循环流化床锅炉主汽压控制系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床锅炉(CFBB)是一个分布参数、非线性、时变、多变量耦合紧密的控制对象,在先进控制策略的应用中,难以建立其燃烧控制系统的精确数学模型。本文始终坚持紧密结合我国电厂控制的实际情况以解决电厂实际运行中存在的控制问题为出发点,紧紧抓住循环流化床电厂主汽压控制系统普遍存在的大滞后和特性时变的特点,力图对解决大滞后对象控制这一长期困扰电厂的控制难题进行一点探索工作。通过分析研究循环流化床锅炉燃烧系统特性,首先对单元机组的各系统进行了控制,在此基础上对三炉两机母管制机组的主汽压力控制系统和协调控制系统进行了设计,然后针对循环流化床锅炉的大延时特性,设计了一种以史密斯预估补偿控制和鲁棒控制为基础的内模控制器,通过仿真结果表明,该控制器上升时间短、超调小、过渡过程时间小,具有较强的鲁棒性,而且非常便于实际应用。
Circulating fluidized bed boiler (CFBB) control strategies based on classical control theory or modern control theory all need exact mathematical models of controlled objects. It is very difficult to establish the exact mathematical models of controlled objects because the combustion system of circulating fluidized bed boiler is an object that has many features: distributed parameters, nonlinear, time-varying and a lot of tightly coupled variables. Dissertation is dedicated to solve the practical control problems in power plant on the basis of theoretical research. Under the existence of the dynamics characterized by non-linear, significant delay and time varying, the work strives to deal with the problems of significant delay objects control in large power plants, which have puzzled the power plants for long time. This text passes the analytical research CFBB combustion system characteristic, designed control system of power plant and bus system power plant. The improved Smith control strategies mentioned above based on Internal Model Control and robust control, have been applied to pressure control system with significant delay and time varying. The results indicate that the control quality, the speediness, the robustness are all superior. It is advantageous to be used in the practical control system.
引文
[1] 王晓晖,董秦,田正斌,黄敏峰. 循环流化床锅炉的现状及发展,第22卷第3期,2006.3:165~168
    [2] 牛培峰.循环流化床锅炉热工自动控制系统[J].动力工程.1993,13(4):48~52
    [3] 池国英.循环流化床锅炉的燃烧控制策略与展望,河南电力,2004 年第 2 期:34~35
    [4] 牛培峰,孙键,柴天佑.循环流化床锅炉热工自动控制系统与展望.动力工程,1998,6:29~34
    [5] Basu P, Avidan AA(ends). Circulating Fluidized Bed Technology IV[D]. AICHE. 1993
    [6] 屈卫东,杨建华,杨义波,唐昕.循环流化床锅炉设备及运行,河南科学技术出版社,2002.6
    [7] 锅炉运行说明书,无锡华光锅炉股份有限公司
    [8] Nowak W, Bis Z, Laskawiec J, et al. Design and Operation Experience of 230MW CFB Boilers at Turow Power Plant in Poland. In: Robert B R Ed. Proceedings of the 15th International Conference on Fluidized Bed Combustion. Savannah: ASME, 1999: No.0122
    [9] P1audna1. The province 250MW Unit: The largest CFB boiler ready for operation [J]. 3 rd Interational Symposium coal combustion Sept. 1995, Beijing
    [10] 杜朝波,高建强,王印松.450t/h 循环流化床锅炉床温运行特性分析[J].中国电力.2005,38(1):49~52
    [11] 吴树志.模糊控制在多燃烧循环流化床锅炉燃料控制中的研究[J].工业锅炉,2003(2):5~8
    [12] 赵日晖,边立秀.PID 参数模糊自整定循环流化床床温控制系统[J].自动化技术与应用.2003
    [13] 刘西策.循环流化床锅炉燃烧系统的模糊控制研究[D].华中理工大学硕士学位论文.1999
    [14] 陈瑞枫.循环流化床新型锅炉燃烧系统的动态解耦自校正预估控制[D].中国科学院自动化研究所博士学位论文.1992
    [15] 牛培峰,大型国产循环流化床锅炉燃烧过程智能控制系统应用研究,中国电机工程学报,2002,20 (12):62~66
    [16] 岑可法,倪明江等.循环流化床锅炉理论设计与运行.中国电力出版社.1997
    [17] 王绍辉.循环流化床锅炉设备运行规程[M].大唐保定华源发电公司.2005
    [18] Von Hippel C S, Leighton P. Controlling a fluidized bed combustion system. Plant Engineering, 1984, Nov. (15): 62~64
    [19] 王慧,于希宁等.循环流化床锅炉主蒸汽压力的模糊控制.仪器仪表用户,2004
    [20] Kortela U, Ikonen E, Kotaj?rvi H, et al. Modeling, simulation and control of fluidized bed combustion process[J]. International Journal of Power and Energy Systems, 1994, 14(3): 92~97
    [21] 胡锦晖,胡大斌.PID 参数模糊自整定控制器的设计与仿真研究[J].海军工程大学学报.2005.2
    [22] 田涛.自适应预估控制及其在火电厂 DCS 中的应用.华北电力大学博士学位论文.2000
    [23] 刘志刚,胡立兰.3 台并列运行锅炉主蒸汽压力控制系统的设计与应用[D]. 广东电力.2003 年第 1 卷第 3 期
    [24] 刘晨晖.多变量过程控制系统解耦理论[M].北京:水利电力出版社.1984
    [25] 林宗虎,魏敦崧,安恩科,李茂德.循环流化床锅炉,化学工业出版社,2004.3
    [26] Kurjarko I, Placer F, Distribitd Control System For a Circulating fluidized Bed in Small Power Plant. The Proceedings of the 9th International Conference on fluidized Bed Combusition, 1988: 133~142
    [27] 付萍,姚丽欣,李小珂,董泽.循环流化床锅炉床温系统控制特性分析及参数优化[J].华北电力大学学报.2005,32(5):89~91
    [28] 于希宁,王慧等.模糊控制在循环流化床锅炉床温控制中的应用[J].华北电力大学学报.2005.5
    [29] 张缠保.循环流化床主蒸汽压力的模糊控制[J].太原理工大学学报,Vol.37, NO.5,sep.2006。
    [30] Kaya A.On the control methods of atmospheric fluidized bed boilers for power generation[J].Journal of Engineering for Gas Turbine and Power,1989,111: 685~693
    [31] 金以慧,方崇智.过程控制[M].清华大学出版社,1993
    [32] Bursi J M, Lafanechere L, Jestin L. Basic design studies for a 600MW CFB boiler (270bar,2X6000C). Circulating Fluidized Technology, ed. J.Werther, Wurzhning Germany, 1999: 913~916
    [33] 张燕秦,徐向东.循环流化床锅炉控制系统设计研究.电站系统工程,2003,5 (3):25~28
    [34] 杜丽华.循环硫化床锅炉控制系统的探讨.山西电力,2004,2(1):13~18
    [35] 李明,徐向东.循环流化床锅炉控制系统.清华大学学报,2002,42 (5):50~54
    [36] 李遵基,热工自动控制系统,北京:电力出版社,1997
    [37] Doyle J, Stein G, Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Transactions On Automatic Control, 1981.Vol.AC-26. N01.P4~15
     [38] Rosenbrock H.H, Computer-Aided Control System Design, Academic Press, New York,1974

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700