Huang H,Cao J,Wang J.Global exponential stability and periodic solutions of recurrent neural networks with delays.Phys.Lett.A,2002,298(5-6):393-404.
    [189]Zhou J,Liu Z R,ChenGR.Dynamics of periodic delayed neural networks.Neural Networks,2004,17(1):87-101.
    [190]Gilli M.Strange attractors in delayed cellular neural networks.IEEE Trans.Circ.Syst.Ⅰ,1993,40(11):849-853.
    [191]Tanaka K,Sugeno M.Stability analysis and design of fuzzy control systems.Fuzzy Sets Syst.,1992,45(2):135-166.
    [192]Ying H.General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators.IEEE Trans.Fuzzy Syst.,1998,6(4):582-587.
    [193]Taniguchi T,Tanaka K,Ohtake H et al.Model construction,rule reduction,and robust compensation for generalized form of Takagi-Sugeno fuzzy systems.IEEE Trans.Fuzzy Syst.,2001,9(4):525-538.
    [194]Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control.IEEE Trans.Syst.Man Cybernet.,1985,15(1):116-132.
    [195]LU J H,Chen G R.A new chaotic attractor coined.Int.J.Bifur.Chaos,2002,12(3):659-661.
    [196]Chen A,Lu J N,Ltl J H et al.Generating hyperchaotic Ltl attractor via state feedback control.Phys.A,2006,364(1):103-110.
    [197]Chua L O,Komuro M,Matsumoto T.The double scroll family.IEEE Trans Cir.Syst.,1986,33(11):1073-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700