CAGD中对偶基与几何逼近问题的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机辅助几何设计,简称CAGD(Computer Aided Geometric Design),是随着航空、造船、机械设计和制造等现代工业的蓬勃发展与计算机的出现而发生与发展起来的一门新兴的学科。其中自由曲线、曲面造型是其重要内容。近些年来,新的曲线不断被提出,如Wang-Ball曲线,Said-Ball曲线,SBGB曲线,WSGB曲线和WBGB曲线等。这些曲线与CAGD中使用最为广泛的Bezier曲线相比大多也具有端点切触性,凸包性,保形性等。为了实现不同造型系统或图形系统的数据交换,也为了获得不同曲线再同一系统中混合使用,以及进行拼接、求导、绘制等几何操作的一致性,有必要研究不同曲线之间的转换,对偶基就是实现曲线在各种不同的基下相互转换时所普遍采用的工具。曲线/曲面的逼近与表示是CAGD中的两大基本理论问题,其中,降阶逼近,等距逼近,有理曲线/曲面的多项式逼近由于直接关系到几何设计系统的效率,精度,质量和功能已经成为当前的研究热点。有鉴于此,本文针对对偶基和几何逼近若干问题展开了较为深入的研究,主要的研究工作及成果如下:
     ·在对偶基的理论和应用方面
     (1)构造了NS幂基和WBGB基的对偶基,并利用对偶基给出了NS幂基和WBGB基下的Marsden恒等式,实现了Bezier曲线到NS幂基曲线、WBGB曲线的转换,为充分利用B6zier曲线和NS幂基曲线,WBGB曲线各自的优点提供了理论基础。
     (2)通过引入一组参数K,L,本文进一步研究了广义Ball曲线的统一表示,给出了Bezier-Said-Wang型广义Ball曲线(BSWGB曲线),这族曲线将Said-Ball曲线,Wang-Ball曲线,WSGB曲线,SBGB曲线和WBGB曲线统一的表示出来,使得上述广义Ball曲线成为BSWGB曲线族的特例。本文还使用对偶基作为工具对BSWGB基做了进一步的研究,推导出它们的对偶基公式,使得文献([奚9]],[OG97],[江04],[Wu04],[蒋04a],[蒋04b],[JWT06],[ZWT09b])的对偶基成为本文的特例。同时也解决了实际中的两个问题:1)推导出一般幂基的BSWGB基表示,也即相应的Marsden恒等式;2)推导出Bemstein基到BSWGB基的转换公式。
     (3)通过引入两向量函数内积矩阵的概念和运算,给出了SBGB基的带权对偶基函数的显式表达式,并得到了它的满足边界约束条件的带权对偶基函数。本文还给出了SBGB基的积分形式的对偶泛函,提出了一种用SBGB基表示的、满足一定插值条件的多项式作平方可积函数最小二乘逼近的直接解法。本文的结果包含了带权的Bernstein基,Said-Ball基和一些中间基函数的对偶基,并使得文献([J(u|¨)t98],[RA07],[RA08])的结果成为本文的特例。这些结果对于研究SBGB基的理论和推广它的应用将起一定的作用。利用上述结果,可以类似讨论带权的WBGB基,WSGB基和BSWGB基的对偶基函数。作为对带权对偶基函数的应用,本文还针对平面Bezier曲线的等距曲线,给出了相应的逼近算法。
     ●在S幂基的应用方面
     S幂基函数拥有着良好的数值性质,它与Bernstein基的转换矩阵是非病态矩阵。S幂基不仅保留了幂基函数形式简单、易于计算的优点(满足Horner嵌套算法),并且采用该幂基的多项式曲线的系数矢量具有明显的几何意义,可以作为形状操作工具。最重要的是这种幂基曲线对曲线的两个端点都能做到保端点高阶连续,特别有利于曲线/曲面的分段表示。Sanchez-Reyes对一元S幂基做了非常完备的讨论,并简要的介绍了二元S幂基。在此基础上,本文详细的讨论了二元S幂基的除法运算和求平方根运算。作为对二元S幂基的应用,本文还给出了张量积Bezier曲面的降阶,有理Bezier曲面的多项式逼近,Bezier曲面的等距逼近的二元S幂基算法。算法表明:使用二元S幂基多项式作为工具的逼近算法复杂度低,仅仅涉及到多项式的加法,减法和乘法,并在曲面的四个角点保高阶插值,无须添加额外的约束条件。
     ·在等距曲线/曲面的逼近方面
     (1)采用带重节点的“两点式“Newton插值算法,得到了等距曲线的多项式逼近算法和有理逼近算法,算法在曲线的两个端点保端点高阶插值,特别适合曲线的分段表示。适当升高多项式的阶数并结合离散算法,我们可以轻松的提高逼近精度,同时在离散点处保高阶插值。
     (2)采用修正的Thiele型插值算法,得到了等距曲线的有理逼近算法,并进一步考虑了保端点高阶插值的有理逼近算法,算法中每个系数的求解只涉及到乘法,除法运算,算法复杂度为D(n~2),较Li算法(复杂度为D(n~3))有了较大的提高。此外采用修正的二元Newton-Thiele型混合插值算法,得到了等距曲面的有理逼近算法,算法中每个系数的求解只涉及到乘法,除法运算。
Computer Aided Geometric Design(CAGD) is an emerging discipline along with the appearance of computers and the flourish of modern industrial such as aviation,shipbuilding,design and manufacturing of machine.Approximation and representation of curves and surfaces are the two fundamental theoretical themes in CAGD.In recent years,new curves have constantly been raised such as Wang-Ball curve,Said-Ball curve,SBGB curve,WSGB curve and WBGB curve.Compared with the most widely used Bezier curves,these curves also inherit the properties such as endpoints' property,convex hull property and shape preservation.In order to realize data exchange among different modeling systems and graphics systems,also in order to achieve mixed use of different curves in the same system and the consistency of different kinds of geometric operations such as splicing,derivative and drawing,we need to study conversions between different curves.The dual bases are widely applied to mutual transformation between different bases for the same curve. Therein degree reduction approximation,offset approximation and polynomial approximation of rational curves/surfaces have become the hotspots of investigation,since they directly relate to the efficiency,precision,quality and function of geometric design systems.In view of these facts,the dissertation gives a more in-depth discussion about the theories and applications of dual bases and geometric approximations.The main results in this dissertation are outlined as follows:
     ●In respect of theories and applications of dual basis
     (1) Dual bases of NS-power basis and WBGB basis are constructed.By means of dual bases of NS-power basis and WBGB basis,we also obtained the Marsden identity and realized the conversions from Bezier curve to NS power curve and WBGB curve.These results are very useful for the applications of NS curve and WBGB curve and their popularizations in Computer Aided Geometric Design.
     (2) By introducing a set of parameters K,L,we further investigated the unifying representation of generalized Ball basis and presented Bezier-Said-Wang type generalized Ball curve (BSWGB curve).BSWGB basis unifies Said-Ball basis,Wang-Ball basis,SBGB basis,WSGB basis and WBGB basis and each of the latter five bases is the special case of the new one.We also used dual basis as a tool to further investigate BSWGB basis and deduce the dual basis of it. Accordingly,we discussed the dual bases of some paper as special cases.We also solve the two problems in practice:1) deducing the BSWGB basis representation of the power basis,namely, Marsden identity,2) deducing the conversion matrices from Bernstein basis to BSWGB basis.
     (3) By introducing the definition and operations of the inner-product matrix of two vector functions,explicit formulas for the dual basis functions of Said-Bezier type generalized Ball basis (SBGB) with respect to the Jacobi weight function are given.The dual basis functions satisfying boundary constraints are also considered.We also gave integral dual functional of SBGB basis and presented a direct solution of the least squares approximation polynomials satisfying interpolating conditions of functions by means of SBGB basis.As a result,the dissertation includes the weighted dual basis functions of Bernstein basis,Said-Ball basis and some intermediate bases and discusses the dual bases of paper([J(u|¨)t98],[RA07],[RA08]) as special cases.These results are very useful for the study of SBGB basis and wide range of application of SBGB basis.Using the above results, we can discuss the weighted dual basis functions of WBGB,WSGB,and BSWGB basis similarly. As its applications,the dissertation also gave the approximation algorithms of Bezier curves' offsets.
     ●In respect of the applications of S-power bases
     S-power basis possesses good numerical condition,the conversion matrices between the Bernstein basis and the S-power basis are not ill-conditioned.S-power basis preserves the advantages of the power form such as simple form,easy to calculate(admits a Horner's evaluation scheme) and the coefficients of it obviously admit geometrical interpretation and can be used as shape control tools.The most important thing is S-power curve can keep high continuities on two endpoints automatically and especially suited for the piecewise representations of curves and surfaces.Sanchez-Reyes gave detailed studies to unitary S-power basis and gave a brief introduction to bivariate one.Based on these,we gave detailed discussions of division operations and extraction function of bivariate S-power basis.As the applications to bivariate S-power basis,we studied degree reduction of tensor product Bezier surfaces,polynomial approximation of rational Bezier surfaces and offset approximation of Bezier surfaces.The algorithms show that the complexity is low by using bivariate S-power basis,which only involves in additions,subtractions and multiplications,and the approximation surface automatically interpolates to the four corner points of the original one.
     ●In respect of the applications of S-power bases
     (1) We obtained rational and polynomial approximation algorithms of offset curves by using "two points" Newton interpolation with confluents.The algorithms could keep high continuities on two endpoints and especially suited for the piecewise representation of curves.Increasing the orders of the polynomials and combining with subdivision algorithm,we can improve approximation precision easily and the curve could keep high continuities on subdivision points.
     (2) We obtained rational approximation algorithms of offset curves by using modified Thiele type interpolation.We also further considered rational approximation algorithms satisfying endpoints constraints.Our algorithms only involved multiplication,division and their complexity was O(n~2).It had a better improvement,compared with Li's algorithm(its complexity:O(n~3)). We also obtained rational approximation algorithms of offset surfaces by using modified bivariate Newton-Thiele blending interpolation algorithms and the algorithms only involved multiplication and division.
引文
[陈00a]陈国栋,王国瑾。带端点插值条件的Bezier曲线降多阶逼近。软件学报,2000,11(9):1202-1206。
    [陈00b]陈国栋,王国瑾。有理等距曲线的C~2 Hermite插值。工程图学学报,2000,21(3):64-69。
    [陈01]陈国栋。CAGD中的降阶变换和等距变换。博士学位论文,浙江大学,2001。
    [陈01a]陈国栋,王国瑾。基于广义逆矩阵的Bezier曲线降阶逼近。软件学报,2001,12(3):435-439。
    [陈01b]陈国栋,王国瑾。五次PH曲线的Hermite插值。软件学报,2001,12(10):1569-1572。
    [陈02a]陈国栋,王国瑾。三次PH曲线偶的C′ Hermite插值。计算机研究与发展,2002,39(1):110-113。
    [陈02b]陈国栋,成敏,王国瑾。基于参数速度逼近的等距曲线有理逼近。计算机学报,2002,25(9):1001-1007。
    [成08]成敏。外形设计中的几何逼近及图形转换技术研究。博士学位论文,浙江大学,2008。
    [郭04]郭清伟,朱功勤。张量积Bezier曲面降多阶逼近的方法。计算机辅助设计与图形学学报,2004,16(6):777-782。
    [郭06]郭清伟,陶长虹。三角Bezier曲面的降多阶逼近。复旦学报(自然科学版),2006,45(2):270-276。
    [胡04]胡敏。连分式方法在数字图像处理中的若干应用研究。博士学位论文,合肥工业大学,2004。
    [胡07]胡倩倩,王国瑾。三角曲面显式最佳降多阶的一个新颖算法。中国科学E辑:信息科学,2007,37(8):989-999。
    [胡96]胡事民。CAD系统数据通讯中若干问题的研究。博士学位论文,浙江大学数学系,1996。
    [江04]江平,邬弘毅。Wang-Ball基函数的对偶基及其应用。计算机辅助设计与图形学学报,2004,16(4):454-458。
    [江06]江平。广义Ball曲线/曲面的几何造型研究。博士学位论文,合肥工业大学,2006。
    [蒋04a]蒋素荣,王国瑾。任意偶数次的Said-Ball基的对偶基的应用。计算机辅助设计与图形学学报,2004,16(7):950-952。
    [蒋04b]蒋素荣,王国瑾。一类广义Ball基函数的对偶基及其应用。浙江大学学报(工学 版)2004,38(12):1570-1574。
    [刘02]刘利刚,王国瑾,基于控制顶点偏移的等距曲线最优逼近,软件学报,2002,13(3):398-403。
    [刘96]刘松涛,刘根红。广义Ball样条曲线及三角域上的升阶公式和转换算法。应用数学学报,1996,19:243-253。
    [陆06]陆利正,汪国昭。基于L_2范数下的三角Bezier曲面降多阶逼近。自然科学进展,2006,16(4):409-414。
    [吕93]吕伟。有理等距参数曲线及其应用。浙江大学学报增刊,12(1993),29-37。
    [潘03a]潘日晶,姚志强,潘日红。B样条曲线的降阶公式及近似降阶方法。计算机学报,2003,26(10):1255-1260。
    [潘03b]潘日晶。B-样条基的转换矩阵及其应用。应用数学学报,2003,26(1):91-101。
    [秦00]秦开怀,黄海昆。B样条曲线降阶新方法。计算机学报,2000,23(3):306-310。
    [邱97]邱国贤。有理Bezier曲面的多项式逼近。浙江大学硕士学位论文,1997年。
    [沈05]沈莞蔷,汪国昭。Ball基的推广。软件学报,2005,16(11):1992-1999。
    [苏82]苏步青,金通洗。Bezier曲线的包络定理。浙江大学学报,计算几何论文集,1982,13-16
    [檀07]檀结庆,唐烁,朱晓临,胡敏。连分式理论及其应用。科学出版社,北京,2007。
    [檀96a]檀结庆、唐烁。向量值三重分叉连分式插值的算法。数值计算与计算机应用,1996,21:146-149。
    [檀96b]檀结庆、朱功勤。二元向量分叉连分式插值的矩阵算法。高等学校计算数学学报,1996,3:250-254。
    [汪08]汪志华,朱晓临。Bezier曲线与Wang-Ball曲线的统一表示。计算机辅助设计与图形学学报,2008,20(7):888-893。
    [王01]王国瑾,汪国昭,郑建民。计算机辅助几何设计,北京,高等教育出版社,海德堡,施普林格出版社,2001。
    [王04]王仁宏,朱功勤。《有理函数逼近及其应用》,北京:科学出版社,2004。
    [王87]王国瑾。高次Ball曲线及其几何性质。高校应用数学学报A辑,1987,2(1):126-140
    [王99]王仁宏。《数值逼近》,北京:高等教育出版社,1999。
    [邬00]邬弘毅。两类新的广义Ball曲线。应用数学学报,2000,23(2):196-205。
    [奚97]奚梅成。Ball基函数的对偶基及其应用。计算数学,1997,19(2):147-153。
    [徐83]徐利治,蒋茂森,朱自强。计算组合数学,上海:上海科学技术出版社,1983。
    [雍00]雍俊海,胡事民,孙家广。均匀B样条曲线的降阶。计算机学报,2000,23(5):537-540。
    [张06]张磊,王国瑾。有理三角B-B曲面多项式逼近的一个有效算法。计算机学报。2006,29(12):2151-2162。
    [赵06]赵前进。混合有理插值方法及其在图形图像中的应用。博士学位论文,合肥工业大学,2006。
    [朱09]朱晓临,汪志华。Bezier曲线与两类广义Ball曲线的统一表示。第四届全国几何设计与计算学术会议(厦门),2009:13-19。
    [朱91]朱功勤,顾传青。二元对称型向量有理插值。合肥工业大学学报,1991,4:80-85。
    [朱96]朱功勤、顾传青,檀结庆。《多元有理逼近方法》,北京:中国科学技术出版社,1996年7月。
    [AKS04]Ahn,Y.J.,Kim,Y.S.,Shin,Y.,Approximation of circular arcs and offset curves Bezier curves of high degree.Journal of Computational and Applied Mathematics 2004;167(2):405-416.
    [Ano83]Anon.Initial Graphics Exchange Specification(IGES),Version 2.0,U.S.Dept.of Commerce,National Bureau of Standards,Washington,D.C.,1983.
    [Ano84a]Anon.Standard Deehange et de transfer(SET),Aerospatiale,Direction Teehni-que,Suresnes,France,1984.
    [Ano84b]Anon.Product Definition Data Interface(PDDI),MeDonnel Aircraft Coorporation,USA,1984.
    [Ano85]Anon.Format for the exchange of geometric information(VDA/VDMA-FS),Draft of German Standard(DIN 66301),Beuth-Verlag,Berlin,1985.
    [Ano88]Anon.External representation of product definition data(STEP),ISOTC184/SC4/WGI Document N284(Version Tokyo),International Standards organization,USA,1988.
    [Ano90]Anon.Initial Graphics Exchange Specification(IGES),Version 5.0,NISTIR4412,ISO National Institute of Standards and Technology,USA,1990.
    [AU90]Aomura,S.and Uehara,T.Self-intersection of an offset surface,Computer-Aided Design,1990,22(7),417-422.
    [Bal74]Ball,A.A.CONSURF,Part 1:Introduction to conic lofting title,Computer-Aided Design,1974,6(4),243-249.
    [Bal75]Ball,A.A.CONSURF,Part 2:Description of the algorithms,Computer-Aided Design,1975,7(4),237-242.
    [Bal77]Ball,A.A.CONSURF,Part 3:How the program is used,Computer-Aided Design,1977,9(1),9-12.
    [Bez71]Bezier,P.E.Example of an existing system in motor industry:the UNISURF system, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, Vol.321:207-218.
    [Béz72] Bézier, P.E. Numerical Control: Mathematics and Applications, John Wiley and Sons, New York, 1972.
    [BéY74] Bézier, P.E. Mathematical and practical possibilities of UNISURF, Computer Aided Geometric Design, in: Barnhill, R.E. and Riesenfield, R.E., eds., Academic Press, New York, 1974,127-152.
    [Béz86] Bézier, P.E., The Mathematical basis of the UNISURF CAD system, Butterworth- Heinemann, England, 1986.
    [Bir06] Birkhoff, G.D., General mean value and remainder theorems with applications to mechanical differentiation and quadrature, Transactions of the American Mathematical Society, 1906, 7(1): 107-136.
    [Boe80] Boehm, W. Inserting new knots into B-spline curve, Computer-Aided Design, 1980, 12(4), 199-201.
    [Boe85] Boehm, W., On the efficiency of knot insertion algorithms, Computer Aided Geometric Design, 1985,2(1-3): 141-143.
    [BP85] Boehm, W., Prautzsch, H., The insertion algorithm, Computer-Aided Design, 1985, 17(2): 58-59.
    [BP89] Bardis, L., Patrikalakis, M. Approximate conversion of rational B-spline patches, Computer Aided Geometric Design, 1989,6(3): 189-204.
    [Bre92] Brechner, E.L., General tool offset curves and surfaces, in: Barnhill, R.E., ed., Geometry processing for design and manufacturing, SIAM, Philadelphia, PA, 1992,101-121.
    
    [Cha84] Chang, G.Z. Bernstein polynomials via the shifting operator, American Mathematical Monthly, 1984,91:634-638.
    [CHL91] Chiang, C.S., Hoffmann, C.M., Lynch, R.E., How to compute offsets without self-intersection, in: Silbermann, M.J., Tagare, D., eds., Proceedings of SPIE conference on curves and surfaces in computer vision and graphics II, Boston, Massachusetts, 1991,76-87.
    [CL00] Chen, F.L., Lou, W.P., Degree reduction of interval Bézier curves. Computer-Aided Design, 2000,32(10):571-582.
    [CLR80] Cohen, E., Lyche, T., Riesenfeld, R.F., Discrete B-spline and subdivision techniques in computer aided geometric design and computer graphics, Computer Graphics and Image Processing, 1980,14(2), 87-111.
    [Cob84]Cobb,E.S.,Design of sculptured surfaces using B-spline representation,Phd Dissertation University of Utah,USA,1984.
    [Coq87]Coquillart,S.,Computing offsets of B-spline curves,Computer-Aided Design,1987,19(6):305-309.
    [CR87]Chen,Y.J.,Ravani,B.Offset surface generation and contouring in Computer-Aided Design,Journal of Mechanisms,Transmissions and Automation in Design:ASME Transactions,1987,109(1):133-142.
    [Cuy87]A.Cuyt.A recursive computation scheme for multivariate rational interpolants,SIAM Journal on Numerical Analysis 1987,24(1):228-238.
    [CV85]A.Cuyt,B.Verdonk.Multivariate rational interpolation.Computing 1985,34(1):41-61.
    [CV88]A.Cuyt and B.Verdonk,A review of branched continued fraction theory for the construction of multivariate rational approximants,Applied Numerical Mathematics.1988,4(2-4):263-271.
    [CW02a]Chen,G.D.,Wang,G.J.Optimal multi-degree reduction of Bezier curves with constraints of endpoints continuity.Computer Aided Geometric Design,2002,19(6):365-377.
    [CW02b]Chen,G.D.,Wang,G.J.Multi-degree reduction of tensor product Bezier surfaces with conditions of comers interpolations.Science in China(Series F) Information Science,2002,45(1):51-57.
    [CW04]Cheng,M.,Wang,G.J..Mulit-degree reduction of NURBS curves based on their explicit matrix representation and polynomial approximation theory.Science in China(Series F) Information Science,2004,47(1):44-54.
    [CW86]A.Cuyt,Wuytack,Nonlinear methods in numerical analysis,North-Holland Publishing Co,Amsterdam,1986.
     ICY04]Chen,F.L.,Yang,W.,Degree reduction of disk Bezier curves.Computer Aided Geometric Design,2004,21(3):263-280.
    [deC59]de Casteljau,P.Ourillages methodes calcul,Technical Report,A Citroen,Paris,1959.
    [Deg93]Degen,W.L.F.,High accurate rational approximation of parametric curves,Computer Aided Geometric Design,1993,10(3-4):293-313.
    [DFC02]Deng,J.S.,Feng,Y.Y.,Chen,F.L.,Best one-sided approximation of polynomials under L1 norm.Journal of Computational and Applied Mathematics,2002,144(1-2):161-174.
    [DN85] Danneberg, L., Nowacki, H., Approximate conversion of surface representations with polynomial bases, Computer Aided Geometric Design, 1985, 2(1-3):123-131.
    
    [EC91] Elber, G. Cohen, E., Error bounded variable distance offset operator for free form curves and surfaces, International Journal of Computational Geometry and Application, 1991,1(1): 67-78.
    
    [EC92] Elber, G. Cohen, E., Offset approximation improvement by control points perturbation, In: Lyche, T. and Schumaker, L.L., editors. Mathematical methods in computer aided geometric design II, New York, 1992,229-237.
    
    [Eck93] Eck, M., Degree reduction of Bézier curves, Computer Aided Geometric Design, 1993,10(3-4): 237-257.
    
    [Eck94] Eck, M., Degree reduction of Bézier surfaces, In: Fisher, R. editor. The mathematics of surfaces V. Oxford: Oxford University Press, 1994,135-154.
    
    [Eck95] Eck, M., Least squares degree reduction of Bézier curves, Computer-Aided Design, 1995, 27(11): 845-851.
    
    [ELM97] Elber, G. In-Kwon Lee, Myung-Soo Kim. Comparing offset curve approximating methods, IEEE Computing Graphcis and Application. 1997,17(3): 62-71,.
    
    [Far83] Farin, G. Algorithms for rational Bézier curves, Computer-Aided Design, 1983, 15(2): 73-79.
    
    [Far85b] Farouki, R.T., Exact offset procedures for simple solids, Computer Aided Geometric Design, 1985, 2(4): 257-279.
    
    [Far86b] Farouki, R.T. The approximation of non-degenerate offset surfaces, Computer Aided Geometric Design, 1986,3(1): 15-43.
    
    [Far92b] Farouki, R.T., Pythagorean-Hodograph curves in practical use, in: Barnhill, R.E. Ed, Geometry Processing for Designing and Manufacturing, SIAM, Philadelphia, 1992:87-99.
    
    [Far93] Farin, G. Curves and Surfaces for Computer Aided Geometric Design, 3rd ed. Academic Press Professional, Inc., 1993.
    [Far94a] Farin, G. NURBS Curve and Surfaces: From Projective Geometry to Practical Use, A K Peters Ltd, Wellesley, Massachusetts, 1994.
    [Flo06] Floater M.S. High order approximation of rational curves by polynomial curves. Computer Aided Geometric Design, 2006, 23(8): 621-628.
    [Flo92] Floater, M.S., Derivatives of rational Bézier curves, Computer Aided Geometric Design, 1992,9(3): 161-174.
    [Flo95] Floater, M.S. High-order approximation of conic sections by quadratic splines, Computer Aided Geometric Design, 1995,12(6): 617-637.
    [FN90a] Farouki, R.T. Neff, C.A. Analytic properties of plane offset curves, Computer Aided Geometric Design, 1990,7(1-4): 83-99.
    [FN90b] Farouki, R.T. Neff, C.A. Algebraic properties of plane offset curves, Computer Aided Geometric Design, 1990,7(1-4): 101-127.
    [FN95] Farouki, R.T., Neff, C.A. Hermite interpolation by Pythagorean hodograph quintics, Mathematics of Computation, 1995,64(212): 1589-1609.
    [For72] Forrest, A.R. Interactive interpolation and approximation by Bézier curve, the Computer Journal, 1972,15(1): 71-79.
    [FR88] Farouki, R.T., Rajan, V.T. Algorithms for polynomials in Bernstein form. Computer Aided Geometric Design, 1988, 5(1): 1-26.
    [FS90] Farouki, R.T., Sakkalis, T. Pythagorean hodographs, IBM Journal of Research and Development, 1990, 34(5): 736-752.
    [FS94] Farouki, R.T., Sakkalis, T. Pythagorean-hodographs space curves, Advances in Computational Mathematics, 1994,2(1): 41-66.
    [FS95] Farouki, R.T., Sederberg, T.W. Analysis of the offset to a parabola, Computer Aided Geometric Design, 1995,12(6): 639-645.
    [FS96] Farouki, R.T., Shah, S. Real-time CNC interpolators for Pythagorean hodograph, Computer Aided Geometric Design, 1996,13(7): 583-600.
    [Gol91] Goldapp, M., Approximation of circular arcs by cubic polynomials, Computer Aided Geometric Design, 1991,8(3): 227-238.
    [GS00] Gasca, M., Sauer, T., On the history of multivariate polynomial interpolation, Journal of Computational and Applied Mathematics. 2000,122(1-2): 23-35.
    [GS91a] Goodman, T.N.T., Said, H.B. Shape preserving properties of the generalized Ball basis. Computer Aided Geometric Design. 1991,8(2): 115-122.
    [GS91b] Goodman, T.N.T., Said, H.B. Properties of generalized Ball curves and surfaces. Computer Aided Geometric Design. 1991,23(8): 554-560.
    [GS98] Goodman, T.N.T., Said, H.B., Shape preserving properties of the generalized Ball basis, Technical Report M6/88, School of Mathematical and Computer Sciences, University Sains Malaysia, Penang, Malasia, Sept, 1998.
    [Her78] Hermite, C. Sur la formule d'interpolation de Lagrange, Journal ftir die Reine und Angewandte Mathematik, 1878, 84(1): 70-79.
    [HL93] Hoschek, J. Lasser, D. Fundamentals of Computer Aided Geometric Design. A. K. Peters, Ltd, Wellesley, 1993.
    [Hos87] Hoschek, J. Approximate conversion of spline curves, Computer Aided Geometric Design, 1987,4(1-2): 59-66.
    [Hos88] Hoscheck, J. Spline Approximation of offset curves, Computer Aided Geometric Design, 1988, 5(1): 33-40.
    [HSJ98] Hu, S.M., Sun, J.G., Jin T.G., et al. Approximate degree reduction of Bézier curves, Tsinghua Science and Technology, 1998, 3(2): 997-1000.
    [HSL08] Huang, Y.D., Su, H.M., Lin, H.W. A simple method for approximating rational Bézier curves using Bézier curves, Computer Aided Geometric Design. 2008, 25(8): 697-699.
    [HW88] Hoscheck, J. and Wissel, N., Optimal approximate conversion of spline curves and spline approximation of offset curves, Computer-Aided Design, 1988, 20(8): 475-483.
    [HWJ96] Hu, S.M., Wang, G.Z., Jin, T.G., Properties of two types of generalized Ball curves, Computer-Aided Design, 1996,28(2): 125-133.
    [Jüt98] Jüttler, B., The dual basis functions for the Bernstein polynomials. Advances in Computational Mathematics, 1998(8): 345-352.
    [JWT06] Jiang, P., Wu, H.Y., Tan, J.Q., The dual functionals for the generalized Ball basis of Wang-Said type and basis transformation formulas, Numerical Mathematics A Journal of Chinese Universities English Series. 2006,15(3): 248-256.
    [KA00] Kim H.O., Ahn, Y.J. Good degree reduction of Bézier curves using Jacobi polynomials. Computers & Mathematics with Applications, 2000, 40(10-11):1205-1218.
    [KB93] Kimmel, R. and Bruckstein, A.M., Shape offsets via level sets, Computer-Aided Design, 1993,25(3): 154-162.
    [Kic95] Kiciak, D., Construction of G~1 continuous joins of rational B6zier patches, Computer Aided Geometric Design, 1995, 12(3): 283-303.
    [KJSP01] Kim, D.S., Jang, T., Shin, H. and Park, J.Y., Rational Bézier form of hodographs of rational Bézier curves and surfaces, Computer-Aided Design, 2001,4(2): 321-330.
    [Kla83] Klass, R., An offset spline approximation for plane cubic splines, Computer-Aided Design, 1983,15(5): 297-299.
    [KM97] Kim, H.O., Moon, S.Y. Degree reduction of Bézier curves by L~1- approximation with endpoints interpolation. Computers & Mathematics with Applications., 1997, 33(5): 67-77.
    [KWR97] Kunze, R., Wolter, F.E., Rausch, T., Geodesic Voronoi diagrams on parametric surfaces, Proceedings of Computer Graphics International, CGI'97, June 1997, IEEE Computer Society Press, 1997,230-237
    [Lag77] Lagrange, J.L. Le(?)ons élémentaires sur les mathématiques donnees a l'(?)cole Normale en 1795, Journal de l'(?)cole polytechnique, VIIe et VIIIe cahiers, t.1812, II: 183-288.
    [LCC99] Lou, W.P., Chen, F.L., Chen, X.Q., Deng, J.S., Optimal degree reductionof interval polynomials and interval Bézier curves under L_1 norm, Procedings of the 6th International conference on CAD/CG, Shanghai, China, 1999, 3:1010-1015.
    [LH98] Li, Y.M. Hsu, V.Y. Curve offsetting based on Legendre series, Computer Aided Geometric Design, 1998,15(7): 711-720.
    [LKE96] Lee, I.K., Kim, M.S., Elber, G., Planar curve offset based on circle approximation, Computer Aided Geometric design, 1996,28(8): 617-630.
    [LKE97] Lee, I.K., Kim, M.S., Elber, G., New approximation methods of planar offset and convolution curves. In: Strasser W, Klein R, Rau R, editors. Geometric Modeling: Theory and Practice, 1997: 83-101.
    
    [LKE98] Lee, I.K., Kim, M.S., Elber, G., Polynomial/rational approximation of Minkowski sum boundary curves.Graphical Models and Image Processing, 1998; 60(2):136-165.
    [LPR99] Lutterkort, D., Peters, J., Reif, U. Polynomial degree reduction in L_2-norm equals best Euclidean approximation of Bézier coefficients. Computer Aided Geometric Design, 1999,16(7): 607-612.
    [LPY02] Lee, B.G., Park, Y.B., Yoo, J. Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction. Computer Aided Geometric Design, 2002,19(9): 709-718.
    [LR80] Lane, J.M., Riesenfeld, R.F. A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Transactions on Pattern Analysis Machine Intelligence, 1980,2(1): 35-46.
    [Lü95] Lü, W. Offsets-rational parametric plane curves, Computer Aided Geometric Design, 1995,12(6): 601-616.
    [Lü96] Lü, W. Rational parameterization of quadrics and their offsets, Computing, 1996, 57(2): 135-147.
    [LW00] Liu L.G., Wang G.J. Recursive formulae for Hermite polynomial approximations to rational Bezier curves. In: Martin R., Wang W.P. Eds., Proceedings of Geometric Modeling and Processing 2000: Theory and Applications, April 10-12, 2000, Hong Kong, IEEE Computer Society, Los Alamitos, 2000:190-197.
    [LW01] Liu L.G., Wang G.J. Two types of polynomial approximation to rational surfaces and their convergence, Journal of Software, 2001,12(5): 650-655.
    [LW02] Liu, L.G., Wang, G.J., Explicit matrix representation for NURBS curves and surfaces. Computer Aided Geometric Design, 2002,19(6): 409-419
    [LW06a] Lu, L.Z., Wang, G.Z. Multi-degree reduction of triangular Bfeier surfaces with boundary constraints. Computer-Aided Design, 2006,38(12): 1215-1223.
    [LW06b] Lewanowicz, S., Wozny, P. Connections between two-variable Bernstein and Jacobi polynomials on the triangle, Journal of Computational and Applied Mathematics, 2006,197(2): 520-533.
    [LW94] Lodha, S., Warren, J., Degree reduction of Bézier simplexes, Computer-Aided Design, 1994,26(10): 735-746.
    [Mae98a] Maekawa, T. Self-intersections of offsets of quadratic surfaces: Part I, explicit surfaces, Engineering with Computers. 1998,14(1): 1-13.
    [Mae98b] Maekawa, T. Self-intersections of offsets of quadratic surfaces: Part II, implicit surfaces, Engineering with Computers, 1998,14(2): 14-22.
    [Mae99] Maekawa, T. An overview of offset curves and surfaces, Computer-Aided Design, 1999,31(3): 165-173.
    [Mar83] Martin, R.R. Principal patches-a new class of surface patch based on differential geometry, in: Hagen P.J., ed., Proceeding of Eurographics'83, North-Holland, Amsterdam.
    [MCP97] Maekawa, T., Cho, W., Patrikalakis, N.M. Computation of self-intersections of offsets of Bézier surface patches, Journal of Mechanical Design: ASME Transactions, 1997,119(2): 275-283.
    [MPB93] Maekawa, T., Patrikalakis, N.M., Bardis, L., Computation of singularities and intersections of offsets of planar curves, Computer Aided Geometric Design, 1993, 10(5): 407-429.
    [MPS98] Maekawa, T., Patrikalakis, N.M., Sakkalis, T. and Yu, G., Analysis and applications of pipe surfaces, Computer Aided Geometric Design, 1998,15(5): 437-458.
    [MS90] Martin, R.R., Stephenson, P.C., Sweeping of three-dimensional objects, Computer -Aided Design, 1990, 22(4): 223-234.
    [MW91] Moore, D., Warren, J., Least-square approximation to Bézier curves and surfaces in James Arvo ed. Computer Gemes (II), Academic Press, New York, 1991.
    [MW97] Meek, D.S., Walton, D.J. Geometric Hermite interpolation with Tschirnhausen cubics, Journal of Computational and Applied Mathematics, 1997,81(2): 299-309.
    [New60] Newton, I. Letter to Oldenburg (24 October, 1676), in the Correspondence of Isaac Newton, H.W. Turnbull, Ed. Cambridge, U.K.: Cambridge Univ. Press, 1960, vol. II: 110-161.
    [OG97] Othman, W.A.M., Goldman, R.N. The dual basis functions for the generalized Ball basis of odd degree. Computer Aided Geometric Design, 1997,14(6):571~582
    [Pat89] Patrikalakis, N.M. Approximate conversion of rational splines, Computer Aided Geometric Design, 1989,6(2): 155-165.
    [PB89] Patrikalakis, N.M., Bardis, L., Offsets of curves on rational B-spline surfaces, Engineering with Computers, 1989,5(1): 39-46.
    [Pha88] Pham, B. Offset approximation of uniform B-splines, Computer-Aided Design, 1988, 20(10): 471-474.
    [Pha92] Pham, B. Offset curves and surfaces: A brief survey. Computer-Aided Design, 1992, 24(4): 223-229
    [PLR96] Pottmann, H., Lti, W., Ravani, B. Rational ruled surfaces and their offsets, Graphical Models and Image Processing, 1996,58(6): 544-552.
    [Pot95] Pottmann, H. Rational curves and surfaces with rational offsets, Computer Aided Geometric design, 1995,12(2): 175-192.
    [Pot97] Pottmann, H. General offset surfaces, Neural Parallel and scientific Computations, 1997, 5: 55-80.
    [PP98] Peternell, M., Pottmann, H., A Laguerre geometric approach to rational offsets, Computer Aided Geometric design, 1998,15(3): 223-249.
    [PT95] Piegl, L., Tiller, W. Algorithm for degree reduction of B-spline curves, Computer-Aided Design, 1995, 27(2): 101-110.
    [PT99] Piegl, L.A., Tiller, W. Computing offsets of NURBS curves and surfaces, Computer-Aided Design, 1999,31: 147-156.
    [PWG98] Pottmann, H., Wallner, J., Glaeser, G., Ravani, B. Geometric criteria for gouge-free three-axis milling of sculptured surfaces, in: Proceedings of ASME Design Engineering Technical Conferences, Atlanta, Georgia., September, 1998,13-16.
    [RA07] Rababah, A., Al-Natour, M., The weighted dual functional for the univariate Bernstein basis, Applied Mathematics and Computation, 2007,186(2):1581~1590.
    [RA08] Rababah, A., Al-Natour, M. Weighted dual functions for Bernstein basis satisfying boundary constrains. Applied Mathematics and Computation, 2008,199(2):456-463.
    [Rab03] Rababah, A., Distance for degree raising and reduction of triangular Bézier surfaces. Journal of Computational and Applied Mathematics, 2003, 158(2): 233-241.
    [Rab05] Rababah, A., L_2 degree reduction of triangular Bézier surfaces with common tangent planes at vertices. International Journal of Computational Geometry & Applications, 2005, 15(5): 477-490
    [RLY06] Rababah, A., Lee, B.G., Yoo, J., A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bemstein basis transformations. Applied Mathematics and Computation, 2006, 181(1): 310-318
    [RS04] Romani, L., Sabin, M.A., The conversion matrix between uniform B-spline and Bezier representations. Computer Aided Geometric Design, 2004, 21(6): 549-560
    [RWS97] Rausch, T., Wolter, F.E., Sniehotta, O. Computation of medial curves on surfaces, in: Goodman, T., Martin, R., eds., The Mathematics of Surfaces VII, Information Geometers, 1997, 43-68.
    [Sai89] Said, H.B., A generalized Ball curve and its recursive algorithm, ACM Transactions on Graphics, 1989, 8(4): 360-371.
    [Sal62] Salzer, H.E. Note on osculatory rational interpolation. Mathematics of Computation, 1962, 16(80): 486-491.
    [Sán00] Sanchez-Reyes, J., Applications of the polynomial S-power basis in geometry processing, ACM Transactions on Graphics, 2000, 19 (1): 27-55.
    [SánOl] Sanchez-Reyes, J., Inversion approximation for functions via S-power series, Computer Aided Geometric Design, 2001,18 (6): 587-608.
    [Sán03] Sanchez-Reyes, J., Chac6n, J.M., Polynomial approximation to clothoids via S-power series, Computer-Aided Design, 2003, 35 (14): 1305-1313.
    [Sán05] Sanchez-Reyes, J., S-power series: an alternative to Poisson expansions for representing analytic functions. Computer Aided Geometric Design, 2005, 22 (2): 103-119.
    [Sán97] Sanchez-Reyes, J., The symmetric analogue of the polynomial power basis, ACM Transactions on Graphics, 1997,16(3): 319-357.
    [SB92a] Sederberg, T.W., Buehler, D.B., Offsets of polynomial Bézier curves: Hermite approximation with error bounds, in: Lyche, T. and Schumaker, L.L., editors. Mathematical methods in computer aided geometric design II, 1992, 549-558.
    [SB92b] Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Second Edition. Springer-Verlag, 1992.
    [Sch66] Schoenberg, I.J. On Hermite-Birkhoff interpolation, Journal of Mathematical Analysis and Applications, 1966, 16(3): 538-543.
    [Sie83] Siemaszko, W., Thiele-type branched continued fractions for two variable functions, Journal of Computational and Applied Mathematics, 1983,9(2): 137-153.
    [SK91] Sederberg, T.W., Kakimoto, M., Approximating rational curves using polynomial curves, in: Farin, G., ed., NURBS for Curve and Surface Design, SIAM, Philadelphia, 1991, 144-158.
    [SL04] Sunwoo, H., Lee, N., A unified matrix representation for degree reduction of Bézier curves. Computer Aided Geometric Design, 2004, 21(2):151-164.
    [SSBW93] Stander, B.T., Sederberg, T.W., Burton, R.P. and Wang, G.J., Approximating rational surfaces using polynomial surfaces, Computer Aided Drafting, Design, Manufacturing, 1993,3(2): 1-7.
    [Tan00] Tan, J.Q., A compact determinantal representation for inverse differences, Journal of Mathematical Research and Exposition. 2000,20(1): 32-36.
    [Tan01] Tan, J.Q., The limiting case of Thiele's interpolating continued fraction expansion, Journal of Computational Mathematics., 2001, 19(4): 433-444.
    [Tan03] Tan, J.Q., Computation of vector valued blending rational interpolants. Numerical Mathematics: A Journal of Chinese Universities. 2003,12(1): 91-98.
    [Tan99] Tan, J.Q., Bivariate blending rational interpolants, Approximation Theory and Its Application, 1999, 15(2): 74-83.
    [TF00] Tan, J.Q., Fang, Y. Newton-Thiele's rational interpolants, Numerical Algorithms, 2000,24(1-2): 141-157.
    [TH84] Tiller, W. and Hanson, E.G., Offsets of two-dimensional profiles, IEEE Computer Graphics & Application, 1984,4(9): 36-46.
    [TT02] Tan, J.Q. Tang, S., Composite schemes for multivariate blending rational interpolation, Journal of Computational and Applied Mathematics, 2002, 144(1-2): 263-275.
    [TT99] Tan, J.Q. Tang, S., Bivariate composite vector valued rational interpolation, Mathematics of computation 1999, 69(232): 1521-1532.
    [Ver91] Vergeest, S.M., CAD Surface data exchange using STEP, Computer-Aided Design, 1991, 23(4): 269-281.
    [VP91] Vafiadou, M.E. and Patrikalakis, N.M., Interrogation of offsets of polynomial surface patches, in: Post, F.H., Barth, W., eds., Eurographics '91, Proceedings of the 12th Annual European Association for Computer Graphics Conference and Exhibition, Vienna, Austria, September 1991, Amsterdam: North-Holland, 1991, 247-259 and 538.
    [WC01] Wang, G.J. and Cheng, M., New algorithms for evaluating parametric surface, Progress in Natural Science, 2001, 11(2): 142-148.
    [WSC97] Wang, G.J., Sederberg, T.W. and Chen, F.L., On the convergence of polynomial approximation of rational functions, Journal of Approximation Theory, 1997, 89(3): 267-288.
    [Wu00] Wu, H.Y., Unifying representation of Bézier curve and generalized Ball curves. Applied Mathematics: A Journal of Chinese Universities (Ser. B), 2000, 15(l):109~121
    [Wu04] Wu, H.Y., Dual basis for a new family of generalized Ball basis. Journal of Computational Mathematics, 2004,22(1): 79-88
    [WW88] Watkins, M.W., A. Degree reduction for Bézier curves, Computer-Aided Design, 1988, 20(7): 398-405.
    [WW95] Wang, G.Z. and Wang, G.J., Higher order derivatives of a rational Bézier curve, CVGIP: Graphical Models and Image Processing, 1995, 57(3): 246-253.
    [WWF98] Wolters, H.J., Wu, G., Farin, G., Degree reduction of B-Spline curves, Computing Supplement, 1998, 13:235-241.
    [WZ97] Wang, G.Z., Zheng, J.M., Bounds on the moving control points of hybrid curves, Graphical Models and Image Processing, 1997, 59(1): 19-25.
    [Zhe95] Zheng, J.M., On rational representation of offset curves, Chinese Science Bulletin, 1995,40(1), 9-10.
    [ZT99] Zhu, G.Q., Tan, J.Q., A note on matrix-valued rational interpolants, Journal of computational and applied mathematics, 1999, 110(1): 129-140.
    [ZWT09a] Zhang, L., Wu, H.Y., Tan, J.Q. Dual basis functions for the NS power and their applications, Applied Mathematics and Computation, 2009, 207 (2): 434-441.
    [ZWT09b] Zhang, L., Wu, H.Y., Tan, J.Q., Dual bases for Wang- Bézier basis and their applications, Applied Mathematics and Computation, 2009, 214 (1): 218-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700