计量逻辑学及其随机化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经典的命题逻辑中最基本的推理模式为{A_1,…,A_n}|-A~*,从语法的角度看,它表明A_1→(A_2→…→(A_n→A~*)…)是定理,而从语义的角度看,它表明如果任一赋值v使前提A_1,…,A_n都为真,则v也使结论A~*为真。值得注意的是,这一推理的前提是否可靠并未考虑,因而从实际应用的角度看,这种单纯的形式推理似有不足之处。正是基于这种考虑,从20世纪70年代以来,逐渐兴起了概率逻辑学的研究。在概率逻辑学中,对推理的前提集中的各公式,要考虑其“不确定性”,不确定性是通过一个数值表征的,这个数值是由1减去该命题为真的概率而得的。通过Kolmogorov公理将概率方法与逻辑推理相结合,通过诸前提的不可靠度可以估计出其结论不可靠度的变化范围。但概率推理模式是“一事一议”型的,即,对于不同的有效推理,前提中同一公式的概率不必相同。这固然有其方便的一面,但从其理论的完整性来看,似乎只具有局部性而缺乏整体性。这不能不说是一种局限。
     另一方面,为了把逻辑概念程度化而提出的计量逻辑学理论,其目的是为了尝试在人工智能科学与数值计算理论之间架起沟通的桥梁。计量逻辑学一方面具有整体性的优点,但同时又有缺少随机性的不足。事实上,在计量逻辑学中,每个公式都被赋予了一个真度,但在该真度意义下,每个原子公式都有相同的的真度,用概率的观点来考察,即每个原子公式为真的概率均相等。事实上各简单命题是否为真以及在多大的程度上为真是不确定的、随机的。所以赋予不同原子公式以不同的概率,可以使由此产生的公式的真度更具实用性,这种基于随机性的逻辑概念的程度化方法已经成为当前概率化人工智能研究的一个热点课题,从而展示了更为广阔的应用前景。本文正是以此为出发点,着力于将逻辑概念程度化与随机化相结合,从而把计量逻辑学中的程度化研究及近似推理模式纳入于更为宽泛的研究体系之中。
     本文第一章首先通过引入生成状态集和生成概率给出了概率逻辑学基本定理的简捷证明,并进一步通过引入自然合并概率将概率逻辑学的基本定理推广到了更一般的形式,改进了对推理结论的不可靠度上界的估计。然后将概率逻辑学的基本方法引入计量逻辑学,得出了带参数(?)的有限逻辑理论相容度概念,是δ-相容度的推广。
     第二章论证了有限多个公式的概率分布与生成它的原子公式集的概率分布之间的关系,然后把计量逻辑学与概率逻辑学相结合,在二值逻辑中提出了概率真度、概率逻辑伪度量空间。指出当取均匀概率分布时,概率真度就转化为计量逻辑学中的真度,同时两公式间的概率逻辑伪距离就转化为计量逻辑学中的伪距离。从而在有限理论中建立了一种更具一般性的概率逻辑伪度量空间理论。
     第三章利用赋值集的随机化方法,在二值逻辑中首先提出了公式的D-随机真度概念,证明了全体公式的D-随机真度之集在[0,1]中没有孤立点。接着给出了D-逻辑伪距离和D-逻辑度量空间,证明了该空间中没有孤立点。指出当取均匀概率测度,且各概率测度均为1/2时,D-随机真度就转化为计量逻辑学中的真度,同时两公式间的D-逻辑伪距离就转化为计量逻辑学中的伪距离,从而建立了更具一般性的D-逻辑度量空间。
     通过概率逻辑学基本定理,证明了D-逻辑度量空间中逻辑运算的连续性,从而实现了概率逻辑学与计量逻辑学的融合。在D-逻辑度量空间中提出了公式之间的3种不同类型的近似推理模式。证明了D-逻辑度量空间中三种近似推理模式是等价的;指出了全体原子公式之集在D-逻辑度量空间中未必是全发散的。
     在D-逻辑度量空间中提出了理论的D-开放度,得出一个理论的D-开放度与它的D-发散度取值相等。提出了理论的D-相容度,得出D-相容度在D-逻辑度量空间中能保持相容度在逻辑度量空间中的基本性质。
     最后,在三值R_0命题逻辑系统,三值Lukasiewicz命题逻辑系统,三值Goguen命题逻辑系统和三值G(o|¨)del命题逻辑系统中提出了公式的随机真度和随机距离,建立了随机逻辑度量空间。指出当取均匀概率测度,且各概率测度均为1/3时,随机真度就转化为计量逻辑学中的真度,同时两公式间的随机距离就转化为计量逻辑学中的伪距离,从而在三值逻辑中建立了更具一般性的随机逻辑度量空间。
The most fundamental inference pattern in propositional logic is {A_1,…,A_n}|-A~*. It means,from syntactic viewpoint,A_1→(A_2→…→(A_n→A~*)…) is a theorem, while it means,from semantic viewpoint,A~* is true under any valuation v whenever A_1,…,A_n are true under v.Notice that if the premises are sound or not is not taken into account,and hence this formalized effective inference seems not to be suitable for practical reasoning.In view of this situation,the probability logic emerged from the 70's of the 20~(th) century,where uncertainty of premises were considered,and uncertainty degree of the conclusion had been deducted by using the Kolmogorov axioms.It is remarkable that the theory is developed by means of individual cases while the probability of one and the same formula varies in different effective inferences,and only a few(mostly two or three) formulas are involved in premises of effective inferences,therefore the theory seems to be locally but not globally.
     On the other hand,a global quantified logic theory is proposed,where logic concepts are graded into different levels so as to try to establish a bridge between artificial intelligence and numerical computation.In quantified logic every atomic formula has the same truth degree.This is not consistent with corresponding problems in the real world.In fact if a simple proposition in the real world is true or not,or in what extent it is true is uncertain,hence to follow the way of probabilistic AI and develop a probabilistic style quantified logic is certainly a beneficial task.In view of the above analysis the present paper focus on the alliance of quantified logic and probability logic so that quantified logic and most of its results can be considered special cases of the new setting.
     In the first chapter,a simple and direct proof of the fundamental theorem of probability logic is proposed by introducing the concepts of generating states set and generating probability.Next,by introducing the concept of naturally merged probability the fundamental theorem has been generalized.Moreover,the present paper extends the concept ofδ-consistency degree of finite logic theories to be the concept of(?)-consistency degree and therefore certain relationship between probability logic and quantitative logic has been obtained.
     In the second chapter,the relationship between the probability distribution of finite formulas and the probability distribution of atomic formulas generating them is discussed, and the concepts of probability truth degree and probability logic pseudo-metric space are proposed by combining quantitative logic and probability logic.It is proved that when the probability distribution is even,the value of probability truth degree is equal to the value of truth degree and the value of probability logic pseudo-metric is equal to the value of pseudo-metric in quantitative logic.Thus a more general pseudo-metric is established in finite theories.
     In the third chapter,the concept of D- randomized truth degree of formulas in two-valued propositional logic is introduced by means of randomization,and it is proved that the set of values of D- randomized truth degree of formulas has no isolated point in[0,1]. The concepts of D- logic pseudo-metric and D- logic metric space are also introduced and it is proved that there is no isolated point in the space.The new built D- randomized concepts are extensions of the corresponding concepts in quantified logic.
     Moreover,it is proved that the basic logic connectives are continuous operators in D-logic metric space.Three different types of approximate reasoning pattems are proposed and it is proved that the three different types of approximate reasoning pattems are equivalent to each other and the set of atomic formulas is not totally divergent in D-logic metric space.
     After D- opening degree is introduced in D- logic metric space,it is proved that the D- opening degree of a theory is equivalent to it's D- divergence degree.Then the D- consistency degree is defined and it can maintain the basic properties in logic metric space.
     By means of randomization,the concept of randomized truth degree and randomized logic pseudo-metric of formulas in R_0 three-valued propositional logic, Lukasiewicz three-valued propositional logic,Goguen three-valued propositional logic and G(o|¨)del three-valued propositional logic are introduced.The concept of randomized logic metric space is also introduced and it is proved that the new built randomized concepts are extensions of the corresponding concepts in quantified logic.
引文
[1]HAMILTONA G.Logic for mathematicians[M].New Yrok:Cambridge University Press,1978.
    [2]胡世华,陆钟万.数理逻辑基础[M].北京:科学出版社,1983.
    [3]王元元.计算机科学中的逻辑学[M].北京:科学出版社,1989.
    [4]王国俊.模糊推理的全蕴涵三I算法[J].中国科学,E辑,1999,29(1):43-53.
    [5]WANG G J,FU L.Unified forms of triple Ⅰ method[J].Computers &Mathematics with Applications,2005,49:923-932.
    [6]宋士吉,吴澄.模糊推理的反向三I算法[J].中国科学,E辑,2002,32(2):58-66.
    [7]ZADEH L A.The concept of a linguistic variable and its application to approximate reasoning[J].parts 1-3,Information Sciences,1975,8:199-249;301-357;1975,9:43-80.
    [8]WANG G J.On the logic foundation of fuzzy reasoning[J].Information Science,1999,117:47-88.
    [9]王国俊.一类代数上的逻辑学(Ⅰ)[J].陕西师范大学学报,1997,25(1):1-8.
    [10]王国俊.一类代数上的逻辑学(Ⅱ)[J].陕西师范大学学报,1997,25(3):1-8.
    [11]王国俊.三I方法与区间值模糊推理[J].中国科学,E辑,2000,30(4):331-340.
    [12]王国俊.Fuzzy逻辑与有序代数[J].模糊系统与数学,2002,16(1):7-12.
    [13]王国俊.MV-代数、BL-代数、R_0—代数与多值逻辑[J].模糊系统与数学,2002,16(2):1-15.
    [14]WANG G J.A universal theory of measure and integral on valuation spaces with respect to diverse implication operators[J].Science in China(Series E),2000,43(6):586-594.
    [15]李洪兴.FUZZY系统的概率表示[J].中国科学E辑,2006,36(4):373-397.
    [16]PEI D W.On equivalent forms of fuzzy logic systems NM and IMTL[J].Fuzzy Sets and Systems,2003,138:187-195.
    [17]WANG S M,WANG B S,WANG G J.A triangular-norm-based propositional fuzzy logic[J].Fuzzy Sets and Systems,2003,136:55-70.
    [18]王国俊,钱桂生,党创寅.命题逻辑系统L~*与谓词演算系统K~*中的统一的近似 推理理论[J].中国科学,E辑,2004,34(10):1110-1122.
    [19]王国俊.修正的Kleene系统中的∑-(α-重言式)理论[J].中国科学,E辑,1998,28(2):146-152.
    [20]王国俊.模糊推理与模糊逻辑[J].系统工程学报,1998,13(2):1-16.
    [21]Wu H B.The theory of generalized tautologies in revised kleene logic system[J].Science in China(Series E),2001,44(3):233-238.
    [22]吴洪博,文秋梅.L~*系统的一种简化系统L_0~*[J].纯粹数学与应用数学,2001,17(1):46-52.
    [23]吴洪博.基础R_0-代数与基础L~*系统[J].数学进展,2003,32(5):565-576.
    [24]SONG S J,FENG C B,LEE E S.Triple Ⅰ method of fuzzy reasoning[J].Computers & Mathematics with Applications,2002,44:1567-1579.
    [25]PEI D W,WANG G J.The extensions L_n~* of formal systems L~* and their completeness[J].Information Sciences,2003,152:155-166.
    [26]彭家寅,侯健,李洪兴.基于某些常见蕴涵算子的反向三I算法[J].自然科学进展,2005,15(4):404-410.
    [27]王伟,王国俊.L~*-Lindenbaum伪度量代数中基本运算的连续性[J].陕西师范大学学报,2005,33(2):14.
    [28]WANG G J.Comparison of deduction theorems in diverse logic systems[J].New Mathematics and Natural Computation,2005,1(1):65-77.
    [29]陆汝铃.人工智能[M].北京:学出版社,1988.
    [30]王国俊.数量逻辑引论与归结原理(第二版)[M].北京:科学出版社,2006.
    [31]PEI D W.Triple Ⅰ method for t-norm based logics[J].Fuzzy Systems and Mathematics,2006,20(2):1-7.
    [32]YING M S.A logic for approximate reasoning[J].Journal of Symbolic Logic,1994,59:830-837.
    [33]王国俊.计量逻辑学(Ⅰ)[J].工程数学学报,2006,23(2):191-215.
    [34]ADAMS E W.A primer of probability logic[M].Stanford:CSLI Publications,1998.
    [35]HAILPERIN T.Sentential probability logic[M].London:Associated University presses,1996.
    [36]COLETTI G,SCOZZAFAVA R.Probabilistic logic in a coherent setting[M].London:Kluwer Academic Publishers,2002.
    [37]DUBOIS D,PRADE H.Possibility theory,Probability theory and multiple-valued logics[J].Annals of mathematics and Artificial Intelligence,2001,32:35-66.
    [38]BAIOLETTI M,CAPOTOPTI A,et al.Simplification rules for the coherent probability assessment problem[J].Annals of Mathematics and Artificial Intelligence,2002,35:11-28.
    [39]ADAMS E W,LEVINE H.On the uncertainties transmitted from premisses to conclusions in deductive inferences[J].Synthese,1975,30(3):429-460.
    [40]NILLSON N J.Probability logic[J].Artificial Intelligence,1986,28(1):71-87.
    [41]PEARL J.Probabilistic reasoning in intelligent systems[M].San Mateo,California:Morgan Kaufmann Publishers,1988.
    [42]KOLMOGOROV N.The foundation of probability[M].New York:Chelsea Publishing Company,1950.
    [43]王国俊,王伟.逻辑度量空间[J].数学学报,2001,44(1):159-168.
    [44]WANG G J,LEUNG Y.Integrated semantics and logic metric spaces[J].Fuzzy Sets and Systems,2003,136(1):71-91.
    [45]王国俊,傅丽,宋建社.二值命题逻辑中命题的真度理论[J].中国科学,A辑,2001,31(1):998-1008.
    [46]王国俊,宋庆燕,宋玉靖.Boole代数上的度量结构及其在命题逻辑中的应用[J].数学学报,2004,47(2):318-326.
    [47]李骏,黎锁平,夏亚峰.Lukasiewicz n值命题逻辑中命题的真度理论[J].数学学报,2004,47(4):669-780.
    [48]李骏,王国俊.逻辑系统L_n~*中命题的真度理论[J].中国科学,E辑,2006,36(6):631-643.
    [49]李骏,王国俊.Godel n值命题逻辑中命题的α-真度理论[J].软件学报,2007,18(1):33-39.
    [50]于鹏,王国俊.根与F(S)中的近似推理[J].自然科学进展,2006,16(8):1028-1032.
    [51]LIB J,WANG G J.Theory of truth degrees of formulas in Lukasiewicz n-valued propositional logic and a limit theorem[J].Science in China(Series E),2005,48(6):727-736.
    [52]王国俊,秦晓燕,周湘南.一类二值谓词逻辑中公式的准真度理论[J].陕西师范大学学报,2005,33(1):1-6.
    [53]王国俊,宋建社.命题逻辑中的程度化方法[J].电子学报,2006,34(2):252-257.
    [54]王国俊,任燕.Lukasiewicz命题集的发散性与相容性[J].工程数学学报,2003,20(3):13-18.
    [55]WANG G J,ZHANG W X.Consistency degrees of finite theories in lukasiewicz propositional fuzzy logic[J].Fuzzy Sets and Systems,2005,149:275-284.
    [56]ZHOU X N,WANG G J.Consistency degrees of theories in some systems of propositional fuzzy logic[J].Fuzzy Sets and Systems,2005,152:321-331.
    [57]ZHOU H J,WANG G J.A new theory index based on deduction theorems in several logic systems[J].Fuzzy Sets and Systems,2006,157:427-443.
    [58]王国俊,折延宏.二值命题逻辑中理论的发散、相容性及其拓扑刻画[J].数学学报,2001,50(4):841-850.
    [59]王国俊,刘保翠.四种命题逻辑中公式的相对Γ-重言度理论[J].工程数学学报,2007,24(4):598-610.
    [60]韩邦合,王国俊.二值逻辑中命题的条件真度理论[J].模糊系统与数学,2007,21(4):9-15.
    [61]刘华文,王国俊,张诚一.几种逻辑系统中的近似推理理论[J].山东大学学报,2007,42(7):77-86.
    [62]LIU H W,WANG G J.Several class of implications based on binary aggregation operation on L~*[J].Fuzzy Systems and Mathematics,2007,21(3):45-53.
    [63]王国俊,兰蓉.系统H_α中的广义重言式理论[J].陕西师范大学学报,2003,31(2):1-11.
    [64]HALMOS P R.Measure theory[M].New York:Spring-Vedag,1974.
    [65]HAJEK P.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998.
    [66]ESTEVA F,GODO L.Monoidal t-norm based logic:towards a logic for left continuous t-norms[J].Fuzzy Sets and Systems,2001,124(3):271-288.
    [67]裴道武.形式演绎系统L~*中的运算与演绎定理[J].模糊系统与数学,2001,15(1):34-39.
    [68]裴道武.FMT问题的两种三I算法及其还原性[J].模糊系统与数学,2001,15(4):1-7.
    [69]PEI D W.The characterization and independence of R_0 algebras[J].The Journal of Fuzzy Mathematics,2001,9(3):643-649.
    [70]裴道武.剩余格和正则剩余格的几个特征定理[J].数学学报,2002,45(2):271-278.
    [71]裴道武.强正则剩余格值逻辑系统LN及其完备性[J].数学学报,2002,45(4):745-752.
    [72]裴道武.一阶形式系统K~*及其完备性[J].数学年刊,2002,23(6):675-684.
    [73]PEI D W.R_0 implication:characteristics and applications[J].Fuzzy Sets and Systems,2002,131(3):297-302.
    [74]裴道武,王国俊.形式系统L~*的完备性及其应用[J].中国科学(E辑),2002,32(1):56-64.
    [75]吴洪博,文秋梅.积分语义学中的积分相似度与伪距离[J].陕西师范大学学报(自然科学版),2000,28(3):1-6.
    [76]王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社,2000.
    [77]王国俊.模糊推理的一个新方法[J].模糊系统与数学,1999,13(3):1-10.
    [78]吴望名.关于模糊逻辑的一场争论[J].模糊系统与数学,1995,9(2):1-9.
    [79]王世强.模型论基础[M].北京:科学出版社,1987.
    [80]KLEENE S C.Introduction to metamathematics[M].Van Nostrand.莫绍揆译.元数学导论[M].北京:科学出版社,1984.
    [81]王宪钧.数理逻辑引论[M].北京:北京大学出版社,1982.
    [82]RASIOWA H,SIKORSKI R.The mathematics of metamathematics[M].Polska Akademia Nauk,1963.
    [83]WANG G J.Separable boolean functions and generalized fibonacci sequences[J].Computers & Mathematics with Applications,2000,39:205-216.
    [84]ZADEH L A.Fuzzy sets as a basis for a theory of possibility[J].Fuzzy Sets and Systems 1978,1:3-28.
    [85]WANG G J.A formal deductive system for fuzzy propositional calculus[J].Chinese Science Bulletin.1997,42(18):1521-1526.
    [86]KLEMENT E P,NAVARA M.A survey on different triangular norm-based fuzzy logics[J].Fuzzy Sets and Systems,1999,101(2):241-251.
    [87]LIU H W,WANG G J.A note on implicators based on binary aggregation operators in interval-valued fuzzy set theory[J].Fuzzy Sets and Systems,2006,157:3231-3236.
    [88]DUBOIS D,PRADE H,LANG J.Fuzzy sets in approximate reasoning[J].Fuzz,Sets and Systems,1991,40:143-244.
    [89]FORDOR J C.Contrapositive symmetry of fuzzy implications[J].Fuzzy Sets and Systems,1995,69:141-156.
    [90]CORNELIS C,DESCHRIJVER G,KERRE E E.Advances and challenges in interval-valued fuzzy logic[J].Fuzzy Sets and Systems,2006,157:622-627.
    [91]DESCHRIJVER G,KERRE E E.On the relationship between some extensions of fuzzy set theory[J].Fuzzy Sets and Systems,2003,133(2):227-235.
    [92]李洪兴,彭家寅,王加银.常见模糊蕴涵算子的模糊系统及其响应函数[J].控制理论与应用,2005,22(3):341-347.
    [93]张兴芳.逻辑系统中理论的下真度与相容度(Ⅰ)[J].模糊系统与数学,2007,21(6):25-30.
    [94]李洪兴.变论域自适应模糊控制器[J].中国科学E辑,1999,29(1):33-42.
    [95]于西昌,王大全,张兴芳.四个命题模糊逻辑系统中公式真度的大小之比较[J].聊城大学学报(自然科学版),2007,20(1):6-9.
    [96]马晓压,王国俊.F(S)在Lukasiewicz逻辑系统中的一个分划[J].陕西师范大学学报(自然科学版),2004,32(2):1-4.
    [97]吴洪博,阎满富.Godel逻辑系统中F(S)的一个分划及其应用[J].工程数学学报,2001,18(4):61-68.
    [98]王国俊.模态逻辑系统S_5中的范式定理及其在知识系统中的应用[J].陕西师范大学学报(自然科学版),2008,36(1):1-6.
    [99]张兴芳,王国俊,孟广武.一阶模糊谓词逻辑公式的区间解释真度理论[J].模糊系统与数学,2006,20(2):9-12.
    [100]裴道武.关于形式系统L~*的强完备性[J].工程数学学报,2005,22(1):129-132.
    [101]裴道武.R_0代数公理系统的简化与独立性[J].陕西师范大学学报(自然科学版),2002,30(3):5-9.
    [102]裴道武.模糊逻辑中的自然演绎系统[J].工程数学学报,2002,19(3):95-100.
    [103]宋士吉,冯纯伯,吴从忻.关于模糊推理的全蕴涵三I方法的约束度理论[J].自然科学进展,2000,10(10):884-889.
    [104]李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学,1995,9(4):1-14.
    [105]侯健,尤飞,李洪兴.由三I算法构造的一些模糊控制器及其影响能力[J].自然科学进展,2005,15(1):29-37.
    [106]WANG G J,WANG H.Non-fuzzy versions of fuzzy reasoning in classical logic [J].Information Science,2001,138(3):211-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700