医学体数据场可视化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学体数据场可视化是科学可视化与生物医学信息工程领域中的热点技术,近年来发展非常迅速。人体组织器官的准确提取、实时的人机交互和高质量的绘制是医学体数据场可视化的关键技术。人体组织器官的准确提取是研究解剖结构、组织器官定量化测定、病灶定位和疾病诊断的重要基础:实时的交互性是医学可视化技术在临床诊断和治疗中近一步推广应用的必要条件;高质量的绘制图像是处理海量医学体数据场的基本要求。
     本文深入研究了上述三种/类关键技术的具体内容,包括医学体数据场的获取与处理、医学体数据场层间插值、基于模糊理论和粗糙集理论的医学体数据场增强、基于体绘制的人体感兴趣组织器官的提取及医学体数据场绘制等技术。同时研究了以上内容在医疗辅助诊断中的应用及其实现技术。论文的创新性成果有:
     (1)深入研究了Cubic卷积插值方法。系统推理了多种Cubic卷积插值方法的联系与区别。在此基础上,提出了一种基于最优Cubic卷积核的医学体数据场层间插值方法,该方法充分结合原始断层图像的局部特征,利用迭代运算确定出最优的形状控制参数;然后利用该参数下的Cubic卷积核对体数据场进行一次性插值,避免了传统Cubic卷积插值方法中误差的传递;从而有效提高了插值的精度。
     (2)提出了一种基于像素分类的医学体数据场层间插值方法。首先对插值图像像素进行分类,然后对不同类别的像素采用不同方法进行插值。该方法能够有效克服插值图像边界信息的丢失,尤其适用于层间距较大的断层图像插值。同时,提出了一种基于物体边缘信息的医学体数据场层间插值方法。首先运用基于形状轮廓插值方法确定出中间插值图像物体的边缘,然后对插值图像边缘采用高精度的基于对应点匹配的方法进行插值。实验结果表明该方法不仅有效提高了插值的精度,同时兼顾了插值的效率。
     (3)改进了一种基于双线性变换的医学体数据场快速模糊增强算法。由于采用的隶属函数和模糊增强算子均为线性的,不仅能够提高增强的速度,而且也有效避免体数据场细节信息的丢失。在此基础上,结合粗糙集理论,提出了一种基于粗糙模糊集理论的医学体数据场模糊增强算法。首先应用粗糙集对体数据场进行分类,在分类的同时,去除了噪声。然后针对分类后的子数据场,采用不同方法进行模糊增强,使得在三维人体组织器官的显示过程中,能够有效避免背景部分的“遮挡”。
     (4)改进了一种窗口调节函数,并在此基础上提出了一种人体组织器官动态提取方法,该方法通过调节各参数,能够有效提取出人体的多种组织器官。
     (5)提出了一种适合医学体数据场的体绘制算法。该算法不仅克服了传统Ray Casting算法绘制模糊的缺陷,而且生成的图像更加符合人的视觉特征。
     利用上述技术,设计并实现了一个医学体数据场可视化医疗辅助诊断实验系统——VolMTDSys。该系统是一种基于微机的全视野、全时空视觉导航型医疗辅助诊断系统,比传统的医学平面影像辅助诊断系统有更好的立体直观可视性;比一般视觉漫游系统有更好的漫游实时性和身临其境的沉浸感。
Volume visualization in medicine is an advanced topic in the field of Scientific Visualization and the Biomedical Information Engineering. This technology has rapidly developed greatly in recent years, and it has widely been applied to the clinical diagnosis. Accurate extraction of the tissues or organs, real-time interactive reaction of the manipulation and high quality of the rendering image are the key techologys of the whole visualization of the medical volume data field. Accurate extraction of the tissues or organs is the important basis of the study of anatomical structure, quantification of tissue volumes, location of pathology, diagnosis, treatment planning, and computer aided surgery, etc; Real-time interactive reaction of the manipulation is the requirement of the further extend application of medical visualization in the clinical diagnosis and treatment; Due to the increasing amount of medical image data, it is necessary to visualize the date with high quality image rendering.
     The thesis deeply studies the key techniques mentioned above, including obtaining and preprocessing of the medical data, interpolation between slices, contrast enhancement based on the fuzzy sets and rough sets theories for the medical field, extraction of the tissues or organs of interest based on the volume rendering and the rendering techniques for the medical volume data. In addition, some research on the application and realization of these technologies in the medical assistant diagnosis and treatment are also involved in this dissertation.
     The main contents and contributions of this dissertation are as follows:
     (1) The Cubic convolution interpolation is deeply investigated. The interpolation principle of Cubic convolution is formulated by the numbers, including the differences and relations among the Cubic interpolation methods with the dissimilar sharp control parameters. Based on these, an interpolation method for the medical volume data field based on the optimal Cubic kemel is presented. The method makes full use of the local characteristic of the original cross-sections, and then the optimal parameter is determined by iterative operation. Finally, the volume data field is interpolated by the Cubic convolution with the optimal parameter in one operation, which avoids the error transfer of the conventional methods. So the interpolationprecision is improved effectively.
     (2) A method of the interpolation between slices based on the pixel classification is presented. The method classes the pixels into two groups, and then the pixels of the different groups are evaluated by the different ways, which can effectively avoid the loss of the edge information. This method is especially effective for the volume data with large distance between slices. In addition, a method for interpolation of the volume data field is presented; it is based on edge information. Firstly, the boundary of the interpolated image is determined using weighted mean of the profile, and then the value of the boundary pixels is evaluated by the best matching corresponding points. The experimental results show that, the approach not only improves the interpolation precision as well as efficiency.
     (3) A fast algorithm is improved for the fuzzy contrast enhancement, and it is based on the dual-linear transform. Due to the linear subjectional function and the linear fuzzy enhancement operator, the algorithm not only speed the process, but also voids the losses of particular information. Based on these, an algorithm combining the rough sets is presented for the contrast enhancement of volume data field. In this algorithm, the volume data is classified using the rough sets theory, and the noise is removed simultaneously, then the classified sub-volume data is enhanced in different ways. The algorithm can effectively avoid the cover of background when the interested tissues and organs are displayed.
     (4) A windows function is improved. Based on the function, an approach based on volume rendering is developed for extracting the VOI (Volume of Interest) from a medical dataset. The most tissues and organs of human can be extracted by adjusting the parameters.
     (5) A volume rendering algorithm which suits the medical volume data field is presented. The algorithm not only solves the problem of image blur of the classical Ray Casting algorithm, but also the displayed image accords with the vision characteristic of human perfectly.
     Taking advantage of the above-mentioned technologies, an experimental system named VolMTDSys is designed and realized to assist diagnosis and assist doctors. The system is that kind of interactive assistant diagnosis system which has a new full filed vision and full space vision navigation. In comparison with traditional image aided diagnosing system, the new system has the comparative advantages of high real-time, strong feeling of immersion and good visibility.
引文
[1] 唐泽圣,三维数据场可视化[M],北京:清华大学出版社,1999
    [2] 田捷,包尚联,周明全,医学影像处理与分析[M,北京:电子工业出版社,2003
    [3] A. Kaufman, K. H. Hohne, W. Kruger, et al, Research Issues in Volume Visualization[J], IEEE Computer Graphics and Applications, 1994, 14(2): 63-67
    [4] 管伟光,体视化技术及其应用[M],北京:电子工业出版社,1998
    [5] M. Levoy, A Hybrid Ray Tracing for Rendering Polygon and Volume Data[J], IEEE Computer Graphics and Applications, 1990, 10(2): 33-40
    [6] W. F. Whimster, M. J. Cookson, and J. R. Salisbury, 3D Reconstruction and Quantitation of Pathological Tissues[J], Pathologica, 1995, 87(3): 279-285
    [7] J.D. Maddison, E. C. Paish, T. Kurien, et al, 3D Reconstruction and Visualisation for Exploration of Human Axillary Lymph Nodes[C], Proceeding of the Third International Conference on Medical Information Visualization - Biomedical Visualisation, 2005, 55-59
    [8] T. Mclnemey, D. Teraopoulos, Topology Adaptive Deformable Surfaces for Medical Image Volume Segmentation[J], IEEE Transactions on Medical Imaging, 1999, 18(10): 840-850
    [9] Z. Liang, Tissue Classification and Segmentation of MR Images[J], IEEE Engineering in Medicine and Biology Magazine, 1993, 12(1): 81-85
    [10] K.V. Leemput, F. Maes, D. Vandermeulen, et al, A Unifying Framework for Partial Volume Segmentation of Brain MR Images[J], IEEE Transactions on Medical Imaging, 2003, 22(1): 805-119
    [11] M.N. Ahmed, A. A. Farag, Two-stage Neural Network for Volume Segmentation of Medical Images[C], Proceedings of the 1997 International Conference on Neural Networks, 1997, 1373-1378
    [12] H. G. He, B. Lv, K. Lu, Robust Partial Volume Segmentation with Bias Field Correction in Brain MRI[C], Proceedings of the Sixth International Conference on Pattern Recognition, 2006, 175-178
    [13] A. Bartesaghi, G. Sapiro, and S. Subramaniam, An Energy-based Three-dimensional Segmentation Approach for the Quantitative Interpretation of Electron Tomograms[J], IEEE Transactions on Image Processing, 2005, 14(9): 1314-1323
    [14] W. E. Lorensen, H. E. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm[J], Computer Graphics, 1987, 21(4): 163-169
    [15] B. Couteau, Y. Payan, and S. Lavallee, The Mesh-Matching Algorithm: An Automatic 3D Mesh Generator for Finite Element Structures[J], Journal of Biomechanics, 2000, 33(8): 1005-1009
    [16] Y.Y. Cai, F. Dong, Surface Hatching for Medical Volume Data[C], Proceedings of the 2005 Internaltional Conference on Computer Graphics, Imaging and Vision, 2005, 232-238
    [17] M. Levoy, Display of Surfaces from Volume Data[J], IEEE Computer Graphics and Applications, 1988, 8(3): 29-37
    [18] P. Sereda, A. V. Bartroli, I. W. Serlie, et al, Visualization of Boundaries in Volumetric Data Sets Using LH Histograms[J], IEEE Transactions on Visualization and Computer Graphics, 2006, 12(2): 208-218
    [19] L.Westover, Footprint Evaluation for Volume Rendering[J], Computer Graphics, 1990, 24(4): 367-376
    [20] M. Viceconti, R. Lattanzi, B. Antonietti, et al, CT-based Surgical Planning Software Improves and Accuracy of THR Preoperative Planning[J], Medical Engineering & Physics, 2003, 25(5): 371-377
    [21] A. Goshtasby, D. A. Turner, and L. V. Ackerman, Matching of Tomographic Slices for Interpolation[J], IEEE Transactions on Medical Imaging, 1992, 11(4): 507-516
    [22] G. T. Herman, J. Zheng, and C. A. Bucholtz, Shape-based Interpolation[J], IEEE Computer Graphics and Applications, 1992, 12(3): 69-79
    [23] L.A. Zadeh, Fuzzy sets[J], Information and Control, 1965, 8(3): 338-353
    [24] Z. Pawlak, Rough Sets[J], International Journal of Computer and Information Sciences, 1982, 11(5): 341-356
    [25] O. Etlik, O. Temizoz, A. Dogan, et al, Three-dimensional Volume Rendering Imaging in Detection of Bone Fractures[J], European Journal of General Medicine, 2004, 1(4): 48-52
    [26] L. Salvilini, E. B. Seccchi, L. Costarelli, et al, Clinical Applications of 2D and 3D CT Imaging of the Airways - a Review[J], European Journal of Radiology, 2000,34(1): 9-25
    [27] 石教英,蔡文立,科学计算可视化算法与系统[M],北京:科学出版社,1996
    [28] 陶玲,基于医学断层图像的三维可视化实现技术研究[D],南京航空航天大学博士学位论文,南京,2005
    [29] 谢英杰,叶志前,徐庐生,医学图像可视化与相关技术及应用[J],国外医学生物医学工程分册,2001,24(3):114-118
    [30] R. J. Lapeer, R. S. Rowland, and M. S. Chen, PC-based Volume Rendering for Medical Visualisation and Augmented Reality Based Surgical Navigation[C], Proceedings of the Eighth International Conference on Information Visualisation, 2004, 66-72
    [31] M. Krokos, D. Podgorelec, G. J. Clapworthy, et al, Patient-specific Muscle Models for Surgical Planning[C], Proceeding of the Third International Conference on Medical Information Visualization - Biomedical Visualisation, 2005, 3-8
    [32] D.B. Van, M. D. Ridder, and G. A. Storme, Imaging in Radiotherapy[J], European Journal of Radiology, 2000, 36(1): 41-48
    [33] 秦绪佳,医学图像三维重建与可视化技术研究[D,大连理工大学博士学位论文,大连,2001
    [34] K. Ramaswamy, W. E. Higgins, Interactive Dynamic Navigation for Virtual Endoscopy[J], Computers in Biology and Medicine, 2001, 29(3): 303-331
    [35] L.X. Zhao, C. Botha, J. Bescos, et al, Lines of Curvature for Polyp Detection in Virtual Colonoscopy[J], IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 885-892
    [36] http://www.medendoscopy.com/nkj_fazhanshi.htm
    [37] 何晖光,田捷,杨骅,等,三维医学影像诊断工作站—3dmed[J],中国体视学与图像分析,2001,6(2):73-77
    [38] National Electrical Manufacturers Association(NEMA), Digital Imaging and Communications in Medicine (DICOM)[S], draft standard 2004. http://medical.nema.org/dicom/2004.html
    [39] http://www.merge.com/DICOM/
    [40] 赵荣椿,赵忠明,数字图像处理导论[M],西安:西北工业大学出版社,2000
    [41] 黎新伍,基于数据场分割的医学可视化绘制技术研究[D],西北工业大学博士学位论文,西安,2005
    [42] L. -W. Chang, H. -W. Chen, and J.-R. Ho, Reconstruction of 3D Medical Images: A Nonlinear Interpolation Technique for Reconstruction of 3D Medical Images[J], Computer Vision Graphics Image Processing: Graphical Models and Image Processing, 1991, 53(4): 298-309
    [43] D. Ruprecht, H. Muller, Deformed Cross-dissolves for Image Interpolation in Scientific Visualization[J], The Journal of Visualization and Computer Animation, 1994, 5(3): 167-181
    [44] G. J. Grevera, J. K. Udupa, An Objective Comparison of 3-D Image Interpolation Methods[J]. IEEE Transactions on Medical Imaging, 1998, 17(4): 642-652
    [45] 缪斌和,邓元木,黄斐增,等,基于对应点匹配的断层图像三维插值方法[J],中国医学物理学杂志,2000,17(1):14-16
    [46] R. Lu, P. Marziliano, C. H. Thng, Comparison of Scene-Based Interpolation Methods Applied to Abdominal Images[C], Proceedings of the Twenty-sixth Annual International Conference of the Engineering in Medicine and Biology Society, 2004, 1561-1564
    [47] E. Maeland, On the Comparison of Interpolation Methods[J], IEEE Transactions on Medical Imaging, 1988, 7(3): 213-217
    [48] T. Blu, P. Thévenaz, and M. Unser, Linear Interpolation revitalized[J], IEEE Transactions on Image Processing, 2004, 13(5): 710-719
    [49] Y. Bai, H. Zhuang, On the Comparison of Bilinear, Cubic Spline, and Fuzzy Interpolation Techniques for Robotic Position Measurements[J], IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2281-2288
    [50] R. Hummel, Sampling for Spline Reconstruction[J], SIMA Journal on Applied Mathematics, 1983, 43(2): 278-288
    [51] C. -H. Lee, Restoring Spline Interpolation of CT Images[J], IEEE Transactions on Medical Imaging, 1983,2(3): 142-149,
    [52] H. Hou, H. C. Andrews, Cubic Splines for Image Interpolation and Digital Filtering[J], IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978,26(2): 508-517
    [53] A. Entezari, R. Dyer, and T. Moller, Linear and Cubic Box Splines for the Body Centered Cubic Lattice[C], Proceedings of the Conference on Visualization 2004, 2004,11-18
    [54] V. D. Ville, D. Blu, T. M. Unser, et al, Hex-splines: A Novel Spline Family for Hexagonal Lattices[J], IEEE Transactions on Image Processing, 2004,13(6): 758-772
    [55] T. M. Lehmann, C. Gonner, and K. Spitzer, Addendum: B-Spline Interpolation in Medical Image Processing[J], IEEE Transactions on Medical Imaging, 2001,20(7): 660-665
    [56] M. Unser, Spline-A Perfect Fit for Signal and Image Processing[J], IEEE Signal Processing Magazine., 1999,16(6): 22-38
    [57] A. Aldroubi, M. unser, and M. Eden, Cardinal Spline Filters: Stability and Convergence to the Ideal Sine Interpolator[J], Signal Processing, 1992,28(2): 127-138
    [58] M. Unser, A. Aldroubi, and M. Eden, Polynomial Spline Signal Approximations: Filter Design and Asymptotic Equivalence with Shannon's Sampling Theorem[J], IEEE Transactions on Information Theory, 1992, 38(1): 95-103
    [59] S. A. Dyer, J. S. Dyer, Cubic-Spline Interpolation: Part 1[J], IEEE Instrumentation & Measurement Magazine, 2001,4(1): 44-46
    [60] S. A. Dyer, X. He, Cubic-Spline Interpolation: Part 2[J], IEEE Instrumentation & Measurement Magazine, 2001,4(2): 34-36
    [61] M. Sarfraz, M. Z. Hussain, Data Visualization Using Rational Spline Interpolation[J], Journal of Computational and Applied Mathematics, 2006,189(1): 513-525
    [62] R. G Keys, Cubic Convolution Interpolation for Digital Image Processing[J], IEEE Transactions on Acoustic, Speech and Signal Processing, 1981, 29(6): 1153-1160
    [63] J. -K. Han, H. -M. Kim, Modified Cubic Convolution Scaler with Minimum Loss of Information[J], Optical Engineering, 2001,40(4): 540-546
    [64] T. M. Lehmann, C. Gonner and K. Spitzer, Survey: Interpolation Methods in Medical Image Processing[J], IEEE Transactions on Medical Imaging, 1999,18(11): 1049-1075
    [65] P. E. Danielsson, M. Hammerin, Note: High Accuracy Rotation of Images[J], Computer Vision Graphics Image Processing: Graphical Models and Image Processing, 1992, 54(4): 340-344
    [66] S. K. Park, R. A. Schowengerdt, Image Reconstruction by Parametric Cubic Convolution[J], Computer Vision, Graphics, and Image Processing, 1983,23(1): 258-272
    [67] S. K. EI-Khamy, M. M. Hadhoud and M. L. Dessouky, et al, A New Edge Preserving Pixel-by-Pixel(PBP) Cubic Image Interpolation Approach[C], 21 National Radio Science Conference (NRSC2004), 2004,1-9
    [68] E. Meijering and M. Unser, A Note on Cubic Convolution Interpolation[J], IEEE Transactions on Image Process., 2003, 12(4): 477-479
    [69] J.Z. Shi and S. E. Reichenbach, Image Interpolation by Two. dimensional Parametric Cubic Convolution[J], IEEE Transactions on Image Process., 2006, 15(7): 1857-1870
    [70] I. Her, C. T. Yuan, Resampling on a pseudohexagonal grid[J], Computer Vision Graphics Image Processing: Graphical Models and Image Processing, 1994, 56(4): 336-347
    [71] 吴勃英,王德明,丁效华,等,数据分析原理[M],北京:科学出版社,2003
    [72] S. E. Reichenbach and F. Geng, Two -dimensional Cubic Convolution[J], IEEE Transactions on Image Processing, 2003, 12(8): 857-865
    [73] S. M. Kwak, J. K. Han, and B. C. Song, Modified Cubic Convolution Scaler for Enhancement of Edge Information[C], Proceeding of the 2005 International Conference on Consumer Electronics, 2005, 465-466
    [74] P. Thévenaz, T. Blu, and M. Unser, Interpolation revisited[J], IEEE Transactions on Medical Imaging, 2000, 19(7): 739-758
    [75] 张勇,欧宗瑛,秦绪佳,等,基于物质分类的三维空间断层图像匹配插值[J],计算机辅助设计与图形学学报,2002,14(7):559-663
    [76] 尹雪松,齐幼菊,陈小冬,等,基于对应点的三维医学图像相关性插值[J],系统仿真学报,2005,17(9):2183-2186
    [77] G. P. Penney, J. A. Schnabel, D. Rueckert, et al, Registration-based Interpolation [J], IEEE Transactions on Medical Imaging, 2004, 23(7): 922-926
    [78] T.Y. Lee, C. H. Lin, Feature-guided Shape-based Image Interpolation[J], IEEE Transactions on Medical Imaging, 2002, 21(12): 1479-1489
    [79] W.E. Higgins, C. Morice, E. L. Ritman, Shape-based Interpolation of Tree-like Structures in Three-dimensional Images[J], IEEE Transactions on Medical Imaging, 1993, 12(3): 439-450
    [80] Y. M. Wang, Z. P. Zhang, B. N. Guo, 3D Image Interpolation Based on Directional Coherence[C], Proceeding of the 2001 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, 2001:195-202
    [81] G. J. Grevera, J. K. Udupa, Shape-based Interpolation of Multidimensional Grey-level Images[J], IEEE Transactions on Medical Imaging, 1996, 15(6): 881-892
    [82] S.P. Raya, J. K. Udupa, Shape-based Interpolation of Multidimensional Objects[J], IEEE Transactions on Medical Imaging, 1990, 9(1): 32-42
    [83] G. M. Treece, R.W. Prager, A. H. Gee, et al, Surface Interpolation from Sparse Cross Sections Using Region Correspondence[J], IEEE Transactions on Medical Imaging, 2000,19(11):1106-1114
    [84] A.B. Albu, D. Laurendeau, L. J. Hebert, et al, Three-dimensional Reconstruction of the Bony Structures Involved in the Articular Complex of the Human Shoulder Using Shape-based Interpolation and Contour-based Extrapolation[C], Processings of the Fourth International Conference on 3-D Digital Imaging and Modeling, 2003, 370-377
    [85] V. Chatzis, I. Pitas, Shape-based Interpolation of Binary 3-D Images Using Morphological Skeletonization[C], Processings of the 1999 IEEE International Conference on Multimedia Computing and Systems, 1999, 939-943
    [86] A. G. Bors, L. Kechagias, I. Pitas, Binary Morphological Shape-based Interpolation Applied to 3-D Tooth Reconstruction[J], IEEE Transactions on Medical Imaging, 2002, 21(2): 100-108
    [87] R. Durikovic, T. yauchi, K. Kaneda, et al, Shape-based Calculation and Visualization of General Cross-sections Through Biological Data[C], Proceeding of the 1997 IEEE Conference on Information Visualization, 1997, 2-9
    [88] 胡广书,数字信号处理[M],北京:清华大学出版社,2004
    [89] 王仁宏,朱功勤,有理函数逼近及其应用[M],北京:科学出版社,2004
    [90] 徐利治,王仁宏,周蕴时,函数逼近的理论与方法[M],上海:上海科技教育出版社,1983
    [91] 朱功勤,顾传青,檀结庆,多元有理逼近方法[M],北京:中国科学技术出版社,1996
    [92] M. Merickel, 3-D Reconstruction: The Registration Problem[J], Computer Vision, Graphics, and Image Processing, 1988, 42(2): 206-219
    [93] G. Q. Maguire Jr., M. E. Noz, H. Rusinek, et al, Graphics Applied to Medical Image Registration[J], 1991, 11(2): 20-28
    [94] A. Goshtasby, S. Gage, and J. Bartholic, A Two-stage Cross-correlation Approach to Template Matching[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(3): 374-378
    [95] A. Goshtasby, Registration of Images with Geometric Distortions[J], IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 60-64
    [96] R.D. Eastman, A. M. Waxman, Using Disparity Functions for Stereo Corresponding and Surface Reconstruction[J], Computer Vision, Graphics, and Image Processing, 1987, 30(1): 73-101
    [97] R. Bajcsy, C. Broit, Matching of Deformed Images[C], Proceedings of the Sixth International Conference on Pattern Recognition, 1982, 351-353
    [98] W. Guan, L. Xie and S. Ma, Deformable Registration of Digital Images[J], Journal of Computer Science and Technology, 1998, 13(3): 246-260
    [99] P.A. Elsen, E. -J. D. Pol, and M. A. Viergever, Medical Image Matching-a Review with Classification[J], IEEE Engineering in Medicine and Biology, 1993, 12(1): 26-38
    [100] 管伟光,马颂德,具有形变的平面轮廓匹配问题[J],自动化学报,1994,22(6):666-671
    [101] J. Saif, H. Krawczyk, Tuning of Parallel ROI Matching Algorithms[C], Processings of the 2004 International Conference on Parallel Computing in Electrical Engineering, 2004, 246-248
    [102] L. G. Shapiro, G. C. Stockman, Computer Vision[M], New Jersey: Prentice Hall, Inc., 2001
    [103] D. Levin, Multidimensional Reconstruction by Set-valued Approximations[J], IMA Journal of Numerical Analysis, 1986, 6(2): 173-184
    [104] 陈武凡,鲁贤庆,陈建军,等,彩色图像边界检测的新算法[J],中国科学(A 辑),1995,25(2):219-224
    [105] 张智星,孙春在,水谷英二 著,张平安,高春华 译,神经-模糊和软计算[M],西安交通大学出版社、美国Prentice-Hall出版公司联合出版,2000
    [106] D. S. Yeung, D. G. Chen, E. C. Tsang, et al, On the Generalization of Fuzzy Rough Sets[J], IEEE Transactions on Fuzzy Systems, 2005, 13(3): 343-361
    [107] M. Wygralak, Rough Sets and Fuzzy Sets: Some Remarks on Interrelation[J], Fuzzy Sets and System, 1989, 29(2): 241-243
    [108] Y. Y. Yao, A Comparative Study of Fuzzy Sets and Rough Sets[J], Information Sciences, 1998, 109(2): 227-242
    [109] Z. Pawlak, Rough Sets and Fuzzy Sets[J], Rough Sets and Fuzzy Sets, 1985, 17(1): 99-102
    [110] S. Chanas, D. Kuchta, Further Remarks on the Relation Between Rough and Fuzzy Sets[J], Rough Sets and Fuzzy Sets, 1992, 47(3): 391-394
    [111] Q. E. Wu, T. Wang, Y. X. Huang, et al, New Research on Fuzzy Rough Sets[C], Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, 2006, 4178-4183
    [112] 曹炳元,应用模糊数学与系统[M],北京:科学出版社,2005
    [113] 刘普寅,吴孟达,模糊理论及其应用[M],长沙:国防科技大学出版社,2001
    [114] 彭祖赠,孙韫玉,模糊数学及其应用[M],武汉:武汉大学出版社,2002
    [115] S. K. Pal, R. A. King, On edge detection of X-ray images using fuzzy sets [J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, 5(1): 69-77
    [116] S. K. Pal, R. A. King, Image enhancement using smoothing with fuzzy sets [J], IEEE Transactions on System, Man, and Cybernetics, 1981, 11 (7): 494-501
    [117] 王晖、张基宏,图像边界检测的区域对比度模糊增强算法[J],电子学报,2000,28(1):45-47
    [118] 韩培友,董桂云,郝重阳,双线性广义模糊增强边界图像检测算法[J],计算机辅助设计与图形学学报,2005,17(2):300-304
    [119] 张文修,吴伟志,梁吉业,等,粗糙集理论与方法[M],北京:科学出版社,2005
    [120] 徐立中,数字图形的智能信息处理[M],北京:国防工业出版社,2001
    [121] 胡可云,陆玉昌,石纯一,模糊集理论及其应用进展[J],清华大学学报(自然科学版),2001,41(1):64-68
    [122] 韩培友,基于广义模糊粗糙集的图像分割及其应用研究[D],西北工业大学博士学位论文,西安,2004
    [123] Y. Y. Yao, T. Y. Lin, Generalization of Rough Sets Using Modal Logics[J], Intelligent Automation and Soft Computing, 1996, 2(2): 103-120
    [124] S. K. Choubey, J. S. Deougun, V. V. Raghavan, et al, A Comparison of Feature Selection Algorithm in the Context of Rough Classifiers[C], Proceedings of the Fifth International Conferences on Fuzzy Systems, 1996, 1122-1128
    [125] N. Shun, W. Ziarko, Data-based Acquisition and Incremental Modification of Classification Rules[J], Computational Intelligence, 1995, 11 (2): 357-370
    [126] C. C. Chan, A Rough Set Approach to Attribute Generalization in Data Mining[J], Information Sciences, 1998, 10(7): 169-176
    [127] X. Hu, Knowledge Discovery in Databases: An Attribute-oriented Rough Set Approach[D], University of Regina, Canada, 1995
    [128] M. Krszkiewicz, Rough Set Approach to Incomplete Information Systems[J], Information Sciences, 1998, 112(2): 39-49
    [129] Y. Y. Wong, P. C. Yuen, C. S. Tong, Segmented Snake for Contour Detection[J], Pattern Recognition, 1998, 31(11): 1669-1679.
    [130] M. J. Mcauliffe, F. M. Lalonde, D. Mcgarry, et al, Medical Image Processing, Analysis & Visualization in Clinical Research[C], Proceedings of the Fourteenth IEEE Symposium on Computer-based Medical Systems, 2001, 381-386
    [131] H. Wu, J. M. Kim, W. D. Cai, et al, Volume of Interest (VOI) Feature Representation and Retrieval of Multi-dimensional Dynamic Positron Emission Tomography Image[C], Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004, 639-642
    [132] J. M. Kim, W. D. Cai, H. Wu, et al, A New Way for Multi—dimensional Medical Data Management: Volume of Interest (VOI) Based Retrieval of Medical Images with Visual and Functional Features[J], IEEE Transactions on Information Technology in Biomedicine[J], 2006, 10(3): 598-607
    [133] R. A. Zoroofi, Y. Sato, T. Nishii, et al, Automated Segmentation of Necrotic Femoral Head from 3D MR Data[J], Computerized Medical Imaging and Graphics, 2004, 28(5): 267-278
    [134] I. Kapouleas, Segmentation and Feature Extraction for Magnetic Resonance Brain Image Analysis[C], Proceedings of the Tenth International Conference on Pattern Recognition, 1990, 583-590
    [135] Y. Kita, Model-driven Contour Extraction for Physically Deformed Objects—Application to Analysis of Stomach X-ray Images[C], Proceedings of the Eleventh International Conference on Pattern Recognition, 1992, 280-284
    [136] Z. Liang, Tissue Classification and Segmentation of MR Images[J], IEEE Engineering in Medicine and Biology, 1993, 12(1): 81-85
    [137] T. Miyazawa, R. Yoshida, M. Kimura, et al, Visualization of 3D Medical Images for Radiotherapy Planning[C], Proceeding of the 1991 IEEE Conference on Nuclear Science Symposium and Medical Imaging, 1991, 1553-1557
    [138] 罗希平,田捷,诸葛婴,等,图像分割方法综述[J],模式识别与人工智能,1999,12(3):300-312
    [139] 章毓晋,图像分割[M],北京:科学出版社,2001
    [140] S. Huh, T. A. Ketter, K. H. Sohn, et al, Automated Cerebrum Segmentation from Three-dimensional Sagittal Brain MR Images[J], Computer in Biology and Medicine, 2002, 32(5): 311-328
    [141] A. S. Abutaleb, Automatic Thresholding of Gray Level Pictures Using Two-dimensional Entropy[J], Computer Vision, Graphics, and Image Processing, 1989, 47(1): 22-32
    [142] M. Kass, A. Witkin, D. Terzopoulos, Snake: Active Contour Models[J], International Journal of Computer Vision, 1988, 1 (4): 321-331
    [143] W. Hong, B. Georgescu, X. S. Zhou, et al, Database-guided simultaneous multi-slice 3D segmentation for volumetric data[C], Proceedings of the Ninth European Conference on Computer Vision, 2006, 397-409
    [144] M. S. Atkins, B. T. Mackiewich, Fully Automatic Segmentation of the Brain in MRI[J], IEEE Transactions on Medical Imaging, 1998, 17(1): 98-107
    [145] A. Discher, N. Gougon, Automated 3D Vascular Segmentation in CT Hepatic Venography[C], Proceedings of the SPIE Conference on Mathematical. Methods in Pattern and Image Analysis, 2005, 114-125
    [146] H. Khotanlou, J. Atif, O. Colliot and I. Bloch, 3D Brain Tumor Segmentation Using Fuzzy Classification and Deformable Model[C], Proceedings of the 2005 International Workshop on Fuzzy Logic and Applications, 2005, 312-318
    [147] Z. E. Zhao, S. Aylward, and E. K. Teoh, A Novel 3D Partitioned Active Shape Model for Segmentation of Brain MR Images[C], Proceedings of the Eighth International Conference on Medical Image Computing and Computer Assisted Intervention, 2005, 221-228
    [148] M.-D. Tsai, Y. -D. Yeh, M. -S. Hsieh, et al, Automatic Spinal Disease Diagnoses Assisted by 3D Unaligned Transverse CT Slices[J], Computerized Medical Imaging and Graphics, 2004, 28(6): 307-319
    [149] G. J. Klein, X. Teng, W. J. Jagust, et al, A Methodology for Specifying PET VOI's Using Multimodality Techniques[J], IEEE Transactions on Medical Imaging, 1997, 16(4): 405-415
    [150] S. W. Zucker, Region Growing: Childhood and Adolescence[J], Computer Graphics and Image Processing, 1976, 5(2): 382-399
    [151] H. Sekigushi, K. Sano, Interactive 3-dimensional Segmentation Method Based on Region Growing Method[J], Systems and Computers in Japan, 1994, 25(1): 88-97
    [152] G. J. Sivewright, P. J. Elliot, Interactive Region and Volume Growing for Segmenting Volumes in MR and CT Images[J], Medical Informatics, 1994, 19(1): 71-80
    [153] R. Adams, L. Bischof, Seeded Region Growing[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641-647
    [154] Y. Kang, K. Engelke, W. A. Kalender, A New Accurate and Precise 3D Segmentation Method for Skeletal Structures in Volumetric CT Data[J], IEEE Transactions on Medical Imaging, 2003, 22(5): 586-598
    [155] 翟伟明,胡成文,张伟宏,等,基于动态自适应体素生长的肺部CT图像3维分割算法[J],中国图象图形学报,2005,10(10):1269-1274
    [156] 陆剑锋,林海,潘志庚,自适应区域生长算法在医学图像分割中的应用[J],计算机辅助设计与图形学学报,2005,17(10):2168-2173
    [157] X. J. Sun, H. B. Zhang, H. C. Duan, 3D Computeried Segmentation of Lung Volume with Computed Tomography [J], Academic Radiology, 2006, 13(6): 670-677
    [158] M. J. Durst, Letters: Additional Reference to Marching Cubes[J], Computer Graphics, 1988, 22(2): 72-73
    [159] J. Wilhelms, G. A. Von, Topological Considerations in Isosurface Generation[J]. Computer Graphics, 1990, 24(5): 79-86
    [160] 薛强,医学图像可视化技术及应用[D],浙江大学硕士学位论文,杭州,1999
    [161] G. M. Nielson, Visualization & Modeling of Scattered Multivariate Data[J], IEEE Computer Graphics & Applications, 1991, 11 (3): 47-55
    [162] E. H. Wu, R. R. He, A Solution of Disambiguation in Isosurface Generation[C], Proceedings of the Third Eurographics Workshop on Visualization in Scientific Computing, 1992, 255-270
    [163] M. Hall, J. Warren, Adaptive Polygonalization of Implicitly Defined Surfaces[J], IEEE Computer Graphics & Applications, 1990, 10(6): 33-42,
    [164] J. Bloomenthal, Polygonalization of Implicit Surfaces[J], Computer Aided Geometric Design, 1988, 5(4): 341-355
    [165] A. Souza, J. K. Udupa, P. K. Saha, Volume Rendering in the Presence of Partial Volume Effects[J], IEEE Transactions on Medical Imaging, 2005, 24(2): 223-235
    [166] B. B. Cambazoglu, C Aykanat, Hypergraph-Partitioning-Based Remapping Models for Image-Space-Parallel Direct Volume Rendering of Unstructured Grids[J], IEEE Transactions on Parallel and Distributed Systems, 2007, 18(1): 3-16
    [167] S. Bruckner, S. Grimm, A. Kanitsar, et al, Illustrative Context-Preserving Exploration of Volume Data[J], IEEE Transactions on Visualization and Computer Graphics, 2006, 12(6): 1559-1569
    [168] R. Cook, N. Max, C. T Silva, et al, Image-space Visibility Ordering for Cell Projection Volume Rendering of Unstructured Data[J], IEEE Transactions on Visualization and Computer Graphics, 2004, 10(6): 695-707
    [169] G. G. Cameron, P. E. Undrill, Rendering Volumetric Medical Image Data on a SIMD-architecture Computer[C], Proceedings of the Third Eurographics Workshop on Rendering, 1992, 135-145
    [170] P. Lacroute, M. Levoy, Fast Volume Rendering Using a Shear-warp Factorization of the Viewing Transformation[J], Computer Graphics, 1994, 28(4): 451-458
    [171] 彭延军,石教英,体绘制技术在医学可视化中的新发展[J],中国图象图形学报,2002,7(12):1239-1246
    [172] D. Laur, P. Hanrahan, Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering[J], Computer Graphics, 1991, 25(4): 275-288
    [173] T. Etrl, R. Westermann, and R. Grsso, Multi Resolution and Hierarchical Methods for the Visualization of Volume Data[J], Future Generation Computer System, 1999, 15(1): 31-42
    [174] I. Ihm, R. Lee, Indexing Data Structures for Faster Volume Rendering[J], Computers & Graphics, 1997, 21(4): 497-506
    [175] J. Wilhelms, V. Gelder, A Coherent Projection Approach for Direct Volume Rendering[J], Computer Graphics, 1991, 25(4): 275-281
    [176] B. T. Phong, Illumination for Computer Generated Images[D], Ph. D. Dissertation of University of Utah, UT, 1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700