对生物分子具有特异性电化学响应的离子液体—纳米复合材料界面的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要用离子液体和纳米材料修饰基体电极,利用它们特殊的化学性质及生物相容性制备新型的电化学生物传感器,用于生物小分子的无酶催化检测。
     论文主要由五部分组成,第一部分综述了离子液体电化学传感器和纳米材料及其在在电化学生物催化检测中的应用;第二、三部分分别研究了离子液体和镍纳米粒子制备无酶电化学生物传感器,所制备的生物传感器可成功实现对葡萄糖的无酶检测。第四、五部分采用离子液体、六氰铁根络合物制备用于嘌呤检测的新型电化学生物传感器。用电化学方法对传感器进行了表征和条件的优化,制得的电化学生物传感器可灵敏地检测嘌呤。
In this paper, several sensitive electrochemical biosensors were successfully realized on ionic liquid and nanocomposites modified electrodes. The resulted electrochemical biosensors were prepared and used to detect biologic molecule.
     The paper is made up of five parts. Firstly, a summary referring to the development of the ionic liquid electrochemical biosensor and the application in biosensing of nanocomposites are reviewed. The second part and the third part are reported on two novel nonenzymatic amperometric glucose biosensors based on ionic liquid and Nickel nanoparticle. The loading of the ionic liquid and Nickel nanoparticle are greatly enhanced and the sensitivity for the glucose detection is markedly improved. In the fourth part and the fifth part, hexacyanoferrate nanoparticles membranes on the carbon ionic liquid electrode are constructed for the electrochemical sensing of the guanine and adenine detection. The conditions for the modified electrode are optimized and the biosensors also have good selectivity, stability and reproducibility.
引文
[1] Luo H M, Dai S, Bonnesen P V, et.al. Use of a novel medium, the ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate, for liquid–liquid extraction of lead in water and its determination by graphite furnace atomic absorption spectrometry. Anal. Chem., 2004, 76:3078-3083
    [2] Lu X B, Hu J Q, Yao X, et.al. Composite System Based on Chitosan and Room-Temperature Ionic Liquid: Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules, 2006, 7:975-980
    [3] Sun W, Wang D D, Gao R F, et.al. Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem. Commun., 2007, 9:1159-1164
    [4] Chen H J, Wang Y L, Liu Y, et.al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film. Electrochem. Commun., 2007, 9:469-474
    [5] Yan R, Zhao F Q, Li J W, et.al. Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films. Electrochim. Acta, 2007, 52:7425-7431
    [6] Wang S F, Chen T, Zhang Z L, et.al. Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films. Electrochem. Commun., 2007, 9:1709-1714
    [7] Xiong H Y, Chen T, Zhang X H, et.al. Electrochemical property and analysis application of biosensors in miscible nonaqueous media-Room-temperature ionic liquid. Electrochem. Commun., 2007, 9:1648-1654
    [8] Qi B, Yang X R. Characterization and electrocatalytic application of a fullerene/ionic-liquid composite. Mater. Lett., 2008, 62:980-983
    [9] Lei C X, Hu S Q, Shen G L, et.al. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta, 2003, 59:981-988
    [10] He J B, Lin X Q, Pan J. Multi-Wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin. Electroanal.., 2005, 18:1681-1686
    [11] Deng M J, Chen P Y, Leong T I, et.al. Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochem. Commun., 2008, 10:213-216
    [12] Denga M J, Chen P Y, Sun I W. Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis((trifluoromethyl)sulfonyl) imide room-temperature ionic liquid. Electrochim. Acta, 2007, 53:1931-1938
    [13] Changa J K, Huanga C H, Tsai W T. Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors. Electrochim. Acta, 2008, 53:4447-4453
    [14] Chang J K, Chen S Y, Tsai W T, et.al. Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochem. Commun., 2007, 9:1602-1606
    [15] Gou S P, Sun I W. Electrodeposition behavior of nickel and nickel–zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt. Electrochim. Acta, 2008, 53:2538-2544
    [16] Deng M J, Sun I W, Chen P Y, et.al. Electrodeposition behavior of nickel in the water- and air-stable 1-ethyl-3-methylimidazolium-dicyanamide room-temperature ionic liquid. Electrochim. Acta, 2008, 53:5812-5818
    [17] Xi F N, Liu L J, Wu Q, et.al. One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosens. Bioelectron., 2008, 24:29-34
    [18] Fu C P, Zhou H H, Peng W C, et.al. Comparison of electrodeposition of silver in ionic liquid microemulsions. Electrochem. Commun., 2008, 10:806-809
    [19] Mann O, Pan G B, Freyland W. Nanoscale electrodeposition of metals and compound semiconductors from ionic liquids. Electrochim. Acta, 2009, 54:2487-2490
    [20] Safavi A, Maleki N, Tajabadi F, et.al. High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem. Commun., 2007, 9:1963-1968
    [21] Legeai S, Diliberto S, Stein N, et.al. Room-temperature ionic liquid for lanthanum electrodeposition. Electrochem. Commun., 2008, 10:1661-1664
    [22] Lopez M S, Mecerreyes D, Lopez-Cabarcos E, et.al. Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosens. Bioelectron., 2006, 21:2320-2328
    [23] Lu X B, Zhang Q, Zhang L, et.al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem. Commun., 2006, 8:874-878
    [24] Liu Y, Huang L J, Dong S J. Electrochemical catalysis and thermal stability characterization of laccase–carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Biosens. Bioelectron., 2007, 23:35-41
    [25] Du P, Liu S N, Wu P, et.al. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta, 2007, 52:6534-6547
    [26] Xiao F, Zhao F Q, Li J W, et.al. Sensitive voltammetric determination of chloramphenicol by usingsingle-wall carbon nanotube–gold nanoparticle–ionic liquid composite film modified glassy carbon electrodes. Anal. Chim. Acta, 2007, 596:79-85
    [27] Liu Y, Liu L, Dong S J. Electrochemical Characteristics of Glucose Oxidase Adsorbed at Carbon Nanotubes Modified Electrode with Ionic Liquid as Binder. Electroanal., 2007, 19:55-59
    [28] Zhao F Q, Liu L Q, Xiao F J, et.al. Sensitive Voltammetric Response of p-Nitroaniline on Single-Wall Carbon Nanotube-Ionic Liquid Gel Modified Glassy Carbon Electrodes. Electroanal., 2007, 19:1387-1393
    [29] Kachoosangi R T, Wildgoose G G, Compton R G. Room Temperature Ionic Liquid Carbon Nanotube Paste Electrodes: Overcoming Large Capacitive Currents Using Rotating Disk Electrodes. Electroanal., 2007, 19:1483-1489
    [30] Wang Q, Tang H, Xie Q J, et.al. Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim. Acta, 2007, 52:6630-6637
    [31] Li J W, Yu J J, Zhao F Q, et.al. Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal. Chim. Acta, 2007, 587:33-40
    [32] Safavi A, Maleki N, Tajabadi F, et.al. High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem. Commun., 2007, 9:1963-1968
    [33] Xiao F, Mo Z R, Zhao F Q, et.al. Ultrasonic-electrodeposition of gold–platinum alloy nanoparticles on multi-walled carbon nanotubes– ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite. Electrochem. Commun., 2008, 10:1740-1743
    [34] Sun W, Wang D D, Zhong J H, et.al. Electrocatalytic activity of hemoglobin in sodium alginate/SiO2 nanoparticle/ionic liquid BMIMPF6 composite film. J. Solid State Electr., 2008, 12:655-661
    [35] Sun W, Gao R F, Jiao K. Electrochemistry and Electrocatalysis of a Nafion/Nano-CaCO3/Hb Film Modified Carbon Ionic Liquid Electrode Using BMIMPF6 as Binder. Electroanal., 2007, 19:1368-1374
    [36] Sun W, Gao R F, Jiao K. Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO3 Film on a New Ionic Liquid BPPF6 Modified Carbon Paste Electrode. J. Phys. Chem. B, 2007, 111:4560-4567
    [37] Garg S K, Hoff H K, Chase H P. The role of continuous glucose sensors in diabetes care. Endicriol Metab Clin North Am, 2004, 33:163-173
    [38] Sljukic B, Banks C E, Salter C, et.al. Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: Application to glucose sensing. Analyst, 2006, 131:670-677
    [39] Kang X H, Mai Z B, Zou X Y, et.al. A sensitive nonenzymatic glucose sensor in alkaline media witha copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem., 2007, 363:143-150
    [40] Zhao C Z, Shao C L, Li M H, et.al. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta, 2007, 71:1769-1773
    [41] Zhuang Z J, Su X D, Yuan H Y, et.al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst, 2008, 133:126-132
    [42] Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens. Bioelectron., 2009, 24:1655-1660
    [43] Wang J P, Thomas D F, Chen A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Anal. Chem., 2008, 80:997-1004
    [44] Ozcan L, Sahin Y, Turk H. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. Biosens. Bioelectron., 2008, 24:512-517
    [45] Brabec V, Dryhurst G J. Electrochemical behaviour of natural and synthetic polynucleotides at the pyrolytic graphite electrode: A new probe for studies of polynucleotide structure and reactions. Electroanal. Chem., 1978, 89:161-168
    [46] Oliveira-Brett A M, Vivan M, Fernandes I R. Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta, 2002, 56:959-970
    [47] Pedano M L, Rivas G A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes, Eletrochem. Commun., 2004, 6: 10-16
    [48] Wallace S S. Biological consequences of free radical-damaged DNA bases. Free Radical Bio. Med., 2002, 33:1-14
    [49] Pournaghi-Azara M H, Alipoura E, Zununi S, et.al. Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples. Biosens. Bioelectron., 2008, 24:524-530
    [50] He H Y, Scheicher R H, Pandey R. Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing. J Phys Chem C, 2008, 112:3456-3459
    [51] Sun W, Li Y Z, Duan Y Y, et.al. Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens. Bioelectron., 2008, 24:994-999
    [52] Hason S, Pivonkova H, Vetterl V, et.al. Label-Free Sequence-Specific DNA Sensing Using Copper-Enhanced Anodic Stripping of Purine Bases at Boron-Doped Diamond Electrodes. Anal. Chem. 2008, 80:2391-2399
    [53] Ozkan-Ariksoysal D, Tezcanli B, Kosova B, et.al. Design of Electrochemical Biosensor Systems for the Detection of Specific DNA Sequences in PCR-Amplified Nucleic Acids Related to theCatechol-O-methyltransferase Val108/158Met Polymorphism Based on Intrinsic Guanine Signal. Anal. Chem., 2008, 80:588-596
    [54] Liu H Y, Wang G F, Chen D L, et.al. Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensors Actuat B, 2008, 128:414-421
    [55] Sun W, Li Y Z, Yang M X, et.al. Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochem. Commun., 2008, 10:298-301
    [56] Kato D, Sekioka N, Ueda A, et.al. Nanohybrid Carbon Film for Electrochemical Detection of SNPs without Hybridization or Labeling. Angew. Chem. Int. Ed., 2008, 47:6681-6684
    [1] Buzzeo M C, Hardacre C, Compton R G. Use of room temperature ionic liquids in gas sensor design. Anal. Chem., 2004, 76:4583-4588
    [2] Luo H M, Dai S, Bonnesen P V, et.al. Use of a novel medium, the ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate, for liquid–liquid extraction of lead in water and its determination by graphite furnace atomic absorption spectrometry. Anal. Chem., 2004, 76:3078-3083
    [3] Guo C, Song Y, Wei H, et.al. Room temperature ionic liquid doped DNA network immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Anal. Bioanal. Chem., 2007, 389:527-532
    [4] Wang S F, Chen T, Zhang Z L, et.al. Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films. Electrochem. Commun., 2007, 9:1709-1714
    [5] Yang F, Jiao L, Shen Y F, et.al. Enhanced response induced by polyelectrolyte-functionalized ionic liquid in glucose biosensor based on sol–gel organic–inorganic hybrid material. J. Electroanal. Chem., 2007, 608:78-83
    [6] Cavicchi R E, Silsbee R H. Electronic heat capacity and susceptibility of small metal particles. Phys. Rew. Lett., 1971, 26:707-711
    [7] Ball P, Garwin L, Ball P, et.al. Science at the atomic scale. Nature, 1992, 355(6363):761-766
    [8] Sun H. Direct electrochemical and electrocatalytic properties of heme protein immobilized on ionic liquid-clay-nanoparticle-composite films. J. Porous Mater, 2006, 13:393-397
    [9] Hrapovic S, Liu Y L, Male K B, et.al. Analysis of the 16 environmental protection agency priority polycyclic aromatic hydrocarbons by high performance liquid chromatography-oxidized diamond film electrodes. Anal. Chem., 2004, 76:1083-1088
    [10] Tominaga M, Shimazoe T, Nagashima M, et.al. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem. Commun., 2005, 7:189-193
    [11] Li J W, Fan C, Xiao F, et.al. Influence of ionic liquids on the direct electrochemistry of glucose oxidase entrapped in nanogold-N,N-dimethylformamide-ionic liquid composite film. Electrochim. Acta, 2007, 52:6178-6185
    [12] Ren M L, Meng X W, Chen D, et.al. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron., 2005, 21(3):433-437
    [13] Garg S K, Hoff H K, Chase H P. The role of continuous glucose sensors in diabetes care. EndicriolMetab Clin North Am, 2004, 33:163-173
    [14] Sljukic B, Banks C E, Salter C, et.al. Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: Application to glucose sensing. Analyst, 2006, 131:670-677
    [15] Zhuang Z J, Su X D, Yuan H, et.al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst, 2008, 133:126-132
    [16] Wang J P, Dan F, Thomas, et.al. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem., 2008, 80:997-1004
    [17] Zhao C Z, Shao C L, Li M H, et.al. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode . Talanta, 2007, 71:1769-1773
    [1] Li C M, Zang J F, Zhan D P, et.al. Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanal., 2006, 7(18): 713-718
    [2] Du P, Liu S, Wu P, et.al. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta, 2007, 52:6534-6547
    [3] Xiao F, Zhao F Q, Li J G, et.al. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube–gold nanoparticle–ionic liquid composite film modified glassy carbon electrodes. Anal. Chim. Acta, 2007, 596:79-85
    [4] Liu A H, Wei M D, Honma I, et.al. Direct electrochemistry of myoglobin in titanate nanotubes film. Anal. Chem., 2005, 77:8068-8074
    [5] Fu R L, Xu J Z, Li Y R, et.al., Fabration of a hydrogen peroxide biosensor based on a composite oxide film. Source Front. Biosci, 2005, 10:2841-2847
    [6] Fu C P, Zhou H H, Peng W C, et.al. Comparison of electrodeposition of silver in ionic liquid microemulsions. Electrochem. Commun., 2008, 10:806-809
    [7] Deng M J, Chen P Y, Leong T I, et.al. Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochem. Commun., 2008, 10:213-216
    [8] Denga M J, Chen P Y, Sun I W. Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis((trifluoromethyl)sulfonyl) imide room-temperature ionic liquid. Electrochim. Acta, 2007, 53:1931-1938
    [9] Changa J K, Huanga C H, Tsai W T, et.al. Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors. Electrochim. Acta, 2008, 53:4447-4453
    [10] Chang J K, Chen S Y, Tsai W T, et.al. Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochem. Commun., 20079:1602-1606
    [11] Gou S P, Sun I W. Electrodeposition behavior of nickel and nickel–zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt. Electrochim. Acta, 2008, 53:2538-2544
    [12] Denga M J, Suna I W, Chen P Y, et.al. Electrodeposition behavior of nickel in the water- and air- stable 1-ethyl-3-methylimidazolium-dicyanamide room-temperature ionic liquid. Electrochim. Acta, 2008, 53:5812-5818
    [13] Xi F N, Liu L J, Wu Q, et.al. One-step construction of biosensor based on chitosan–ionicliquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosens. Bioelectron., 2008, 24:29-34
    [14] Mann O, Pan G B, Freyland W. Nanoscale electrodeposition of metals and compound semiconductors from ionic liquids. Electrochim. Acta, 2009, 54:2487-2490
    [1] Dai H, Wang Y, Wu X, et.al. An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens. Bioelectron., 2009, 24:1230-1234
    [2] Jhong H R, Wong D S, Wan C C, et.al. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem. Commun., 2009, 11:209-211
    [3] Shitanda I, Sato A, Itagaki M, et.al. Electroless Plating of Aluminum using Diisobutyl Aluminum Hydride as Liquid Reducing Agent in Room-Temperature Ionic liquid. Electrochim. Acta, 2009, 54:5889-5893
    [4] Orsini M, Chiarotto I, Elinson M, et.al. Benzoin condensation in 1,3-dialkylimidazolium ionic liquids via electrochemical generation of N-heterocyclic carbene. Electrochem. Commun., 2009, 11:1013-1017
    [5] Thayumanasundaram S, Piga M, Lavina S, et.al. Hybrid inorganic-organic proton conducting membranes based on Nafion, SiO2 and triethylammonium trifluoromethanesulfonate ionic liquid. Electrochim. Acta, 2010, 55:1355-1365
    [6] Chi Y W, Chen L H, Zheng L Y, et.al. Design and fabrication of a micro-electrochemiluminescent cell for the study of ionic liquid-mediated electrochemiluminescence. Electrochem. Commun., 2008, 10:1665-1668
    [7] Yao C, Pitner W R, Anderson J L. Ionic Liquids Containing the Tris(pentafluoroethyl)trifluorophosphate Anion: a New Class of Highly Selective and Ultra Hydrophobic Solvents for the Extraction of Polycyclic Aromatic Hydrocarbons Using Single Drop Microextraction. Anal. Chem., 2009, 81:5054-5063
    [8] Zheng L, Zhang J Q, Song J F. Ni(II)–quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose. Electrochim. Acta, 2009, 54:4559-4565
    [9] Wang Y Y, Liu B. Conjugated polymer as a signal amplifier for novel silica nanoparticle -based fluoroimmunoassay. Biosens. Bioelectron., 2009, 24:3239-3298
    [10] Dieckmann Y, Colfen H, Hofmann H, et.al. Particle Size Distribution Measurements of Manganese-Doped ZnS Nanoparticles. Anal. Chem., 2009, 81:3889-3895
    [11] Shangguan X D, Zhang H F, Zheng J B. Direct electrochemistry of glucose oxidase based on its direct immobilization on carbon ionic liquid electrode and glucose sensing. Electrochem. Commun., 2008, 10:1140-1143
    [12] Chon H, Lee S, Son S W, et.al. Highly Sensitive Immunoassay of Lung Cancer MarkerCarcinoembryonic Antigen Using Surface-Enhanced Raman Scattering of Hollow Gold Nanospheres. Anal. Chem., 2009, 81:3029-2034
    [13] Chen W, Peng C, Jin Z Y, et.al. Ultrasensitive immunoassay of 7-aminoclonazepam in human urine based on CdTe nanoparticle bioconjugations by fabricated microfluidic chip. Biosens. Bioelectron., 2009, 24:2051-2056
    [14] Munge B S, Krause C E, Malhotra R, et.al. Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochem. Commun., 2009, 11:1009-1012
    [15] Sheffer M, Mandler D. Control of locally deposited gold nanoparticle on polyaniline films. Electrochim. Acta, 2009, 54:2951-2956
    [16] Laforge F O, Velmurugan J, Wang Y X, et.al. Nanoscale Imaging of Surface Topography and Reactivity with the Scanning Electrochemical Microscope. Anal. Chem., 2009, 81:3143-3150
    [17] González G L, Kahlert H, Scholz F, Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis. Electrochim. Acta, 2007, 52:1968-1974
    [18] Tsiafoulis C G, Trikalitis P N, Prodromidis M I, Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem. Commun., 2005, 7:1398-1404
    [19] Ivekovi D, Milardovi S, Grabari B S, Palladium hexacyanoferrate hydrogel as a novel and simple enzyme immobilization matrix for amperometric biosensors. Biosens. Bioelectron., 2004, 20:872-878
    [20] Wang G F, Meng J, Liu H Y, et.al. Determination of uric acid in the presence of ascorbic acid with hexacyanoferrate lanthanum film modified electrode. Electrochim. Acta, 2008, 53:2837-2843
    [21] Abbaspour A, Mehrgardi M A. Electrocatalytic Oxidation of Guanine and DNA on a Carbon Paste Electrode Modified by Cobalt Hexacyanoferrate Films. Anal. Chem., 2004, 76:5690-5696
    [1] Xi F N, Liu L J, Wu Q et.al. One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosens. Bioelectron., 2008, 24:29-34
    [2] Jin J, Li H H , Wei J P , et.al. Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochem. Commun., 2009, 11:1500-1503
    [3] Mertens S F, Blech K, Sologubenko A S, et.al. Quantised double layer charging of monolayer-protected clusters in a room temperature ionic liquid. Electrochim. Acta, 2009, 54: 5006-5010
    [4] Feroci M, Elinson M N, Rossi L, et.al. The double role of ionic liquids in organic electrosynthesis: precursors of N-heterocyclic carbenes and green solvents Henry reaction. Electrochem. Commun., 2009, 11:1523-1526
    [5] Jayawardhana D A, Crank J A, Zhao Q T, et.al. Nanopore Stochastic Detection of a Liquid Explosive Component and Sensitizers Using Boromycin and an Ionic Liquid Supporting Electrolyte . Anal. Chem., 2009, 81: 460-464
    [6] Sutto T E, Duncan T T, Wong T C, et.al. X-ray Diffraction studies of Electrochemical GRAPHITE Intercalation compounds of Ionic Liquids. Electrochim. Acta, 2009, 54:5648-5655
    [7] Roy P, Lynch R, Schmuki P, et.al. Electron beam induced in-vacuo Ag deposition on TiO2 from ionic liquids. Electrochem. Commun., 2009, 11:1567-1570
    [8] Litos I K, Ioannou P C, Christopoulos T K, et.al. Multianalyte, dipstick-type, nanoparticle -based DNA biosensor for visual genotyping of single-nucleotide polymorphisms. Biosens. Bioelectron., 2009, 24: 3135-3139
    [9] Koh I, Hong R, ,Weissleder R ,et.al. Nanoparticle-TargetInteractions Parallel Antibody - Protein Interactions. Anal. Chem., 2009, 81: 3618-3622
    [10] Mao X, Baloda M, Gurung A S, et.al. Multiplex electrochemical immunoassay using gold nanoparticle probes and immunochromatographic strips. Electrochem. Commun., 2008, 10: 1636-1640
    [11] Yang L L, Zhu S B, Hang W, et.al. Development of an Ultrasensitive Dual-Channel Flow Cytometer for the Individual Analysis of Nanosized Particles and Biomolecules. Anal. Chem., 2009, 81: 2555-2563
    [12] Murata K, Suzuki M, Kajiya K, et.al. High performance bioanode based on direct electron transfer of fructose dehydrogenase at gold nanoparticle -modified electrodes. Electrochem. Commun., 2009, 11: 668-671
    [13] Yang Y H, Nam J M. Single Nanoparticle Tracking-Based Detection of Membrane Receptor - Ligand Interactions. Anal. Chem. 2009, 81: 2564-2568
    [14] Li T, Liu D J, Wang Z X. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens. Bioelectron., 2009, 24: 3335-3339
    [15] Sheng Q L, Yu H, Zheng J B. Sol–gel derived carbon ceramic electrode for the investigation of the electrochemical behavior and electrocatalytic activity of neodymium hexacyanoferrate.Electrochim. Acta, 2007,52: 4506-4512
    [16] Abbaspour A, Ghaffarinejad A. Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim. Acta, 2008,53: 6643-6650
    [17] Yu H, Sheng Q L, Zheng J B. Preparation, electrochemical behavior and performance of gallium hexacyanoferrate as electrocatalyst of H2O2. Electrochim. Acta, 2007, 52: 4403-4410
    [18] Yang M H, Yang J H, Yang Y H, et.al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens. Bioelectron., 2006, 21: 1791-1797
    [19] Farias P A, Castro P A, Wagener P A, et.al. Adenine Determination in the Presence of Copper in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode. Anal. Chem., 2008, 13: 1445-1453
    [20] Kamel A H, Moreira F T, Delerue-Matos C, et.al. Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors. Biosens. Bioelectron., 2008, 24: 591-599

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700