面向机械产品生长型设计的广义装配原理理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装配设计是计算机辅助设计的一个重要组成部分,是保证产品设计质量的前提和基础。本文在产品全生命周期的广义装配质量保证背景下,进行了面向机械产品生长型设计的广义装配原理的研究,将以可装配性影响因素、装配质量因素为核心的产品复杂度、产品精度以及制造、装配成本等众多设计因素并行集成于产品的生长型设计过程中,从而实现以装配质量保障为核心的产品生长型设计。
     论文的主要内容如下:
     综述了国内外装配设计技术以及生长型设计的研究状况并确定本论文的研究目标。详细地分析了目前运用于面向装配的设计的方法和理论,阐述了该领域研究中存在的关键性问题和今后面向装配的设计的研究趋势。指出了在生长型设计中引入广义装配原理的重要性。
     给出了以广义装配原理为约束的产品生长型设计理论框架。提出了由产品复杂度理论、功能公差理论以及虚实结合结构设计技术为基本理论构成的广义装配原理的定义及其特点。研究了生长型设计中装配模型的表达,从生长型设计的基本组成单元、产品装配关系模型、零件模型以及公差模型等角度分层次建立了产品模型,为基于装配的产品概念结构生长、公差分配和基于虚实结合技术的产品重构设计奠定了基础。
     研究了广义装配原理的理论构成之一——复杂度理论。提出了基于复杂度理论的概念结构生长策略。生长型设计过程可以看作为基于时间序列的设计状态转换过程,在产品从功能域到概念设计方案的生长过程中,根据功能要求采用不同的离散精度,会得到产品的不同进化结果。为得到较为优化的产品结构,本文提出了以功能需求以及复杂度理论为控制因素的设计过程推理策略。由于功能规定了产品的结构及其自动生成的机制,因此,首先研究了功能分解重构的策略以及基于功能的设计规范的生成方法:在此基础上,研究了基于动态复杂度产生产品传动链以及基于静态复杂度实现产品概念结构优化生长的设计策略;同时为在设计过程中便于对产品复杂度进行比较,还提出了以信息熵量化产品复杂度的设计策略,并给出了其算法。
Assembly design is one of important features of computer-aided design and it is a basis and prerequisite to assure a good quality in the product development. In this paper, a generalized assembly principle based on product growth design is studied, and the study is under assurance of a good generalized assembly quality in the whole lifetime of the product. In the phase of concept design, various assembly design i ssues are w ell considered from d ifferent views, i ncluding t he assembly structure, the assembly tolerance and the assembly planning to meet the requirement of assembly constraint in product design, and thus a product growth design with the assurance of the assembly quality as the kernel is realized finally. The paper is organized as:The objective of the paper is determined after a general overview on the available international and internal investigations on the assembly design of product. A detailed analysis is done on the up-to-date technologies applied in the assembly design of the products. The trends in the field of the assembly design are given, and also, some key points are proposed to further study in the field.The theory structure about the product growth design under the constraint of the generalized assembly principle is developed. A definition of the generalized assembly principle and its design protocol are put forward, which consist of a product complexity theory, a functional tolerance theory and a virtual and actual-based structure co-design technology. An expression on the growth model of the product assembly is made, in which a hierarchical product model is built up from the basic unit of the growth design, the assembly relation model of products, the component model and the tolerance model. This study lays down the foundation of the assembly-based decomposition and reconstitution (D&R), the tolerance allocation, and the virtual and actual-based product reconstruction co-design.A method of gene decomposition based on the product complexity theory is put forward. The product growth design can be regarded as a design state transition based on a time sequence, and the product gene decomposition can be
    regarded as the growth of the products from the function-based design area to the concept-based design area. Apparently, different evolution of the products can be obtained with the different diversity accuracy based on the function requirement. In o rder t o g et a r elatively o ptimal p roduct s tructure, a d erivation method in the design procedure is put forward under the control of the function requirement and under the constraints built up from the complexity theory analysis. It includes a method for the functional decomposition and reconstitution in the process of product gene decomposition, and a method to generate the function based design specifications. Based on the above methods, the product gene decomposition can be well designed as a dynamic decomposition and a static decomposition. In the process of the dynamic decomposition, the transfer chain of products is generated by a derivation from the complexity based kinematics and motion transmission analysis. In the process of the static decomposition, a minimum entropy method to optimize the product gene decomposition is given, through a quantitative treatment on the entropy, which in the paper is used to describe the system complexity, and after a comprehensive consideration on the complexity in the component manufacture and their assembly.Tolerance allocation is one of important points in the assembly design. To guarantee a successful assembly and to make the functionality of the products to reach the objective of the design, a function tolerance design theory in the process of product growth design is put forward, which make the allocation of the dimension tolerance and the geometry tolerance in the whole lifetime of the products realized, with regarding the design cost, manufacturing cost, usage cost, and the depreciation cost of the product, as the control constraint of the tolerance allocation. Tolerance design rules are defined qualitatively as well as quantitatively. In the qualitative definition, 5 rules in the tolerance design are given to describe the theory and the rule in the tolerance design from the views of the tolerance type judgment and the numerical relationship among different types of tolerance. In the quantitative definition, a mathematical model to allocate the function tolerances based on the multifactor-cost function of the q uality loss is built up by developing a correlated sensitivity function between the cost and the tolerance. Then, the dimension tolerance allocation in the whole lifetime of
    products based on the functionality and the assembly quality is realized through analyzing a designed mathematical model. In the model, the minimum cost is used as the objective function, a reasonable process capability index, the assembly function, and the assembly quality, are taken as the constraints, while the depreciation cost in the objective function is expressed as the discount rate -terminology in the economics.The result of the product gene decomposition is a conceptual functionality gene chain model, which consists of functional components a nd the correlation information among different functional faces. In order to realize the mapping from the functional gene chain model to the concrete product structure, a product reconstruction method based on the virtual and reality co-design is put forward in the paper. A Mapping-reconstruction design method based on a three-layer searching mechanism and a hybrid-reconstruction design method based on the zero thickness entity theory are proposed. Thus structure design to complete new product as well as to reconstruction from design history is realized. While in the process of product growth design, the interference detections on the static, the dynamic and the motion are carried out as well in the virtual reality environment, to give the guideline to the design modification, so that the parallel design of the part structure and assembly capability is realized. In the preprocessing simulation module, a constraint release based program is developed to deal with the global assembly sequence and the local assembly sequence.Based on the developed theories and methods in the paper, the original design system DARFARD is expanded and the developed theories and methods in the paper are verified successfully by some experiments finally.This study laid down the foundation for further investigation in the automation technologies and making these technologies realizable in applications. It provided some helpful theory and experience in the development of assembly design technologies, and would encourage developing a c reative growth design system to meet our country's conditions in the future.
引文
1. Zha X F, Lim S Y E and Fok S C. Development of Expert System for Concurrent Product Design and Planning for Assembly[J]. The international Journal of Advanced Manufacturing Technology, 1999,15:153-162
    2. Anantha R and Kramer G. Assembly modeling by geometric constraint satisfaction[J].Computer-aided Design. 1996,28(9):707-722
    3. Womack J.P., Jones D.T., Roos D.. The machine That Changed The world[M]. USA: Macmillan,1990.
    4. G. Hird et al. Possibilities for Integrated Design and Assembly Planning[J]. Developments in Assembly Automation. 1988, 3:155-166
    5.莫建中,罗燕,童劲松.DFA——通过并行设计实现装配自动化[J].组合机床与自动化加工技术.1997,5:23-26
    6. Eversheim N., Baumann M. Assembly-Oriented Design Process, [J]. Computer in Industry. 1991, 17:287-300
    7.郑寿森.并行工程下的产品装配建模既可装配性的研究.合肥工业大学博士学位论文。2000年9月。
    8.刘继红.DFX.面向产品生命周期的设计(上)[J].计算机辅助设计与制造.1998,9:34-36
    9. Kroll, E., Lenz, E.. A Knowledge-based Solution to the Design for Assembly Problem[J]. Manufacturing Review. 1988, June, 1(2):24-27
    10. G. Boothroyd. Design for Manufacture and Assembly[J]. Computer Aided Design. 1994, 26(7):505-520
    11. Peter O'grady, Robert E. Young. An Advice System for Concurrent Engineering[J]. Int. J. Computer Manufacturing. 1991, 4(2):63-70
    12.陈国聪,杜静.机械CAD/CAM应用技术基础[M].北京:机械工业出版社,2002.
    13. G. Boothroyd, P. Dewhurst, Product Design for Assembly Handbook[M]. Boothroyd and Dewhurst Inc, 1989
    14. Boothroyd G, Alting L. Design for assembly and disassembly [J]. Annals of the CIRP. 1992, 41(2): 625-635.
    15. Boothroyd G. Design for manufacture and assembly: The Boothroyd-Dewhurst experience. In: HuangGQed. Design for Xlondon: Chapman&Hall. 1996, 19-40.
    16. Boothroyd G.面向制造与装配的产品设计[M].机械工业出版社.北京:1999.
    17. Boothroyd G, Dewhurst P. Design for assembly handbook[M]. Uiniversity of Massachusetts, USA, 1983.
    18. Miyakawa, S. and Ohashi, T.. The Hitachi Assemblability Evaluation Method (AEM)[J]. Proc. Int. Conference on Product Design for Assembly, Newport, RI, 1986, April:15-17
    19. Yamigiwa, Y.. An Assembly Ease Evaluation Method for Product Designers: DAC[J]. Techno Japan. 1988, 21(12).
    20. H. J. Warnecke. Design for Assembly—Part of the Design Process[J]. Annals of CIRP.1988, 37(1):1-4
    21. Stephan Eslilander. Design for automatic assembly-amethod for product design:DFA2[D]. Sweden:Royal Institute of Technology,2001
    22.张林宣,童秉枢,王春河等.一种实用的综合集成DFA系统的研究[J].清华大学学报(自然科学版).1998,38(11):69-72
    23.顾寄南,蔡健敏.产品可装配性评价技术的研究现状和发展方向[J].机械设计.2003,20(12):1-3
    24.顾廷权,高国安,徐向阳.面向CE的DFA技术理论与实现[J].机械工程师.1997,3:56-57
    25.曾庆良,万丽荣,等.并行工程环境下面向装配的设计系统[J].北京科技大学学报.2002,24(6):664—668
    26. Rakesh Gupta, Daniel Whitney. Prototyping and DFA Analysis using Multimedia Virtual Engineering[J]. Computer Aided Design. 1997, 29(8):585-597
    27. Shyamsundar N., Zia Ashai, Rajit Gadh. Design for Disassembly Methodology for Virtual Proto-types[J]. Proc. Of the 1996 ASME Design Engineering Technical Conference and Computers in Engineer-ing Conference. California, USA,1996. 96-DETC/DFM- 1273
    28.杨锟,刘继红.面向虚拟装配的装配建模技术[J].机械科学与技术.2001,20(2):305-308
    29.曾理,张林等.一个虚拟装配支持系统的实现[J].系统仿真学报.2002.14(9):1149-1153
    30.刘振宇,谭建荣,等.虚拟环境中装配设计语义的表达、传递与转化研究[J].计算机学报.2000,23(11):1208-1214
    31.万华根,高曙明,等.VDVAS:一个集成的虚拟设计与虚拟装配系统[J].中国图 象图形学报.2002,7(1):27-34
    32.梁海奇,王增强,等.虚拟产品开发中的装配建模研究[J].机械科学与技术.2001,20(2):312-314
    33.庄晓,周熊辉,等.虚拟环境中的快速产品装配建模[J].中够机械工程.1999,10(2):185-188
    34. Gerard J. K., George A. Bekey. Constructing Design Plans for DFA Redesign[J]. IEEE Intel. Conf. on Robotics and Automation. 1993:312-318
    35. Sukhan Lee, Gerard J.K., George A. Bekey. Combining Assembly Planning with Redesign: An Approach for More Effective DFA[J]. IEEE Intel. Conf. on Robotics and Automation. 1993, May:319-325
    36. WynneHsu, C.C.GeorgeLee. Fuzzy Application in Tolerance Design[J]. Proceeding of lEEE. 1994, 1182-1193
    37.宋玉银,褚秀萍,蔡复之.基于广义键的产品可装配性模糊评价方法研究[J].高技术通讯.2000,7:72-74.
    38.舒启林,王德俊,郝永平.零件级的可装配性分析评价模型的建立与实现[J].机械设计.2001,12:6-8.
    39.刘玉生,杨将新,吴昭同.CAD/CAPP集成中公差的模糊优化设计[J].浙江大学学报.2001,35(1):41-46.
    40.陈举华.机械结构模糊优化设计方法[M].北京:机械工业出版社,2001
    41. Shtub A, Zimerman Y. A neural network-based pproach for estimating the cost of assembly systems[J] . International Journal of Production Economics. 1993, 32: 189~207.
    42. Boothroyd G, PoliC, Murch E L. Automatic Assembly[M] NewYork: M.Dekker. 1982
    43. Jhong S. Oh, Peter O'grady, Robert E. Young. A Constraint Network Approach to Design for Assembly[J]. IIIE Transactions. 1995, 27:72-80
    44.舒苏东,刘大成等.面向机器人化装配的装配工艺性评估技术研究[J].机器人.1996,18(9):385-389
    45. Dupinet E, Balazinski M. Caogala E.J.of lntelligent[J]. Manufacturing, 1996,7:487
    46.邵锦文,张振家,等.计算机装配工艺系统研究[J].航天制造技术.2002,1:49-52.
    47. BONNEVILL, PERRARDC, HENRIOUDJM..A Genetic Algorithms to Generate and Evaluate Assembly Plans[J]. IEEE Symposium on Emerging Technology and Factory Automation. 1995, (2): 231-239.
    48. MILAD F SEBAALY, HIDEOFUJMOTO. A Genetic Planner for Assembly Automation[C]. Proceedings of the IEEE Conferences on Evolutionary Computation. 1996, 401-406.
    49. DINI G, FAILI F, LAZZARINI B, etal. Generation of optimized assembly sequences using genetic algorithms[A]. Annals of the CIRP[C]. Berne: CIRP Publishers, 1999.
    50. CHEN Shiangfong. Assembly planning 3/a genetic approach[A]. IEEE Conference on Robotics and Automation[C]. New Jersey: IEEE Press, 1998, 307-313.
    51.杨鹏.刘继红,管强.面向装配序列优化的一种改进基因算法[J].计算机集成制造系统—CIMS.2002,8(6):468-471
    52. Scarr, A J.. Product Design for Automated Manufacture and Assembly[J]. Annals of CIRP. 1986, 35(1):1-4
    53. Rosario, L.M and Knight, W. A.. Design for Assembly Analysis: Extraction of Features from a CAD System Database[J]. Annals of CIRP. 1989, 38 (1): 13-17
    54. Rong-Kwei Li, Cheng-Long Hwang. A Frame for Automatic DFA System Development[J]. Computer & Industry Engineering. 1992, 22(4):403-413
    55. Jin-kang Gui, Martti Mantyla. Functional Understanding Of Assembly Modeling[J]. CAD. 1994, 26 (6): 435-450.
    56. Hsu W., Lim A., Lee C.S.G.. Conceptual Level Design For Assembly Analysis Using State Transitional Approach[J]. In Proceeding Of The IEEE International Conference Of Robotics And Automation. IEEE Computer Society, Piscataway, NJ, 1996, 26:69-71
    57. Kiriyama T., Kurumatani K., Tomiyama T., etc. Metalmodel:An Integrated Framework For Intelligent CAD[J]. Artifical Intelligence In Design, Springer, London, 1989:429-449
    58. Arpino F, Groppetti R. ASSYST: a consultation system for the integration of product and assembly system design[A]. Proceedings of the 9th International Conference on Assembly Automation[C]. Bedford: IFS Publication, 1988:167-180
    59. Seide U A, Swift K G. Operation networks for coordinated DFA and sequence planning[A]. Proceedings of the 10th International Conference on Assembly Automation[C]. Bedford: IFS Publication, 1989:539-546
    60. Richter M, Rieth D,Sliger M. Integrated design and assembly planning(IDAP)[A]. Proceedings of the 10th International Conference on Assembly Automation[C]. Bedford: IFS Publication, 1998:327-334
    61. Molloy,E., Yang, H. and Browne, J.. Design for Assembly within Concurrent Engineering[J]. Annals of CIRP. 1991, 40(1): 107-110
    62. Molloy, E., Yang, H. and Browne, J..Feature based modeling in design for assembly[J]. International Journal of Computer Integrated Manufacturing. 1993,6(2): 119-125.
    63. Myers WL, Dixon JR and Simmons MK. Computer analysis of mechanical assemblies from a CAD database mechanical handling times[J]. Proc. ASME Computers in Engineering Conf., New York, LISA, 1987:9-13
    64. LiRK , Hwang CL . A framework for automatic DFA system development[J]. Computers Industries Engineering. 1992, 22(4): 403-413.
    65. Kroll, E., Lenz, E.. A Knowledge-based Solution to the Design for Assembly Problem[J]. Manufacturing Review. 1988, June, 1(2):24-27
    66. G. Boothroyd. Design for Manufacture and Assembly[J]. Computer Aided Design. 1994, 26(7):505-520
    67. Peter O'grady, Robert E. Young. An Advice System for Concurrent Engineering[J]. Int. J. Computer Manufacturing. 1991, 4(2):63-70
    68.郑国勤.网络环境下支持产品概念设计的CAD系统[J].中国制造业信息化.2003,32(1):46-48
    69.张翰,张永清,周雄辉.计算机辅助概念设计研究[J].机械科学与技术.199,18(2):333-335
    70. Kezheng Huang, Hongwu Chen, Yandong Wang. Product Genetic Engineering. Proceedings of the 14th International CIRP Design Seminar 2004. Waguih EIMaraghy (eds.) Cairo, Egypt, May 16-18, 2004.
    71.陈洪武,黄克正,杨波.基于功能表面的产品结构设计自动化研究与实现[J].机械设计与研究.2004,3:24-27
    72.陈洪武,黄克正,杨波.知识经济下的创新制造技术[J].山东煤炭科技.2003,3:34-35
    73. Rosenman M A. An exploration into evolutionary models for non-routine design[J]. Artificial Intelligence in Engineering. 1997(11):287-293
    74. John S Gero. Computational models of innovative and creative design process[J]. Technological Forecasting and Social Change. 2000,64:183-196
    75. John S Gero, Thomas Mc Neill. An approach to the analysis of design protocols[J]. Design Studies. 1998,19:21-61
    76. John S Gero, Vladimir A Kazakov. Evolving design genes in space layout planning problems[J]. Artificial Intelligence in Engineering. 1998,12:163-176
    77.冯培恩,陈泳,张帅,潘双夏.基于产品基因的概念设计[J].机械工程学报.2002年10月第38卷第10期:1~6
    78.张志伟,叶庆泰.设计系统的基因表达及应用研究[J].机械科学与技术.2000,19(1):46-48
    79. Lee K S,Lee K W. Framework of an evolutionary design system incorporating design information and history. Computer in industry. 2001,44:205-227
    80.顾新建,谭建荣,祁国宁.机械产品信息基因模型[J].中国机械工程.1997,8(2):77-79
    81.周生祥.基于基因工程思想的产品建模方法[J].机械科学与技术.2000,19(5):815~820
    82.李洪杰,肖人彬.基于功能构造的复杂产品计划设计基因模型[J].机械工程学报.2003,39(5):41-48
    83.黄克正等.基于设计需求分解重构的机械产品方案设计研究[M].Manufacturing Science and Technology for New Century. Eds.Jun.Ni., et al, Wnhan, 1998:360-364
    84.黄克正,单连业,徐志刚.基于分解重构的机械产品设计过程模型[M].面向21世纪的现代设计科学.孙国正等编.武汉:人民交通出版社,1997,11:10-13
    85. Huang Kezheng, et al. Decompositon&Reconstitute Principle For Complicated Surface& Ist Application[J].中国科学E辑,1997(1):89-96
    86. Huang Kezheng, et al. Generic structural design by assembliability for mechanical products[J]. Proc. Of Int. Conf. CAPE'98, Tokyo.1998,9:107-112
    87.徐志刚,黄克正等.支持产品概念设计的产品信息网络模型[J].工程图学学报.1999,2:79-87
    88.徐志刚.机械产品结构设计自动化理论与CAD系统建模:[博士学位论文].济南:山东工业大学,1998
    89.曹树坤.机械产品概念结构生长型设计力学综合技术研究:[博士学位论文].济南:山东工业大学,2002
    90.杨志宏.产品公差与概念结构同步综合进化设计理论与技术研究:[博士学位论文].济南:山东大学,2004
    91.吕仲文.机械创新设计[M].北京:机械工业出版社,2004
    92.黄克正.复杂表面成型加工系统设计智能化理论与应用研究:[博士学位论文].济南:山东工业大学,1993
    93.邓乾旺,于德,程军圣.计算机辅助机械产品概念设计技术探讨[J].现代制造工程.2003,4:72-74
    94.侯文彬,胡平,李运兴.支持产品概念设计的参数化模型的研究[J].2003,22(4):656-659
    95.刘文剑,金天国.产品自顶向下设计的研究现状及发展方向[J].计算机集成制造系统——CIMS.2002,8(1):1-6
    96. Hou Xiaolin, Zhang Shengsheng. Assembly model for current engineering[J]. Proceedings of SPIE——Thelnternational Society for Optical Engineering, 1996, 264(4):665-670
    97. Suh N.P. The principle of design[M]. New York: Oxford Iniversity Press,1998
    98. Vigain Harutunian, et al. Decision Making and Software Tools for Product Development Based on Axiomatic Design Theory[J]. Annals of the CIRP, 1996,45(1): 135-139
    99. Suh N.P. Basic Concepts in Design for Producability[J]. Annals of the CIRP. 1988,37(2):559-569
    100. Suh N.P. et al. Optimization of Manufacturing Systems through Axiomatic[J]. Annals of the CIRP. 1978,27(2):383-388
    101. Suh N.P., Bell A C, Gossard D. On an Axiomatic Approach to Manufacturing Systems[J]. Journal of Engineering of ASME. 100:127-130
    102. Suh N.P. et al. Design of Thinking Design Machine[J]. Annals of the CIRP. 1990,39(1): 145-148
    103.姜华,王涛等.设计历史的建模方法[J].机械科学与技术.2000,19(2):197-200
    104. Huang Kezheng et al. Generic structural design by assemblability for mechanical products[J]. Proc. Of Int. Conf. CAPE'98, Tokyo,1998.9,pp107~112
    105.李沛刚.基于实例推理的设计自动化研究与应用:[硕士学位论文].济南:山东大学,2000
    106.霍志璞,黄克正,刘刚等.基于功能表面分解重构的产品信息模型[J].机械科学与技术.2002,21(5):836-839
    107. ClementA, RiviereA. Tolerancing Versus Nominal Modelingin Next Generation CAD/CAM System[J]. Proceedings of 3rd CIRP Seminar on Computer Aided Tolerancing, ENS de Cachan, France,1993:97~113
    108.杨志宏,黄克正,吕良敏.产品概念结构设计中的公差进化模型和算法[J].中国机械工程.2004,15(8):693-697
    109.魏仕民,陈钟,段云所.周期序列球体复杂度的一个新算法[J].电子学报.2003,31(8):1263-1265
    110.蔡觉平,李赞,宋文涛.一种混沌伪随机序列复杂度分析法[J].物理学报.2003,52(8):1871-1876
    111.卢欣,孙之荣,李衍达.基因组复杂度进化的仿真研究[J].生物物理学报.2001,17(2):318-328
    112.闫金平,来珠.软件复杂度的自动分析方法[J].天津大学学报.1995,28(1):83-88
    113. G Boothroyd, W. Knight. Design for Assembly[J]. IEEE Spectrum. 1993,30(9):53-55
    114.王燕玲,MaCcallum K.J.,胡光.适于装配的设计(DFA)的研究[J].沈阳工业大学学报.1997,19(1):42-45
    115. David W. Rosen, Bert Bras. Towards Computer-aided Configuration Design for the Life Cycle[J]. J. of Intelligent Manufacturing. 1996, 7:145-160
    116. Robert H.Sturges, JR. A Quantification of Manual Dexterity: The DFA Calculator[J]. Computer Integrated Manufacturing. 1989, 6(3):237-252
    117.徐家球,汪劲松,等.装配序列的与或图生成算法研究[J].机械工程学报.1994,30(4):36-41
    118.冯禹,马玉林,等.基于特征的零件加工成本评价[J].高技术通讯.1999,9:11-14
    119. J. Feng, Andrew Kusiak. Cost Evaluation in Design with Form Features[J]. Computer Aided Design. 1996, 28(11):879-885
    120. Requicha, A.A.G.. Towards a Theory of Geometric Tolerancing[J]. Int. J. of Robotics Research. 2(4):45-60
    121. W.H.Green Wood, K.W.Chase. Worst Case Tolerance Analysis with Nonlinear Problems[J]. J. of Engineering for Industry. Transactions of the ASME. 1988, (110):232-235.
    122. Andrew Kuaiak and Chang-Xue Feng. Deterministic Tolerance Synthesis: a Comparative Study[J]. CAD. 1995, 27(10): 759-768
    123. Mansoor, E M. the Application of Probability to Tolerances Used in Engineering Designs[J]. Inst. Eng. Mech. Eng. 1963, 178(1): 29-51.
    124.李纯埔,统计公差与机械精度[M].北京:机械工业出版社.1990:156-200
    125. W.H.GreenWood ,K.W.Chase. A New Tolerance Analysis Method for Designers and Manufacturer[J]. J. of Engineering for Industry, Transactions of the ASME. 1987,(109):112-116
    126.李凌丰,谭建荣,等.虚拟企业中零件信息在线访问系统[J].中国机械工程.2001,12(S1):122-124
    127. Mitchell W, Siddall J N. Optimization Provlem with Tolerance Assignment and Full Acceptance[J]. ASME Journal of Mechanical Design, 1981 ,(103):842-849
    128. Speckhart F H. Calculation of Tolerance Based on A Minimum Cost Approach[J]. Journal of Engineering for industry. 1972,(5):447-453
    129. Spotts M E Allocation o f Tolerance to Minimum Cost of Assembly[J]. Journal of Engineering for industry. 1973,(6):762-764
    130. Sutherland G H, Roth B.Mechanism design: accounting for manufacturing tolerances and costs in function generation prolems[J]. Journal of Engineering for industry. 1975,(2):283-286
    131. Chase K W, Greedwood W H. Desing issues in mechanical tolerance analysis[J]. Manufacturing Review. 1988,1(1): 50-59
    132, Dong Z, Soom A. Automtic optimal tolerance design for related dimension chains[J]. ASME Manufacturing Review. 1990,3(4): 262-271
    133. Lee W J. Woo T C. Optimum selection of discrete tolerances[J]. Journal of Mechanisms,Transimissions and automation in design, 1989,(111):243-251
    134. Dong Z, Hu W. Optimal process sequence identification and optimal process tolerance assignment in computer-aided process planning[J]. Journal of Engineering for industry. 1994,(116):199-206
    135.杨将新,顾天强,吴昭同.基于神经网络的机加工——成本模型[J].中国机械工程.1996,6:41-42
    136.曹衍龙,杨将新,吴昭同,吴立群.基于模糊质量损失的公差稳健设计方法的研究[J].浙江大学学报.2004,38(1):1-10
    137. F.H.Speckhart. Calculation of Tolerance Based on a Minimum Cost Approach[J]. J. of Engineering for Industry. 1972, (5):447-453
    138. M.ESpotts. Allocation of Tolerance to Minimize Cost of Assembly[J]. J. of Engineering for Industry, August. 1973:762-764
    139. G.H.Sutherland and B.Roth. Mechanism Design: Accounting for Manufacturing Tolerances and Costs in Function Generating Problems[J]. J. of Engineering for Industry. 1975, (2):283-286
    140. K.W.Chase, W.H.Greedwood. Design Issues in Mechanical Tolerance Analysis[J]. Manufacturing Review, 1(1):50-59
    141. W.Michael and J.N.Siddall. Optimization Problem with Tolerance Assignment and Full Acceptance[J]. ASME J. of Mechanical Design. 1981, (103):842-848
    142. W.Michael and J.N.Siddall. The Optimal Tolerance Assignment with Less than Full Acceptance[J]. J. of Mechanical Design. 1982, (104):855-860
    143. Z.Dong and A.Soom. Automatic Optimal Tolerance Design for Related Dimension Chains[J]. ASME Manufacturing Review. 1990, 3(4):262-271
    144. Z.Dong and W.Hu. Optimal Process Sequence Identification and Optimal Process Tolerance Assignment in Computer-Aided Process Planning[J]. Computer in Industry. 1991, (17): 19-32.
    145. Z.Dong, W.Hu and D.Xue. New Production Cost-Tolerance Models for Tolerance Synthesis[J]. J. of Engineering for Industry. 1994, (116): 199-206
    146. A.Teran, D.B. Pratt,etc. Present worth of external quality losses for symmetric nominal is better quality characteristics[J].The Engineering Economist. 1996, 42(1):39-52
    147.许金钊.产品质量控制[M].北京:机械工业出版社.1990:115-137
    148.梁乃刚.统计工序控制[M].北京:北京理工大学出版社.1993
    149.蒋庄德.机械精度设计[M].西安:西安交通大学出版社.2000
    150.ULRICH REM BOLD,CHRISTIAN BLUME,RUEDIGER DILLMANN.计算机集成制造技术和系统[M].北京:兵器工业出版社.1991.
    151.张跃等.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992.
    152.石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社,1996
    153. Anne L.Marsan. Debasish Dutta. Computational techniques for automatically tilling and skinning branched objects[J], computers&Graphics. 1999(23): 111-126
    154.梁斌,邱述斌等.装配规划中基于割集的装配顺序生成方法[J].中国机械工程.1995,6(1):27-29
    155.李海龙,董金祥,等.基于约束的装配体技术[J].计算机辅助设计与图形学学报.1997,19(3):249-255
    156.储林波,马玉林.位姿空间法在装配规划中的应用[J].哈尔滨工业大学学报.1999,31(4):80-87
    157. Khati. Real Time Obstacle Avoidance for Manipulators and Mobile Robot. Proc of IEEE Int. Conf.on Robotics and Automation.1985:500-505
    158. C.W.Warren. Global Path Planning Using Artificial Potential Field. Proc. of IEEE lnt Conf on Robotics and Automation, 1989:316-321
    159. Kenneth W.Chase. Minimum_Cost Tolerance Allocation. ADCATS Report No.99-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700