MIMO系统的优化与天线选择算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速发展的无线通信已成为信息产业中最为耀眼的亮点,并成为推动社会经济发展的强劲动力。但无线通信的迅速发展使有限的频谱资源与不断增加的系统容量需求之间的矛盾越来越突出。结合空时处理的多输入多输出(multi-input multi-output, MIMO)技术的出现,为解决该矛盾提供了新途径。MIMO无线通信系统因为在容量和频谱利用率方面的卓越性能,成为未来无线通信系统的发展方向。
     本文分析了影响MIMO系统实际应用中系统容量、传输速率和传输可靠性的因素,深入研究了一系列相关理论和关键技术。特别是在空间复用MIMO系统中的天线选择技术,闭环MIMO系统的分集与复用折衷优化问题,多用户MIMO系统预编码方法和相关优化设计问题等方面做了详细研究。
     基于误码率准则的天线选择技术可以有效的提高空分复用系统的传输性能,降低系统成本,但由于实时性问题使其实用性变差。本文提出了基于误码率准则的次优天线选择算法。该算法利用系统误码率、线性接收机输出信噪比与信道矩阵之间的函数关系对系统误码率上边界进行近似,进而选择较优的天线子集,达到改善系统传输性能的目的。为了降低计算复杂度,推导出了复域递推Householder变换方法,在此基础上给出了快速的天线选择算法。与传统算法相比,该算法降低了计算量的同时提高了系统的传输可靠性,改善了空分复用系统的性能,可以很好的满足系统实时性、快速性的要求,在相关信道传播环境中也可获得可靠的传输性能和较好的系统容量。
     针对空分复用多用户MIMO系统利用发送选择分集算法系统成本过高,不易于实现的问题,提出了一种适用于多用户MIMO系统下行链路的联合天线选择算法。通过对多用户系统基站发送端和用户接收端传输错误概率的分析,得到以系统误码率最小化为目标的选择准则。该算法可以获得较好的误码率性能,有效的降低了多用户系统复杂度,在系统性能和硬件成本间取得了较好的折衷。
     提出一种闭环多天线系统的分集复用判决切换算法。该算法以误码率为准则,在发送端根据反馈信息采用不同工作方式来满足系统的要求,充分利用分集复用增益,使得可切换MIMO系统的传输速率和可靠性得到很大程度上的改善。采用低复杂度的判决准则,推导得到一种分集复用模式快速切换算法对系统分集复用模式进行选择,达到充分利用多天线系统分集与复用利益的目的。与现存算法相比,本文给出的算法可以更好地利用系统的瞬时分集增益,大大降低了计算复杂度,很好地满足了多天线通信系统对实时性和快速性的要求。
     以系统可靠性和传输速率为目标,提出了基于自适应码率、功率分配技术的多天线系统分集复用折衷算法和快速折衷算法。该算法在链路级采用自适应的码率和功率分配方案,根据信道实时状态信息选择多天线系统工作方式,充分利用系统分集复用增益的同时具有较好的抗扰动性能和较低的计算复杂度,适于实际的通信环境。
     在以基站为中心的下行多用户MIMO通信系统中,其传输的关键在于如何有效的消除多用户干扰,使移动台获得良好的传输性能。为满足这一性能要求,在单天线多用户波束形成的基础上,提出了一种多天线多用户的预编码算法和发送端性能优化预处理算法。该算法利用下行广播信道多用户信道矩阵分块的方法构造干扰用户零空间,进行多用户干扰消除,充分利用多用户MIMO系统性能。与以往线性预编码算法相比,所提算法可以获得较好的误码率性能,且具有较低的计算量,满足了无线通信系统实时性、快速性的要求。
     考虑到空分复用多用户MIMO系统用户间缺乏协作以及消除多用户干扰后残存误差对传统线性接收机检测性能的影响,本文利用每个用户的自身信道对多用户系统用户端信道进行扩展重构,基于扩展后的信道对多用户系统用户接收机进行优化均衡。减少了多用户干扰消除后的残差和信道估计误差的影响,有效地改善了多用户MIMO系统接收机性能,具有较好的鲁棒性且易于实现。
     给出了一种迭代的多用户MIMO系统用户选择算法,避免了用户信道矩阵直接求逆,减少了计算量。不仅可以获得较好的系统容量,具有较低的计算复杂度,而且对于实际的多用户MIMO通信系统具有较强的适用性。
The wireless communication technology has become more and more important in socio-economic and daily life, and the users also put higher demands on quality of service of communication systems. But limited spectral has been obstacle of the development of wireless communication. The multi-input multi-output (MIMO) technology is an efficient scheme to overcome the problem. Because of its excellent capacity and spectral efficiency, multiple-input multiple-output (MIMO) system has become the direction of future development of wireless communication systems.
     In this thesis, we analyze the factors that may affect the capacity, rate and reliability of MIMO system in practical applications, and introduce the related theory and key technologies. At the same time, we make detailed study on the antenna selection technology, the diversity-multiplexing tradeoff and the precoding and correlated optimal schemes of multi-user MIMO (MU-MIMO) system.
     Antenna selection technology which is based on bit error rate (BER) criterion can improve transmission performance of spatial multiplexing system and reduce the system cost. The real-time and rapidity of algorithm is very important. Therefore, we propose a suboptimal antenna selection algorithm based on BER. Utilizing the approximate equivalent relation of BER, post-processing signal-to-noise ratio (SNR) and channel matrix, we can get the antenna subset to improve the performance of system. For reducing the cost of computation, we give out a fast antenna selection algorithm based on a complex recursive Householder QR factorization. The proposed algorithm has lower computational complexity than traditional suboptimal algorithm. Therefore, it meets the real-time and fast requirement of system. Moreover, the proposed algorithm provides good reliability and enjoys significant performance no matter correlated channel or uncorrelated.
     The MU-MIMO spatial multiplexing system can get good diversity gain with transmitting selection diversity. But it makes the hardware cost too high. For reducing the hardware cost, we give out a joint antenna selection algorithm based on error rate. The proposed antenna selection algorithm can achieve similar error rate probability as the preprocessing optimal method, and get satisfactory tradeoff between the performance and hardware cost.
     This thesis proposes a switched decision algorithm based on closed loop MIMO system. The proposed algorithm adopts the better mode according to the information of feedback, gets optimal tradeoff of the two gains, and improves the performance of system. At the same time, a fast diversity-multiplexing switching algorithm is proposed in this thesis. The proposed algorithm can get the instantaneous diversity gain by a low complexity judgment criterion. Compared with the traditional algorithm, the proposed algorithm has much lower computational cost and is suitable for real-time communication systems.
     Aiming at the reliability and data rate of system, a novel viewpoint of diversity and multiplexing switching algorithm is proposed based on adaptive link technique, and a low computational complexity tradeoff algorithm is give out. Based on bit error rate, the proposed scheme achieves adaptive bit and power allocation according to real-time channel state information (CSI), and the system mode is dynamically adjusted based on limited feedback bits from receiver. The proposed algorithm can obtain the diversity and multiplexing gains simultaneously, has low cost and good robustness.
     The processing is more challenging due to the lack of coordination among the users in a downlink MU-MIMO system where a base station (BS) transmits to different users simultaneously and in the same frequency band. To solve this problem, this thesis proposes an effective precoding algorithm and preprocessing scheme which has low complexity. The proposed algorithm can cancel the multi-user interference (MUI) and make full use of the spectral of MU-MIMO system. Compared with the traditional precoding algorithm, the proposed algorithm can get the similar BER, has lower computational complexity, and meets the requirement of real-time and rapidity of wireless communication system well.
     Considering the lack of coordination among the users and the influence of residual error, we propose a computationally efficient match filter algorithms for MU-MIMO system. This algorithm extends the channel matrix of ZF to the MMSE solution to minimize the mean square error (MSE), thereby achieves good performance with reduced complexity.
     In previous works, the multi-user spatial multiplexing system has no special strategies for the computational cost and worst channel-case user. In order to overcome the shortages, we propose a suboptimal iterative user selection method for the MU-MIMO system. The proposed algorithm achieves good sum capacity performance, has lower complexity because of avoiding to calculating the inverse of users'channels, and is suitable for practical communication system.
引文
[1]郭梯云,杨家玮,李建东.数字移动通信[M],北京:人民邮电出版社,2001.
    [2]Lee L N, Karimullah K, Sun F W, Eroz Mustafa. Third generation wireless technologies-expectations and realities [C], Proceedings of PIMRC, Boston:IEEE, 1998,79-83.
    [3]Arroyo-fernandez B, Dasilva J S, Fernandes J, and Prasad R. Life after third-generation mobile communications [J]. IEEE Communications Magazine.2001,39(8):41-42.
    [4]Kim Y, Jeong B J, Chung J, et al. Beyond 3G:vision, requirement, and enabling technologies. IEEE Communication Magazine,2003,41(3):120-124.
    [5]Bria A, Gessler F, Queseth O, and Stridh R et al.4th-generation wireless infrastructure: scenarios and research challenges. IEEE Personal Communications,2001,8(6):25-31.
    [6]Kan Z, Huang L, Gang L, et al. Beyond 3G evolution [J]. IEEE Vehicular Technology Magazine.2008,3(2):30-36.
    [7]Yu X H, Chen G, Chen M, et al. Toward beyond 3G:The FuTURE project in China [J]. IEEE Communications Magazine.2005,43(1):70-75.
    [8]Telatar I E. Capacity of multi-antenna Gaussian channels [J]. Tech. Rep., AT&T Bell Labs,1995.
    [9]Foschini G J, Gans M J. On limits of wireless communication in a fading environment when using multiple antennas [J]. Wireless Personal Communications,1998,6(3): 311-335.
    [10]Wang J M, Daneshrad B. A Comparative Study of MIMO Detection Algorithms for Wideband Spatial Multiplexing Systems [C]. IEEE Communications Society/WCNC 2005,2005,408-403.
    [11]Goldsmith A, Jafar S A, Jindal N. Capacity Limits of MIMO Channels [J]. IEEE journal on selected areas in communications,2003,21(5):684-702.
    [12]Sundaresan K, Sivakumar R. Routing in Ad-hoc Networks with MIMO Links [C]. 13TH IEEE International Conference on Network Protocols (ICNP'05),2005,85-98.
    [13]Tseng S M, Yu H C, Chang C L. EM Vector Channel Estimation and V-BLAST/PIC Detection for Multiuser Long-Code MIMO CDMA in Multipath Rayleigh Fading Channels [C].19th International Conference on Advanced Information Networking and Applications,2005,565-569.
    [14]Lee W, Sieskul B T, Kunaruttanapruk S. Optimum Training Sequences for the Uplink of MIMO MC-CDMA Systems [C].3rd Annual Communication Networks and Services Research Conference,2005,223-228.
    [15]Paulraj A J, papadias C B, Space-time processing for wireless communications [J], IEEE Signal Processing Magazine,1997,14(6):49-83.
    [16]Paulraj A J, Gore D A, Nabar R U, and Bolcskei H, An over view of MIMO communications:a key to gigabit wireless, Proe. IEEE, Feb.2004,92(2):198-218.
    [17]Telatar E. Capacity of multi-antenna Gaussian channels [J]. European Transactions on Telecommunications.1999,10(6):585-595.
    [18]Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas [J]. Bell Labs Technical Journal.1996, 1(2):41-59.
    [19]Gans M J, Amitay N, etc. Outdoor BLAST measurement system at 2.44 GHz: calibration and initial results [J]. IEEE Journal on Selected Areas in Communications, 2002,20(3):570-583.
    [20]Wolniansky P W, et al. V-BLAST:an architecture for realizing very high data rates over the rich-scattering wireless channel [C]. URSI International Symposium on Signals, Systems, and Electronics, ISSSE 98, New York,1998,295-300.
    [21]黄韬,袁超伟,杨睿哲,刘鸣.MIMO相关技术与应用[M].机械工业出版社,2007.
    [22]Vucetic B, Yuan J. Space-Time Coding [M]. John Wiley & Sons, Ltd,2005.
    [23]Dohler M, Aghvami H. On the approximation of MIMO capacity [J].IEEE Transactions Wireless Communication,2005,4(1):30-34.
    [24]Smith P, Shafi M. An approximate capacity distribution for MIMO systems [J]. IEEE Transactions on Communication,2004,52(6):887-890.
    [25]Grant A. Rayleigh fading multiple-antenna channels [J]. Sginal Porcessing (Special Issue on Space-Ttme Coding (Part Ⅰ)),2002,2002(3):316-329.
    [26]Hyundong S, Jae H L. Closed-form formulas for ergodic capacity of MIMO Rayleigh fading channels [C]. Anchorage, AK, USA:IEEE,2003:vol.5,2996-3000
    [27]HassibiB. An efficient square-roor algorithm for BLAST [C]. ICASSP 2000, Istanbul, Turkey,2000,556-560.
    [28]Wubben D, Bohnke, R, Kuhn, V and Kammeyer, K D.MMSE extension of V-BLAST based on sorted QR decomposition [C]. Vehicular Technology Conference, October 6-9, 2003,508-512.
    [29]Bohnke R, Wubben D, Kuhn V. Reduced Complexity MMSE Detection for BLAST Architectures [C]. Global Telecommunications Conference. San Francisco,2003,4: 2258-2262.
    [30]Wubben D, Bohnke R, Rinas J. Efficient algorithm for decoding Layered Space-Time Codes [J]. IEEE Electronic Letters,2001,37(22):1348-1350.
    [31]Michalke C, Venkataraman H, Sinha V, Rave W, and Fettweis G. Application of SQRD algorithm for efficient MIMO-OFDM system [C]. in Proc. European Wireless Conference, Nicosia, Cyprus, Apr.2005.
    [32]Gomaa M, Ghrayeb. A low complexity MMSE detector for multiuser layered space-time coded MIMO systems [C]. CCECE 2007,2007,617-620.
    [33]Nabar R, Gore D, Paulraj A. Optimal selection and use of transmit antennas in wireless systems [C]. Proceeding International Conference Telecommunications (ICT'2000), Acapulco, Mexico,2000.
    [34]Gore D A, Nabra R U, Paulraj A. Selecting an optimal set of transmit antennas for a low rank matrix channel [C]. International Conference on Acoustic, Speech, and Signal Processing, Istanbul, Turkey,2000,2785-2788.
    [35]Gorokhov A. Antenna selection algorithms for MEA transmission systems [C]. International Conference on Acoustic, Speech, and Signal Processing, Orlando, FL, USA,2002,2857-2860.
    [36]Gharavi-Alkhansari M, Gershman A B. Fast antenna subset selection in MIMO systems [J]. IEEE Transactions on Signal Processing,2004,52(2):339-347.
    [37]Molisch A F, Win M Z, Winters J H. Capacity of MIMO systems with antenna selection [C]. IEEE International Conference on Communications,2001,570-574.
    [38]Chen Z, Yuan J, Vucetic B, et al. Performance of Alamouti scheme with transmit antenna selection [J]. Electronics Letters,2003,39(23):1666-1668.
    [39]Joo-seok P, Dong-jo P. A new antenna selection algorithm with low complexity for MIMO wireless systems [C].2005 IEEE International Conference on Communications, Seoul, South Korea:IEEE,2005,2308-2312.
    [40]Dai L, Sfar S, Letaief K B. Optimal antenna selection based on capacity maximization for MIMO systems in correlated channels [J]. IEEE Transactions on Communications, 2006,54(3):563-573.
    [41]Lin Z, Premkumar A B, Madhukumar A S. Least squares-based receive antenna selection for MIMO spatial multiplexing systems with linear receivers [J]. IEEE Communications Letters,2006,10(4):254-256.
    [42]Dua A, Medepalli K, Paulraj A J. Receive antenna selection in MIMO systems using convex optimization [J]. IEEE Transactions on Wireless Communications, IEEE, USA, 2006,5(9):2353-2357.
    [43]Tarokh V, Naguib A, Seshadri N, and Calderbank A R. Combined array processing and space-time coding [J]. Information Theory, IEEE Transactions on,1999,45(4): 1121-1128.
    [44]Mudulodu S, Paulraj A J. A simple multiplexing scheme for MIMO systems using multiple spreading codes [C]. Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA:IEEE,2000, 769-774.
    [45]Zheng L, Tse D N C. Diversity and Multiplexing:A Fundamental Tradeoff in Multiple-Antenna Channels [J]. IEEE Transactions on Information Theory,2003,49(5): 1073-1096.
    [46]Maurer J, Maiz G, Seethaler D. Low-complexity and full-diversity MIMO detection based on condition number thresholding [C]. ICASSP 2007 IEEE, IEEE International Conference on,2007, Ⅲ-61-111-64.
    [47]Choi S, Ko Y C, Powers E J. Optimization of switched MIMO systems over Rayleigh fading channels [J]. Vehicular Technology, IEEE Transactions on,2007,56(1):103-114.
    [48]Heath, Jr. R W, Love D J, Dual-mode antenna selection for spatial multiplexing systems with linear receivers [C], Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Piscataway, NJ, USA:IEEE,2003, 1085-1089.
    [49]Heath, Jr. R W, Paulraj A J, Switching between diversity and multiplexing in MIMO systems [J], IEEE Transactions on Communications,2005,53(6):962-968.
    [50]Heath, Jr. R W, Love D J. Multimode antenna selection for spatial multiplexing systems with linear receivers [J]. IEEE Transactions on Signal Processing,2005,53(8): 3042-3056.
    [51]Kim T T, Skoglund M. Diversity-multiplexing tradeoff of MIMO systems with partial power control [C]. Communications,2006 International Zurich Seminar on,2006: 106-109.
    [52]Kim T T, Skoglund M. Diversity-multiplexing tradeoff in MIMO channels with partial CSIT [J], IEEE Transactions on Information Theory,2007,53(8):2743-2759.
    [53]Biglieri E, Goldsmith A, Muquet B, Sari H, Diversity, interference cancellation and spatial multiplexing in MIMO mobile WiMAX systems [C], Mobile WiMAX Symposium, Piscataway, NJ, USA:IEEE,2007,74-79.
    [54]Willink T J, Colman G W K. Diversity-multiplexing trade-off for mobile urban environments [J]. Electronics Letters,2007,43(4):231-232.
    [55]Zhao L, Mo W, Ma Y, Wang Z. Diversity and multiplexing tradeoff in genera] fading channels [J], IEEE Transactions on Information Theory,2007,53(4):1549-1557.
    [56]Viswanath P, Tse D. Sum capacity of the vector Gaussian broadcast channel and downlink-uplink duality [J]. IEEE Transactions on Information Theory,2003,49(8): 1912-1921.
    [57]Vishwanath S, Jindal N, Goldsmith A. Duality, achievable rates and sum rate capacity of Gaussian MIMO broadcast channel [J]. IEEE Transactions on Information Theory,2003, 49(10):2658-2668.
    [58]Windpassinger C, Fischer R F, Vencel T, et al. Precoding in multiantenna and multiuser communications [J]. IEEE Transactions on Wireless Communications.2004,3(4): 1305-1316.
    [59]Spencer Q H, Swindlehurst A L, Haardt M. Zero-forcing methods for downlinks spatial multiplexing in multiuser MIMO channels [J]. Signal Processing, IEEE Transactions on, 2004,52(2):461-471.
    [60]Choi Lai-U, Murch R D. A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Transactions on Wireless Communications [J],2004,3(1):20-24.
    [61]Chen R, Andrews J G, Heath, Jr. R W. Multiuser space-time block coded MIMO system with downlink precoding [C].2004 IEEE International Conference on Communications, Jun 20-24 2004 Paris, France:Institute of Electrical and Electronics Engineers Inc., Piscataway, United States,2004,2689-2693.
    [62]Chen R, Heath, Jr. R W, and Andrews J G. Transmit selection diversity for unitary precoded multiuser spatial multiplexing systems with linear receivers [J], IEEE Transactions on Signal Processing,2007,55(3):1159-1171.
    [63]Schubert M, Boche H. Solution of the multiuser downlink beamforming problem with individual SINR constraints [J]. IEEE Transactions Vehicular Technology,2004,53(1): 18-28.
    [64]Tarighat A, Sadek M, and Sayed A H. A multi user beamforming scheme for downlink MIMO channels based on maximizing signal-to-leakage ratios [C]. IEEE ICASSP. Philadelphia, USA:IEEE,2005,ⅲ/1129-ⅲ/1132.
    [65]Sadek M, Tarighat A, Sayed A H. Active antenna selection in multiuser MIMO communications [J]. IEEE Transactions on Signal Processing.2007,55(4):1498-1510.
    [66]Sadek M, Tarighat A, and Sayed A H. Leakage-Based Precoding Scheme for Downlink Multi-User MIMO Channels [J]. IEEE Transactions on Communications,2007,6(5): 1711-1721.
    [67]Sharif M, Hassibi B. On the capacity of MIMO broadcast channels with partial side information [J]. IEEE Transactions on Information Theory,2005,51(2):506-522.
    [68]Shen Z, Chen R, Andrews J G, Heath, Jr. R W, and Evans B L. Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization [J]. IEEE Transactions on Signal Processing,2006,54(9):3658-3663.
    [69]Berrou C, Glavieux A, Thitimasjshima P. New Shannon limit error-correcting coding and decoding:Turbo codes [C].1993 IEEE International Communications Conference, Geneva, Switzerland,1993,1064-1070.
    [70]Horn R, Johnson C. Matrix Analysis [A]. Cambridge University Press,1985.
    [71]Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J]. Wireless Personal Communications.1998,6(3): 311-335.
    [72]Golden G D, et al. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture [J]. Electronics Letters 1999,35(1):14-15.
    [73]Heath, Jr. R W, Paulraj A. Diversity versus multiplexing in narrowband MIMO channels: a tradeoff based on Euclidian distance [J]. IEEE Transaction on Communications,2001, 10:35-40.
    [74]Kamath M A, Hughes B L, Xinying Y. Gaussian approximations for the capacity of MIMO Rayleigh fading channels [C]. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA:IEEE,2002, 614-618.
    [75]Benedetto S, Biglieri E. Principles of digital transmission with wireless applications [M]. New York:Kluwer Academic/Plenum Publishers,1999.
    [76]Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication:Performance criteria [C]. Proceedings of the 1997 IEEE International Conference on Communications, Montreal, Can:IEEE, Piscataway, NJ, USA,1997, 299-303.
    [77]Tarokh V, Seshadri N, Calderbank A R. Space-Time Codes for High Data Rate Wireless Communication:Performance Criterion and Code Construction [J]. IEEE Transactions on Information Theory, Mar.1998,44(2):744-765.
    [78]Jankiraman M. Space-time codes and MIMO systems [M]. Artech House,2004.
    [79]Alamouti S M. A simple transmit diversity technique for wireless communications [J]. IEEE Jounal on Selected Areas in Communications,1998,16(8):1451-1458.
    [80]Tarokh V, Jafarkhani, Calderbank A R. Space-time block codes from orthogonal designs [J]. IEEE Transactions on Information theory,1999,45(5):1456-1467.
    [81]Paulraj A, Nabar R, Gore D. Introduction to Space-Time Wireless Communications [M], Cambridge Univ. Press. Cambridge (UK).2003.
    [82]黄丘林,史小卫.MIMO系统中分集增益和空间复用增益的折衷关系[J].电子与信息学报,2007,29(3):681-68.
    [83]Sandhu S, Navar R U, Gore D A, Paulraj A J. Near-optimal selection of transmit antennas for MIMO channel based on Shannon capacity [C]. Signals, Systems and Computers,2000. Conference Record of the Thirty-Fourth Asilomar Conference on, Pacific Grove, CA, USA,2000,567-571.
    [84]Gorokhov A, Gore D A, Paulraj A J. Receive antenna selection for MIMO spatial multiplexing:theory and algorithms [J]. IEEE Transactions on Signal Processing,2003, 51(11):2796-2807.
    [85]Lutkepohl H. Handbook of Matrices. John Wiley & Sons, Chichester,1996.
    [86]Heath, Jr. R W, Paulraj A J. Antenna selection for spatial multiplexing systems based on minimum error rate [C]. IEEE International Conference on Communications, Helsinki, Finland,2001,2276-2280.
    [87]Heath, Jr. R W, Sandhu S, Paulraj A. Antenna selection for spatial multiplexing systems with linear receivers [J]. IEEE Communications Letters.2001,5(4):142-144.
    [88]Heejung Y, Myung-soon K, Taehyun J, et al. Transmit antenna selection for MIMO systems with V-BLAST type detection [C]. Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, Seoul, South Korea:IEEE,2004,634-638.
    [89]Kammoun K and Fontenelle F. Antenna selection for MIMO systems based on an accurate approximation of QAM error probability [C]. IEEE 61 st Vehicular Technology Conference, Stockholm, Sweden,2005,206-210.
    [90]Suard B, Xu G, Kailath T. Uplink channel capacity of spaced-division-multiple-access schemes [J]. IEEE Transactions on Information Theory,1998,44(4):1468-1476.
    [91]Paulraj A, Nabar R, Gore D, Introduction to space-time wireless communications [M]. Cambridge,2005.
    [92]Goldslnith A. Capacity limits of MIMO channels [C]. IEEE JSAC,2003,684-702.
    [93]Cover T, Thomas J. Elements of information Theory [M]. New York, Wiley,1991.
    [94]Costa M. Writing on dirty paper [J]. IEEE Transactions on Information Theory,1983, 29(5):439-451.
    [95]Spencer Q H, Peel C B, Swindlehurst A L. Haardt M. An introduction to the multiuser MIMO downlink [J]. IEEE Communication Magazine,2004,42(10):60-67.
    [96]Harashima H, Miyakawa H. Matched-transmission technique for channels with intersymbol interference [J]. IEEE Transactions on Communications.1972, CM-20(4): 774-780.
    [97]Tomlinson, M. New automatic equaliser employing modulo arithmetic [J]. Electronics Letters,1971,7(5-6):138-139.
    [98]Foschini G, Gans M. On limits of wireless communication in a fading environment when using multiple antennas [J]. Wireless Personal Communications,1998,6(3): 311-335.
    [99]Fischer R F H, Precoding and signal shaping for digital transmission [M]. New York: John Wiley & Sons,2002.
    [100]Rayleigh L. The theory of sound,2nd ed [M]. New York:Macmillian,1937.
    [101]Ericsson N S. Adaptive modulation and scheduling of IP traffic over fading channels [C].VTC,1999,849-853.
    [102]Jalali A, Padovani R, Pankaj R. Data throughput of CDMA-HDR a high efficiency high data rate personal communication wireless system [C].VTC,2000,1854-1858.
    [103]Golub G H, Van Loan C F, Matrix computations [M]. The Johns Hopkins University Press,1996.
    [104]Chung Kuo-Liang, Yan Wen-Ming. The complex Householder transform [J]. IEEE Transaction on Signal Processing,1997,45(9):2374-2376.
    [105]Liu Z. QR methods of O(N) complexity in adaptive parameter estimation [J]. IEEE Transactions on Signal Processing,1995,43(3):720-729.
    [106]Gore D A, Heath, Jr. R W, Paulraj A J. Transmit selection in spatial multiplexing systems [J]. IEEE Communications Letters.2002,6(11):491-493.
    [107]张贤达.矩阵分析与应用[M].清华大学出版社,2004.
    [108]Edelman A. Eigenvalues and condition numbers of random matrices [D]. Massachusetts Institute of Technology, Cambridge (MA),1989.
    [109]Demmel J W. The probability that a numerical analysis problem is difficult [J]. Mathematics of Computation.1988,50(182):449-480.
    [110]Proakis J G, Digital Communications,2nd ed [M]. McGraw-Hill, New York,1989.
    [111]Chung S T, Goldsmith A J. Degrees of freedom in adaptive modulation:a unified view [J]. IEEE Transactions on Communications,2001,49(9):1561-1571.
    [112]Thoen S, Van der Perre L, Gyselinckx B, Engels M. Performance analysis of combined transmit-SC/receive-MRC [J]. IEEE Transactions on Communications,2001,49(1): 5-8.
    [113]Xie Z B, Wang J K, Wang Y. Antenna Selection for Spatial Multiplexing Systems Based on Complex Householder QR Factorization [C]. International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ, USA:IEEE, 2007,710-713. [114] Zhou Q, Dai H. Joint antenna selection and link adaptation for MIMO systems [J]. IEEE Transactions on vehicular technology,2006,55(1):243-255. [115] Barlett M S. On the theory of statistical regression [M]. John Wiley & Sons Inc,1975. [116] Muirhead R J. Aspects of multivariate statistical theory [M]. New York:Wiley,1982. [117] Kim J, Park S, Lee J H, and Jung H. A scheduling algorithm combined with zero-forcing beamforming for a multiuser MIMO wireless system [C]. Vehicular Technology Conference, USA:IEEE,2005,211-215. [118] Hutter A A, de Carvalho, E, and Cioffi, J M. On the impact of channel estimation for multiple antenna diversity reception in mobile OFDM systems [C]. Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,2000,1820-1824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700