改进的Fisher鉴别分析两步算法研究及其在人脸识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、图像处理技术的飞速发展,人脸识别(Face Recognition)技术已成为世界和平、国家安全、社会稳定等层面备受关注的研究热点,并逐步形成一门重要的生物特征识别技术。特别是20世纪90年代以来,以主成分分析(PrincipalComponent Analysis, PCA)和线性鉴别分析(Linear Discriminant Analysis, LDA)为代表的子空间方法的进一步研究,有力地促进了人脸识别技术的发展,使得人脸识别技术在防恐、反恐、刑事侦查、机要管理等方面得以广泛应用,并成为刑侦领域不可或缺的重要手段和基准方法。本文通过研究主成分分析与Fisher鉴别分析这两类子空间方法的现有算法与关键问题,寻找两者之间的切合点、研究新算法,旨在提取出不失表征性同时具有较强鉴别力的人脸识别特征。主要工作如下:
     围绕人脸图像样本镜像对称特性在主成分分析中的应用展开研究,鉴于人脸呈现出相对严格的关于正面中心垂直线的镜像对称特性,利用镜像图像作为一类人脸虚拟样本,扩大了训练样本容量,克服了人脸姿态、视角、旋转等因素的影响。在深入分析现有的对称主成分分析算法的基础上,针对核对称主成分分析(Kernel basedSymmetrical PCA, KSPCA)算法存在的核函数选取范围类型局限、缺乏特定样本具体分析能力等问题进行研究与改进,提出了基于插值核方法的广义核对称主成分分析(Generalized KSPCA, GKSPCA)算法。
     研究了Fisher鉴别分析中鉴别准则的推广、鉴别向量集的正交性、统计不相关性等关键问题,针对现有的两步算法存在鉴别向量类型与个数受限、鉴别特征维数受限及统计相关性的问题,基于在表征空间中提取鉴别特征的算法思想,提出了两种改进的核Fisher鉴别分析两步算法,即WKPCA+LDA与GKSPCA+SLDA。其中,WKPCA即白化的核主成分分析(Whitened Kernel based PCA),SLDA即基于Fisher对称零空间鉴别准则的LDA。WKPCA+LDA中,提出了NLUSODVs(Non-LinearUncorrelated Space based Optimal Discriminant Vectors)及其一般化求解方法,实现了在非线性统计不相关约束空间(WKPCA子空间)中求解Fisher最佳鉴别向量集的极值问题,在不失一般性的前提下,尽可能地提取出鉴别力更强且更有利于人脸识别的鉴别特征。GKSPCA+SLDA中,推广应用了两级对称准则(镜像奇偶对称表征准则与Fisher对称零空间鉴别准则),旨在增加鉴别向量的类型与个数,同时,增加鉴别特征的维数,使人脸识别特征的表征力与鉴别力同时实现趋大化。人脸识别实验中,分析了鉴别向量的求解方法及特征选择策略对识别性能的影响,比较了两种改进算法相对于其它传统算法的优势。
     提出了图像增强新算法,结合Fisher鉴别分析改进算法使人脸识别更加准确快捷。
     针对Fisher鉴别分析中的多种双向二维线性算法,包括双向两步算法及双向组合算法,通过人脸识别实验展开讨论,分析了双向投影矩阵的求解方法及特征选择策略对识别性能的影响,同时,从实验中验证了规律性。
Along with the rapid development of computer technology and image processingtechnology, face recognition technology has become a concerned research focus in areassuch as world peace, state security and social stability, and has gradually formed animportant technology of biological characteristics identification. Especially since the1990s, the further research of principal component analysis (PCA) and linear discriminantanalysis (LDA), which are the representative of subspace method, has effectivelypromoted the development of face recognition technology. As a result, face recognitiontechnology is widely used in areas such as prevention of terrorism, anti-terrorism, criminalinvestigation, code management, and is becoming an indispensable important means and abenchmark method in criminal investigation field. This paper focuses on finding therelevant points between the two kinds of subspace methods through the study on theexisting algorithms and key problems of them. It is designed to extract mostdiscriminating facial features without loss of expressive power, and to put forward somenew effective algorithms. The main works of this article are as follows:
     The research spreads around the application of the mirror symmetry characteristic offacial image sample in principal component analysis. Face presents a relatively strictcharacteristic of mirror symmetry about front center vertical line. The use of mirrorimages as a class of virtual face samples can expand the size of training sample set andovercome the impact of factors such as facial pose, visual angle, and rotation changes. Onthe basis of deep analysis of existing symmetrical PCA algorithms, existing problems ofkernel based symmetrical PCA (KSPCA) algorithm are studied and improved, such as thelimitation of selection type of kernel function, the lack of concrete analysis ability aimingat specific samples, and so on. And a generalized kernel based symmetrical PCA(GKSPCA) algorithm is proposed, which is based on the interpolation kernel method.
     Some key problems of Fisher discriminant analysis are studied, including thepromotion of discriminant criterion, and orthogonal and statistically uncorrelated set ofdiscriminant vectors. In view of problems of the existing two-phase algorithms, includingthe limitation of types and numbers of discriminant vector and dimensions of discriminant feature, and statistical correlation of discriminant feature, two new two-phase kernel basedFisher discriminant analysis algorithms are proposed based on the algorithm ideaabout“extraction of discriminant features in the expressive space”, includingWKPCA+LDA and GKSPCA+SLDA. Among them, WKPCA namely is whitened kernelbased PCA, and SLDA namely is LDA based on Fisher symmetrical null spacediscriminant criterion. In WKPCA+LDA algorithm, the non-linear uncorrelated spacebased optimal discriminant vectors (NLUSODVs) and its generalized solution method areput forward. The WKPCA+LDA algorithm can realize that the extremal problem of Fisheroptimal discriminant vectors solved in the non-linear statistically uncorrelated constraintspace (WKPCA subspace). Under the premise without loss of generality, theWKPCA+LDA algorithm can extract more discriminating features as many as possible,which are more conducive to face recognition. In GKSPCA+SLDA algorithm, thetwo-stage symmetrical criterion is promoted and applied, which is aimed to increase thetype and number of discriminant vectors and the dimension of discriminant features, thusto achieve the maximization of expressive and discriminating power of face recognitionfeatures. In face recognition experiments, the influences of solving methods and selectionstrategies of discriminant vectors on recognition performance are analyzed, and comparedwith traditional algorithms, advantages of the two new algorithms are raised.
     New algorithms of image enhancement are put forward, which combined with thenew Fisher discriminant analysis algorithms will make face recognition much moreaccurate and quicker.
     Various two-directional two-dimensional linear algorithms of Fisher discriminantanalysis are discussed through face recognition experiments, including two-directionaltwo-phase algorithms and two-directional combined algorithms. The influences of solvingmethods of two-directional projection matrixs and feature selection strategies onrecognition performance are analyzed. At the same time, the regularities are verified byexperiments.
引文
[1] Phillips P J, Wechsler H, Huang J, et al. The FERET Database and Evaluation Procedure forFace-recognition Algorithms[J]. Image Vision Computing,1998,16(5):295-306.
    [2] Chan H, Beldsoe W W. A Man-Machine Facial Rrecognition System: Some PreliminaryResults[R]. Palo Alto, USA: Panoramic Research Inc.,1965.
    [3] Turk M A, Pentland A P. Face Recognition Using Eigenfaces[C]//Proceedings of IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition,1991(3-6):586-591.
    [4] Turk M A, Pentland A P. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience,1991,3(1):71-86.
    [5] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition UsingClass Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1997,19(7):711-720.
    [6] Li S Z, Jain A K. Handbook of Face Recognition[M]. New York: Springer,2004.
    [7]刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911.
    [8] Rao A, Noushath S. Subspace Methods for Face Recognition[J]. Computer Science Review,2010,4(1):1-17.
    [9] Hong Z Q. Algebraic Feature Extraction of Image for Recognition[J]. Pattern Recognition,1991,24(3):211-219.
    [10]卢晓光,韩萍,吴仁彪.基于二维小波变换和独立分量分析的SAR图像去噪方法[J].电子与信息学报,2008,30(5):1052-1055.
    [11]杨永明,许超.一个基于小波包分解的率失真最优化块分割图像编码算法[J].中国科学,2008,38(8):1204-1219.
    [12]宋立新,高凤娇,郗朝晖.二维EMD分解方法的比较与改进[J].电子与信息学报,2008,30(12):2890-2893.
    [13] Blackburn D M, Bone M, Phillips P J. Facial Recognition Vendor Test2000: EvaluationReport[R]. Dahlgren, USA: Naval Sea Systems Command,2001.
    [14] Phillips P J, Grother P, Micheals R J, et al. Face Recognition Vendor Test2002: Overview andSummary[R]. Gaithersburg, USA: National Institute of Standards and Technology,2003.
    [15] Phillips P J, Flynn P J, Scruggs W T, et al. Overview of the Face Recognition GrandChallenge[C]//Proceedings of IEEE Computer Society Conference on Computer Vision andPattern Recognition,2005,1:947-954.
    [16] Phillips P J, Scruggs W T, O’Toole A J, et al. FRVT2006and ICE2006Large-Scale Results[R].Gaithersburg, USA: National Institute of Standards and Technology,2007.
    [17] Messer K, Kittler J, Sadeghi M, et al. Face Authentication Test on the BANCADatabase[C]//Proceedings of the17th International Confenence on Pattern Recognition,2004,4:523-532.
    [18] Wang L W, Wang X, Zhang X R, et al. The Equivalence of Two-Dimensional PCA to Line-BasedPCA[J]. Pattern Recognition Letters,2005,26(1):57-60.
    [19] Jolliffe I T. Principal Component Analysis[M]. New York: Springer,1986.
    [20] Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterzation ofHuman Faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):103-108.
    [21]吴春国,梁艳春,孙延风,等.关于SVD与PCA等价性的研究[J].计算机学报,2004,27(2):286-288.
    [22]穆向阳,张太镒,周亚同.一种鲁棒的概率主成分分析方法[J].西安交通大学学报,2008,42(10):1217-1220.
    [23] Hsieh P C, Tung P C. A Novel Hybrid Approach Based on Sunb-Pattern Technique and WhitenedPCA for Face Recognition[J]. Pattern Recognition,2009,42(5):978-984.
    [24] Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach toAppearance-Based Face Representation and Recognition[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2004,26(1):131-137.
    [25] Gottumukkal R, Asari V K. An Improved Face Recognition Technique Based on Modular PCAApproach[J]. Pattern Recognition Letters,2004,25(4):429-436.
    [26] Gao Q X. Is Two-Dimensional PCA Equivalent to a Special Case of Modular PCA[J]. PatternRecognition Letters,2007,28(10):1250-1251.
    [27] Zhang D Q, Zhou Z H.(2D)2PCA: Two-Directional Two-Dimensional PCA for Efficient FaceRepresentation and Recognition[J]. Neurocomputing,2005,69(1-3):224-231.
    [28] Yang J, Liu C J. Horizontal and Vertical2DPCA-Based Discriminant Analysis for FaceVerification on a Large-Scale Database[J]. IEEE Transactions on Information Forensics andSecurity,2007,2(4):781-792.
    [29] Ye J P. Generalized Low Rank Approximation of Matrices[J]. Machine Learning,2005,61(1-3):167-191.
    [30] Kong H, Wang L, Teoh E K, et al. Generalized2D Principal Component Analysis for Face ImageRepresentation and Recognition[J]. Neural Networks,2005,18(5-6):585-594.
    [31]刘俊.人脸图像的子空间表示研究[D].南京:南京航空航天大学博士学位论文,2007.
    [32] Zhang D Q, Zhou Z H, Chen S C. Diagonal Principal Component Analysis for FaceRecognition[J]. Pattern Recognition,2006,39(1):140-142.
    [33] Kim Y G, Song Y J, Chang U D, et al. Face Recognition Using a Fusion Method Based onBidirectional2DPCA[J]. Applied Mathematics and Computation,2008,205(2):601-607.
    [34] Karhunen J, Joutsensalo J. Generalization of Principal Component Analysis, OptimizationProblems, and Neural Networks[J]. Neural Networks,1995,8(4):549-562.
    [35] Scholkopf B, Smola A J, Muller K R. Nonlinear Component Analysis as a Kernel EigenvalueProblem[J]. Neural Computation,1998,10(5):1299-1319.
    [36] Kim K I, Jung K, Kim H J. Face Recognition Using Kernel Principal Component Analysis[J].IEEE Signal Processing Letters,2002,9(2):40-42.
    [37] Yu C B, Qing H F, Zhang L. K2DPCA plus2DPCA: An Efficient Approach for Appearance BasedObject Recognition[C]//Proceedings of the3rd International Conference on Bioinformatics andBiomedical Engineering,2009:1-4.
    [38] Sun N, Wang H X, Ji Z H, et al. A Fast Feature Extraction Method for Kernel2DPCA[C]//Proceedings of the7th International Conference on Intelligent Computing,2006:767-774.
    [39] Sun N, Wang H X, Ji Z H, et al. An Efficient Algorithm for Kernel Two-Dimensional PrincipalComponent Analysis[J]. Neural Computing and Applications,2008,17(1):59-64.
    [40] Etemad K, Chellappa R. Face Recognition Using Discriminent Eigenvectors[C]//Proceedings ofIEEE International Conference on Acoustics, Speech, and Signal Processing,1996,4:2148-2151.
    [41] Yang Q, Ding X Q. Symmtrical PCA in Face Recognition[C]//Proceedings of IEEE InternationalConference on Image Processing,2002,2:97-100.
    [42]杨琼,丁晓青.对称主分量分析及其在人脸识别中的应用[J].计算机学报,2003,26(9):1146-1151.
    [43] Ding M Y, Lu C D, Lin Y S, et al. Symmetry Based Two-Dimensional Principal ComponentAnalysis for Face Recognition[C]//Proceedings of the4th International Symposium on NeuralNetworks,2007:1048-1055.
    [44]赵丽红,张西礼,徐心如.基于二维对称主成分分析的人脸识别[J].仪器仪表学报,2008,29(6):1290-1294.
    [45]丁明勇.基于对称的二维主成分分析及其在人脸识别中的应用[J].计算机应用,2008,28(1):122-124.
    [46]杨万扣,任明武,杨静宇.基于对称二维主成分分析的人脸识别[J].模式识别与人工智能,2008,21(3):326-331.
    [47]王丽华,秦婵婵,徐洪波.基于完全二维对称主成分分析的人脸识别[J].计算机工程,2010,36(12):207-208,212.
    [48] Lu C D, Zhang C M, Zhang T Y, et al. Kernel Based Symmetrical Principal Component Analysisfor Face Classfication[J]. Neurocomputing,2007,70(4-6):904-911.
    [49] Fisher R A. The Use of Multiple Measurements in Taxonomic Problems[J]. Annals of Eugenics,1936,7(2):179-188.
    [50] Swets D L, Weng J. Using Discriminant Eigenfeatures for Image Retrieval[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
    [51] Friedman J H. Regularized Discriminant Analysis[J]. Journal of the American StatisticalAssociation,1989,84(405):165-175.
    [52] Li H F, Jiang T, Zhang K. Efficient and Robust Feature Extraction by Maximum MarginCriterion[J]. IEEE Transactions on Neural Networks,2006,17(1):157-165.
    [53]刘永俊,陈才扣,王正群.修正的最大散度差鉴别分析及人脸识别[J].电子与信息学报,2008,30(1):190-193.
    [54] Zhuang X S, Dai D Q. Improved Discriminate Analysis for High-Dimensional Data and ItsApplication to Face Recognition[J]. Pattern Recognition,2007,40(5):1570-1578.
    [55]杨万扣,王建国,任明武.模糊逆Fisher鉴别分析及其在人脸识别中的应用[J].中国图象图形学报,2009,14(1):88-93.
    [56]段旭,张绛丽.一种对称散布矩阵空间的人脸识别方法[J].计算机应用研究,2010,27(4):1557-1559.
    [57] Chen S C, Liu J, Zhou Z H. Making FLDA Application to Face Recognition with One Sample perPerson[J]. Pattern Recognition,2004,37(7):1553-1555.
    [58] Tian Q, Barbero M, Gu Z H, et al. Image Classification by the Foley-Sammon Transform[J].Optical Engineering,1986,25(7):834-840.
    [59] Liu J, Chen S C, Tan X Y, et al. Efficient Pseudo-Inverse Linear Discriminant Analysis and ItsNonlinear Form for Face Recognition[J]. International Journal of Pattern Recognition andArtificial Intelligence,2007,21(8):1265-1278.
    [60] Ye J P, Li Q. A Two-Stage Linear Discriminant Analysis via QR-Decomposition[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2005,27(6):929-941.
    [61] Wang X G, Tang X O. Random Sampling for Subspace Face Recognition[J]. International Journalof Computer Vision,2006,70(1):94-104.
    [62] Zhu Y L, Liu J, Chen S C. Semi-Random Subspace Method for Face Recognition[J]. Image andVision Computing,2009,27(9):1358-1370.
    [63] Li M, Yuan B Z.2D-LDA: A Statistical Linear Discriminant Analysis for Image Matrix[J]. PatternRecognition Letters,2005,26(5):527-532.
    [64] Noushath S, Kumar G H, Shivakumara P.(2D)2LDA: An Efficient Approach for FaceRecognition[J]. Pattern Recognition,2006,39(7):1396-1400.
    [65] Yang J, Zhang D, Yong X, et al. Two-Dimensional Discriminent Transform for FaceRecognition[J]. Pattern Recognition,2005,38(7):1125-1129.
    [66] Yu W X, Wang Z Z, Chen W T. A New Framework to Combine Vertical and HorizonalInformation for Face Recognition[J]. Neurocomputing,2009,72(4-6):1084-1091.
    [67] Zheng W S, Lai J H, Li S Z.1D-LDA vs.2D-LDA: When is Vector-Based Linear DiscriminantAnalysis Better than Matrix-Based[J]. Patter Recognition,2008,41(7):2156-2172.
    [68] Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels[C]//Proceedings ofIEEE Signal Processing Society Workshop on Neural Networks,1999:41-48.
    [69] Baudat G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach[J]. NeuralComputation,2000,12(10):2385-2404.
    [70] Yang M H. Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recogniton Using KernelMethods[C]//Proceedings of the5th IEEE International Conference on Automatic Face andGesture Recogniton,2002:215-220.
    [71] Yang J, Jin Z, Yang J Y, et al. Essence of Kernel Fisher Discriminant: KPCA plus LDA[J]. PatternRecognition,2004,37(10):2097-2100.
    [72] Jutten C, Herault J. Independent Component Analysis versus PCA[C]//Proceedings of EuropeanSignal Processing Conference,1988:287-314.
    [73] Bell A J, Sejnowski T J. An Information-Maximization Approach to Blind Separation and BlindDeconvolution[J]. Neural Computation,1995,7(6):1129-1159.
    [74] Bartlett M S, Lades H M, Sejnowski T J. Independent Component Representation for FaceRecognition[C]//Proceedings of SPIE Symposium on Electronic Imaging: Science and Technology,Conference on Human Vision and Electronic Imaging,1998,3299:528-539.
    [75] Bartlett M S, Movellan J R, Sejnowski T J. Face Recognition by Independent ComponentAnalysis[J]. IEEE Transactions on Neural Networks,2002,13(6):1450-1464.
    [76] Yuen P C, Lai J H. Face Representation Using Independent Component Analysis[J]. PatternRecognition,2002,35(6):1247-1257.
    [77] Baek K, Draper B A, Beveridge J R. PCA vs. ICA: A Comparison on the FERET DataSet[C]//Proceedings of the6th Joint Conference on Information Sciences,2002:824-827.
    [78] Hotelling H. Relations between Two Sets of Variates[J]. Biometrika,1936,28(3-4):321-377.
    [79] Sun T K, Chen S C. Class Label versus Sample Label-Based CCA[J]. Applied Mathematics andComputation,2007,185(1):272-283.
    [80] Sun Q S, Zeng S G. Liu Y, et al. A New Method of Feature Fusion and Its Application in ImageRecognition[J]. Pattern Recognition,2005,38(12):2437-2448.
    [81] Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for NonlinearDimensionality Reduction[J]. Science,2000,290(5500):2319-2323.
    [82] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,290(5500):2323-2326.
    [83] Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding andClustering[J]. Advances in Neural Information Processing System,2001,14:585-591.
    [84] Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via tangentSpace Alignment[J]. SIAM Journal of Scientific Computing,2005,26(1):313-338.
    [85] Simard P Y, Le Cun Y, Denker J S. Efficient Pattern Recognition Using a New TransformationDistance[J]. Advances in Neural Information Processing System,1992,5:50-58.
    [86]杨文雄.幂向量、复合向量数及其函数理论[J].应用数学和力学,1996,17(2):133-138.
    [87]王永茂.矩阵分析[M].北京:机械工业出版社,2005:117-137.
    [88]程云鹏.矩阵论[M].西安:西北工业大学出版社,1999.
    [89]吴涛,贺汉根,贺明科.基于插值的核函数构造[J].计算机学报,2003,26(8):990-996.
    [90]史利民,王仁宏.几种基于散乱数据拟合的局部差值算法[J].数学研究与评论,2006,26(2):283-291.
    [91]徐遵义,姜玉祥,赵亮,等.改进的Shepard算法及其在重力异常插值中的应用[J].武汉大学学报,2010,35(4):477-480.
    [92] Lu C D, Chen Y L, He B B. Kernel Based2D Symmetrical Principal Component Analysis forFace Classification[C]//Proceedings of the7th International Conference on Machine Learning andCybernetics,2008:442-447.
    [93] Fukunnaga K. Introduction to Statistitical Pattern Recognition[M]. New York: Academic Press,1999.
    [94] Yang J, Yang J Y. Why can LDA Be Performed in PCA Transformed Space[J]. PatternRecognition,2003,36(2):563-566.
    [95]徐勇,陆建峰,杨静宇.一种人脸图象自动识别方法及实验[J].系统仿真学报,2004,16(1):14-16.
    [96] Liu C J, Wechsler H. Gabor feature baesd classfication using the enhanced Fisher lineardiscriminant model for face recognition[J]. IEEE Transactions on Image Processing,2002,11(4):467-476.
    [97]宋晓宁,郑宇杰,杨静宇,等.对称零空间准则下的LDA特征抽取算法[J].计算机辅助设计与图形学学报,2009,21(3):400-411.
    [98] Duchene J, Leclercq S. An Optimal Transformation for Discriminant and Principal ComponentAnalysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(6):978-983.
    [99] Sammon J W. An Optimal Discriminant Plane[J]. IEEE Transactions on Computer,1970,19(9):826-829.
    [100] Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors[J]. IEEE Transactions onComputer,1975,24(3):281-289.
    [101] Jin Z, Yang J Y, Hu Z S, et al. Face Recognition Based on the Uncorrelated DiscriminantTransformation[J]. Pattern Recognition,2001,34(7):1405-1416.
    [102] Song F X, Liu S H, Yang J Y. Orthogonalized Fisher Discriminant[J]. Pattern Recognition,2005,38(2):311-313.
    [103] Song F X, Zhang D, Yang J Y. A Novel Dimensionality-reduction Approach for FaceRecognition[J]. Neurocomputing,2006,69(13-15):1683-1687.
    [104]金忠,杨静宇,陆建峰.一种具有统计不相关的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108.
    [105]徐勇,杨强,杨静宇. Foley-Sammon鉴别矢量集理论分析及优化模型[J].计算机科学,2003,30(9):64-66,182.
    [106] Kittler J, Young P C. A New Approach to Feature Selection Based on the Karhunen-LoeveExpansion[J]. Pattern Recognition,1973,5(4):335-352.
    [107] Kittler J. On the Discriminant Vector method of Feature Selection[J]. IEEE Transactions onComputer,1977,26(6):604-606.
    [108]金忠,娄震,杨静宇.一种具有统计不相关性的最佳鉴别平面[J].模式识别与人工智能,1999,12(3):334-339.
    [109] Jin Z, Yang J Y, Tang Z M, et al. A Theorem on the Uncorrelated Optimal Discriminant Vectors[J].Pattern Recognition,2001,34(10):2041-2047.
    [110]陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报.2004,27(7):913-917.
    [111]杨健.线性鉴别分析的理论与算法及其在特征抽取中的应用研究[D].南京:南京理工大学博士学位论文,2002.
    [112] Chen L F, Liao H Y M, Ko M T, et al. A New LDA-Based Face Recognition System Which CanSolve the Small Sample Size Problem[J]. Pattern Recognition,2000,33(10):1713-1726.
    [113] Yu H, Yang J. A Direct LDA Algorithm for High-dimensional Data—with Application to FaceRecognition[J]. Pattern Recognition,2001,34(10):2067-2070.
    [114] Liu W, Wang Y H, Li S Z, et al. Null Space-Based Kernel Fisher Discriminant Analysis for FaceRecognition[C]//Proceedings of IEEE International Conference on Automatic Face and GestureRecognition,2004:369-374.
    [115] Chu D, Thye G S. A New and Fast Implementation for Null Space Based Linear DiscriminantAnalysis[J]. Pattern Recognition,2010,43(4):1373-1379.
    [116]赵武锋,沈海斌,严哓浪.直接LDA在人脸识别中的鉴别力分析[J].浙江大学学报,2010,44(8):1479-1483.
    [117] Yang J, Frangi A F, Yang J Y. A New Kernel Fisher Discriminant Algorithm with Application toFace Recognition[J]. Neurocomputing,2004,56:415-421.
    [118] Mutelo R M, Khor L C, Woo W L, et al. A Novel Fisher Discriminant for Biometrics Recognition:2DPCA plus2DFLD[C]//Proceedings of IEEE International Symposium on Circuits and Systems,2006:4325-4328.
    [119] Sanguansat P, Asdornwised W, Jitapunkul S, et al. Two-Dimensional Linear DiscriminantAnalysis of Principle Component Vectors for Face Recognition[C]//Proceedings of IEEEInternational Conference on Acoustics, Speech and Signal Processing,2006,2:345-348.
    [120] Yu C B, Qing H F, Zhang L.(2D)2FPCA: An Efficient Approach for Appearance Based ObjectRecognition[C]//Proceedings of the3rd International Conference on Bioinformatics andBiomedical Engineering,2009.
    [121] Qi Y F, Zhang J S.(2D)2PCALDA: An Efficient Approach for Face Recognition[J]. AppliedMathematics and Computation,2009,213(1):1-7.
    [122] Huang G H. Fusion (2D)2PCALDA: A New Metgod for Face Recognition[J]. AppliedMathematics and Computation,2010,216(11):3195-3199.
    [123] Chiang J H. Aggregating Membership Values by a Choquet-fuzzy-integral BasedOperator[J].Fuzzy Sets and Systems,2000,114(3):367-375.
    [124] Zhang X X, Jia Y D. Symmetrical Null Space LDA for Face and Ear Recognition[J].Neurocomputing,2007,70(4-6):842-848.
    [125]赵松,潘可,张培仁.对称性在人脸识别中的应用:对称Fisherface[J].中国科学技术大学学报,2009,39(11):1183-1188.
    [126]王伟,张明.基于对称线性鉴别分析算法的人脸识别[J].计算机应用,2009,29(12):3352-3353,3356.
    [127]范燕,郑宇杰,吴小俊,等.对称LDA及其在人脸识别中的应用[J].计算机工程,2010,36(1):201-202,205.
    [128] Zedeh L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-353.
    [129] Pal S K, King R A. Image Enhancement Using Smoothing with Fuzzy Sets[J]. IEEE Transactionson System, Man, and Cybernetics,1981,11(7):494-501.
    [130]陈武凡,鲁贤庆,陈建军,等.彩色图像边界检测的新算法[J].中国科学,1995,25(2):219-225.
    [131]王晖,张基宏.图像边界检测的区域对比度模糊增强算法[J].电子学报,2000,28(1):45-47.
    [132]魏晗,张长江,胡敏,等.基于遗传算法的图像自适应模糊增强[J].光电子·激光,2007,18(12):1482-1485.
    [133]鱼海涛,邵小强.基于一种新模糊增强算子的图像边缘检测算法[J].西安科技大学学报,2008,28(1):194-198.
    [134]李弼程,郭志刚,文超.图像的多层次模糊增强与边缘提取[J].模糊系统与数学,2000,14(4):77-83.
    [135]王保平,刘升虎,范九伦,等.基于模糊熵的自适应图像多层次模糊增强算法[J].电子学报,2005,33(4):730-734.
    [136]王刚,肖亮,贺安之.脊小波变换域模糊自适应图像增强算算法[J].光学学报,2007,27(7):1183-1190.
    [137]马志峰,吴琼之,杜鹃.基于旋转、平移和尺度不变的平稳小波图像增强[J].光学技术,2009,35(1):98-101.
    [138]向静波,苏秀琴,陆陶.基于Contourlet变换和形态学的图像增强方法[J].光子学报,2009,38(1):225-227.
    [139]张林,朱兆达.基于非降采样Contoulet变换的非线性图像增强新算法[J].电子与信息学报,2009,31(8):1786-1790.
    [140]张麟兮,王保平,张艳宁,等.基于多特征和FCM的图像边缘检测方法[J].光子学报,2005,34(12):1893-1895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700