三维模型检索中模型查询接口及特征提取算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业设计、数字医疗、影视娱乐等计算机图形应用领域的发展,三维模型的数量已呈爆炸式增长趋势,研究一套高效的三维模型检索系统已是势在必行。文字检索直接根据关键字搜索,三维模型检索则可在检索窗口输入模型,再根据模型特征进行匹配搜索,因此,对三维模型检索的研究主要集中在查询接口(主要是检索模型的输入)和特征提取算法(主要是特征提取与匹配)。
     如何构建快速、符合人的交互感知且建模特征明显的模型查询接口是一个三维模型检索系统首先要解决的问题。查询接口的模型类型又与特征提取算法相关。用于查询接口的模型不同于传统的计算机图形学几何造型意义上的模型,但一般也分为表面模型和实体模型。实体模型因能够比较方便地提供体积信息而比表面模型在检索中的适用范围更广,而其中的体素实体模型则因其提供的体积信息的规则性而得到更多的重视。这也是为什么研究高性能的体素实体模型特征提取算法在三维模型检索领域成为研究热点的原因。
     在国家自然科学基金(60573146、61073086)的资助下,本文对体素实体模型的检索理论与应用进行了研究。研究的基本思路是基于交互手绘建模和基于图像建模,将两者生成的模型用于三维模型查询接口的模型输入,从中提取模型特征进行检索匹配,完成查询工作。本文的主要工作与
     贡献可总结为以下四方面:
     (1)提出了一个基于体素实体模型的三维模型检索框架。该检索框架围绕体素实体模型这个中心,以此模型的规则化三维体积信息的获取、输入并检索展开,由查询接口、体素实体模型库、特征提取算法和相似度比较及输出构成。据对国内外文献的检索,本文构建的三维模型检索框架首次将具有一定规模的体素实体模型系统地应用于三维模型的检索。
     (2)在交互手绘模型构建与查询接口方面,本文提出了一种基于虚拟绘图面的法向体素生成算法和一种基于种子邻接关系的体素实体编辑算法。
     基于虚拟绘图面的法向体素实体生成算法由法向等高生成算法和法向梯度生成算法两部分组成,基于种子邻接关系的体素实体编辑算法则由半封闭曲线编辑算法和封闭式曲线编辑算法构成。这套能够实时反馈的模型生成和编辑方法为模型查询提供了灵活的交互式的模型输入并查询的接口,可充分发挥人的直观认知。该模型查询接口还将手绘的二维信息映射为三维模型信息,直接构造具有空间拓扑结构和规则体素信息的体素实体模型,克服了只依靠二维信息提取模型特征时空间信息不足的缺陷。
     (3)提出了一种基于序列图像建模、可提供多种模型特征的模型查询接口。
     该模型查询接口建立在基于序列图像的三维重建方法之上,以堆叠物体截面形状方式生成物体模型:首先通过经典SIFT算法得到各视图和底面参考图像间的初级特征点匹配,接着用本文提出的一种改进的RANSAC算法过滤出更具全局意义的匹配点集,并由该点集计算底面和截面上的单应变换矩阵;再由本文提出的基于Lab色彩空间的轮廓提取算法得到的物体轮廓,经由单应变换得到在底面和各截平面上的交叠形状;最后,本文提出了一种基于二值网格的体素实体建模算法将交叠形状组装为体素实体模型。相对于一般的基于图像建模方法,本文采取的三维重建方法可以为模型检索提供更为多样的截面形状、体积、拓扑等模型特征。
     (4)提出了一种基于体素实体模型的特征提取算法。
     该算法从体素实体模型中提取出体素的空间分布函数,是一种在体积层面做信息统计的特征提取算法。通过该算法得到的旋转不变性特征描述符VD2能够提供同类模型的共性特征,也能提供差异化的类间特征。与经典D2、GD2等基于表面模型的特征描述符相比,VD2具有更高的检索性能。此外,为了也能从表面模型中提取VD2特征描述符,本文还提出了一种基于射线权值的表面模型体素化算法。该算法可以在单次扫描体素化的过程中完成包围空腔、表面孔洞等表面网格退化现象的修复。
     以上四个方面的研究是在基于体素实体模型的三维模型检索框架下进行的,涉及模型查询接口构建和模型特征提取两个不同层面的三维模型检索关键技术,并在基于规模化体素实体模型的三维模型检索原型系统中得到了验证。
With the development of computer graphics application domains, such as industrial design, digital medical care and entertainment, the amout of 3D models experiences an explosive growth. As the text search emerged from information expansion of internet, a 3D model retrieval system with high-efficiency is highly expected. For the time being, research interests of 3D model retrieval focus on query interfaces and feature extraction algorithms.
     Compared with traditional text query interface, model query interface can provide intuitive 3D model information, especially in the condition lacking text description. How to construct a fast, perception adaptive model query interface, which can offer model feature with high distinction, is the key of query interface research.
     Model type provided by query interface is corresponding to feature extraction algorithm. 3D model type includes surface model and solid model. Compared with surface model, solid model can provide volume information with low cost. Voxel model, which is a sort of solid model, is attracting more research interests in 3D model retrieval due to its regular solid information.
     Under the funding of National Natural Science Foundation (60573146, 61073086), this dissertation is devoted to theoretic and application research on 3D model retrieval system based on voxel model. Through research of sketch modeling and image based modeling, both of these two aspects, which can establish voxel model, are introduced to model query interface in 3D model retrieval. The work and contribution of this research are as follows:
     1. Present a 3D model retrieval framework based on voxel model.
     The core processing element of this framework is voxel model information. In theoretic level, this framework includes acquisition and retrieval of 3D regular information provided by voxel model. In application level, this framework includes model query interface, voxel model database, feature extraction and comparision. From the search of papers, retrieval system consturcted under this framework is the first one to introduce certain scale voxel modeling to 3D model query interface.
     2. For sketch modeling query interface, a virtual canvas based normal voxel generation method and a seed adjacency based voxel modification method are prsented.
     The virtual canvas based normal voxel generation method consists of normal equal altitude algorithm and normal gradient algorithm. The seed adjacency based voxel modification method consists of half-closed curve algorithm and closed curve algorithm. This set of voxel generation method and voxel modification method with real-time feedback support the voxel model query interface. This voxel model query interface, which is from the intuitionistic visual cognition of human, maps 2D drawing information into 3D model information, neatly constructs topology structure and regular voxel information of voxel model, solves the lack of space information in pure 2D query interface. From experiments, this interactive query interface, based on its ease of use, can provide quick access to voxel model, which is adaptive for volume feature extraction.
     3. Present a 3D model query interface based on image modeling, which is based on images in sequence and does provide a wide range of model features.
     This query interface is constucted under the image modeling method based on images in sequence. Meanwhile, this image modeling method constucts 3D model in the way of stack of cross-section shapes. In detail, this modeling method firstly introduces classic SIFT algorithm to produce primary feature mathing between views and ground view. Then, through an advanced RANSAC algorithm presented by this dissertation, more resonable and global mathing pairs will be generated. From these matching pairs, the homography on ground and cross section will be caculated. The silhouettes of model in every view will be cut out by a silhouette extraction algorithm based on Lab color space. After that, these silhouettes will be transfomed by homographies and crossover each other to generate cross-section shapes of real model. Finally, a voxel modeling method based on binary grid is presented to build voxel model from these cross-section shapes. Compared with usual image based modeling method, this 3D reconstruction method can provide various model features as cross-section shapes, volume and topology. As the constructed result of this modeling method, voxel model, which is full of volume feature, can be used by model query interface. Experiments show that this model query interface is practical.
     4. A feature extraction algorithm based on voxel model is presented.
     This feature extraction algorithm,which is a statistical method on volume level, adds up the voxel distribution function from voxel model. From this algorithm, a rotation-invariant descriptor called VD2, which can simultaneously provide common features among models in the same class and differential features among models in different classes, is generated. Compared with classic D2 and GD2, which are feature descriptors based on surface model, VD2 has higher retrieval efficiency. In addition, for the VD2 extraction from surface model, a voxelization method based on radial weight is presented. This voxelization method can repair surface degeneration as cavums and holes in just one-step. Compared with traditional method, this voxelization method can provide voxel models with more robust volume information.
     All these four research aspects are correlative and independent. They are inplemented under the voxel based 3D model retrieval framework and do research on query interface and feature extraction. They work as an organic whole. Relative experiments show the practical value of the 3D model retrieval system.
引文
[1] Datta, R., et al., Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 2008. 40(2): p. 1-60.
    [2]庄越挺,潘云鹤, and吴飞,网上多媒体信息分析与检索.北京:清华大学出版社, 2002.
    [3] Liu, Y., et al., A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 2007. 40(1): p. 262-282.
    [4] Tangelder, J.H. and R.C. Veltkamp, A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 2008. 39(3): p. 441-471.
    [5] Pratini, E., New Approaches to 3D Gestural Modeling-the 3D SketchMaker Project. Education in Computer Aided Architectural Design, 2001: p. 471-486.
    [6] Galyean, T.A. and J.F. Hughes, Sculpting: an interactive volumetric modeling technique. SIGGRAPH Comput. Graph., 1991. 25(4): p. 267-274.
    [7] Sutherland, I.E. Sketch pad a man-machine graphical communication system. in In Proc. of AFIPS. 1964, 329-346.
    [8] Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: A sketching interface for 3D freeform design. in ACM SIGGRAPH 2007 - International Conference on Computer Graphics and Interactive Techniques, August 5, 2007 - August 9, 2007. San Diego, CA, United states. 2007, ACM SIGGRAPH.
    [9] Nealen, A., et al., FiberMesh: designing freeform surfaces with 3D curves. ACM Trans. Graph., 2007. 26(3): p. 41.
    [10] Igarashi, T. and J.F. Hughes. Smooth meshes for sketch-based freeform modeling. in Proc. of Symposium on Interactive 3D Graphics. 2003, 139-142.
    [11] Karpenko, O., J.F. Hughes, and R. Raskar. Freeform sketching with variational implicit surfaces. in Computer Graphics Forum. 2002, 585-594.
    [12] Alexe, A., V. Gaildrat, and L. Barthe. Interactive modelling from sketches using spherical implicit functions. in Proc. of AFRIGRAPH. 2004, 25-34.
    [13] Owada, S., et al. A sketching interface for modeling the internal structures of 3D shapes. in Proc. of the 4th International Symposium on Smart Graphics. 2003, 49-57.
    [14] Olsen, L., et al., Sketch-based modeling: A survey. Computers & Graphics, 2009. 33(1): p. 85-103.
    [15] Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: a sketching interface for 3D freeform design. in In Proc. of ACM SIGGRAPH 99. 1999, 409–416.
    [16] Tai, C.-L., H. Zhang, and J.C.-K. Fong, Prototype modeling from sketched silhouettes based on convolution surfaces. Computer Graphics Forum, 2004. 23(Compendex): p. 71-83.
    [17] Cherlin, J.J., et al. Sketch-based modeling with few strokes. in Spring Conference onComputer Graphics, SCCG 2005, May 12, 2006 - May 14, 2006. Budmerice, Slovakia. 2005, 137-145.
    [18] Schmidt, R., et al., ShapeShop: sketch-based solid modeling with BlobTrees, in ACM SIGGRAPH 2007 courses. 2007, ACM. p. 43-52.
    [19] Berndt, R., S. Havemann, and D. Fellner, 3D modeling in a web browser to formulate content-based 3D queries. Proc. of the 14th International Conference on Web3D Technology, 2009(Compendex): p. 111-118.
    [20] PROBADO. 2011; http://www.probado.de/.
    [21] Ichida, H., et al., Interactive retrieval of 3D shape models using physical objects, in Proceedings of the 12th annual ACM international conference on Multimedia. 2004, ACM: New York, NY, USA. p. 692-699.
    [22] Mademlis, A., et al., 3D object retrieval using the 3D shape impact descriptor. Pattern Recognition, 2009. 42(11): p. 2447-2459.
    [23] Daras, P., et al., Efficient 3-D model search and retrieval using generalized 3-D radon transforms. Multimedia, IEEE Transactions on, 2006. 8(1): p. 101-114.
    [24] Shih, J.L. and H.Y. Chen, A 3D model retrieval approach using the interior and exterior 3D shape information. Multimedia Tools and Applications, 2009. 43(1): p. 45-62.
    [25] Shih, J.L., C.H. Lee, and J.T. Wang, 3D object retrieval system based on grid D2. Electronics Letters, 2005. 41(4): p. 179-181.
    [26] Laurentini, A., The visual hull concept for silhouette based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994. 16(2): p. 150-162.
    [27] Matusik, W., et al. Image-based visual hulls. in SIGGRAPH 2000, July 23, 2000 - July 28, 2000. New Orleans, LA, United states. 2000, 369-374.
    [28] Furukawa, Y. and J. Ponce, Carved visual hulls for image-based modeling. International Journal of Computer Vision, 2009. 81(Compendex): p. 53-67.
    [29] Kutulakos, K.N. and S.M. Seitz, A theory of shape by space carving. International Journal of Computer Vision, 2000. 38(3): p. 199-218.
    [30] Song, P., X. Wu, and M.Y. Wang, Volumetric stereo and silhouette fusion for image-based modeling. Visual Computer, 2010. 26(Compendex): p. 1435-1450.
    [31] Cheng, C.-M., et al., Image-based three-dimensional model reconstruction for Chinese treasure--Jadeite Cabbage with Insects. Computers & Graphics, 2008. 32(6): p. 682-694.
    [32] Goesele, M., et al. Multi-view stereo for community photo collections. in 2007 IEEE 11th International Conference on Computer Vision, ICCV, October 14, 2007 - October 21, 2007. Rio de Janeiro, Brazil. 2007.
    [33] Snavely, N., et al. Scene reconstruction and visualization from community photo collections. 445 Hoes Lane / P.O. Box 1331, Piscataway, NJ 08855-1331, United States. 2010, 1370-1390.
    [34] Snavely, N., S.M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3D. in ACM SIGGRAPH 2006, July 30, 2006 - August 3, 2006. Boston, MA, United states. 2006, 835-846.
    [35] Merrell, P., et al. Evaluation of large scale scene reconstruction. in 2007 IEEE 11th International Conference on Computer Vision, ICCV, October 14, 2007 - October 21, 2007. Rio de Janeiro, Brazil. 2007.
    [36] Baumgart, B.G., Geometric modeling for computer vision. 1974, Stanford University.
    [37] Matusik, W., C. Buehler, and L. McMillan. Polyhedral visual hulls for real-time rendering. in Proc. of the 12th Eurographics Workshop on Rendering Techniques. 2001, 115-125.
    [38] Lazebnik, S., E. Boyer, and J. Ponce. On computing exact visual hulls of solids bounded by smooth surfaces. in 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 8, 2001 - December 14, 2001. Kauai, HI, United states. 2001, I156-I161.
    [39] Lazebnik, S., Y. Furukawa, and J. Ponce, Projective visual Hulls. International Journal of Computer Vision, 2007. 74(Compendex): p. 137-165.
    [40] Franco, J.-S. and E. Boyer, Efficient polyhedral modeling from silhouettes. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2009. 31(Compendex): p. 414-427.
    [41] Liang, C. and K.-Y.K. Wong, 3D reconstruction using silhouettes from unordered viewpoints. Image and Vision Computing, 2010. 28(4): p. 579-589.
    [42] Liang, C. and K.-Y.K. Wong. Complex 3D shape recovery using a dual-space approach. in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 20, 2005 - June 25, 2005. San Diego, CA, United states. 2005, 878-884.
    [43] Hoppe, H., et al. Mesh optimization. in Proceedings of the ACM SIGGRAPH '93 Conference on Computer Graphics, August 1, 1993 - August 6, 1993. Anaheim, CA, USA. 1993, 19-25.
    [44] Brand, M., K. Kang, and D.B. Cooper. Algebraic solution for the visual hull. in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, June 27, 2004 - July 2, 2004. Washington, DC, United states. 2004, I33-I35.
    [45] Liu, X., M.L. Gavrilova, and J. Rokne, Incorporating object-centered sampling and Delaunay tetrahedrization for visual hull reconstruction. Visual Computer, 2009. 25(Compendex): p. 381-389.
    [46] Martin, W.N. and J.K. Aggarwal, Volumetric Descriptions of Objects from Multiple Views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983. 5(2): p. 150-158.
    [47] Seitz, S.M. and C.R. Dyer, Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision, 1999. 35(2): p. 151-173.
    [48] Faugeras, O. and R. Keriven, Variational principles, surface evolution, PDE's, level set methods, and the stereo problem. IEEE Transactions on Image Processing, 1998. 7(Compendex): p. 336-344.
    [49] Faugeras, O. and R. Keriven, Complete dense stereovision using level set methods. 1998. p. 379-379.
    [50] Pons, J.-P., R. Keriven, and O. Faugeras. Modelling dynamic scenes by registering multi-view image sequences. in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 20, 2005 - June 25, 2005. San Diego, CA, United states. 2005, 822-827.
    [51] Vogiatzis, G., P.H.S. Torr, and R. Cipolla. Multi-view stereo via volumetric graph-cuts. in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 20, 2005 - June 25, 2005. San Diego, CA, United states. 2005, 391-398.
    [52] Sinha, S.N. and M. Pollefeys. Multi-view reconstruction using photo-consistency and exact silhouette constraints: A maximum-flow formulation. in Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005, October 17, 2005 - October 20, 2005. Beijing, China. 2005, 349-356.
    [53] Tran, S. and L. Davis. 3D surface reconstruction using graph cuts with surface constraints. in 9th European Conference on Computer Vision, ECCV 2006, May 7, 2006 - May 13, 2006. Graz, Austria. 2006, 219-231.
    [54] Hornung, A. and L. Kobbelt. Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, June 17, 2006 - June 22, 2006. New York, NY, United states. 2006, 503-510.
    [55] Paris, S., F.X. Sillion, and L. Quan. A surface reconstruction method using global graph cut optimization. in Best of the 6th Asian Conference on Computer Vision. 2006, 141-161.
    [56] Xia, D., et al., A novel approach for computing exact visual hull from silhouettes. Optik - International Journal for Light and Electron Optics, 2011. In Press, Corrected Proof.
    [57] Goesele, M., B. Curless, and S.M. Seitz. Multi-view stereo revisited. in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, June 17, 2006 - June 22, 2006. New York, NY, United states. 2006, 2402-2409.
    [58] Strecha, C., R. Fransens, and L. Van Gool. Combined depth and outlier estimation in multi-view stereo. in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, June 17, 2006 - June 22, 2006. New York, NY, United states. 2006, 2394-2401.
    [59] Narayanan, P.J., P.W. Rander, and T. Kanade. Constructing virtual worlds using dense stereo. in Proceedings of the 1998 IEEE 6th International Conference on Computer Vision, January 4, 1998 - January 7, 1998. Bombay, India. 1998, 3-10.
    [60] Pollefeys, M., et al., Metric 3D surface reconstruction from uncalibrated image sequences. 1998. p. 139-139.
    [61] Esteban, C.H. and F. Schmitt, Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding, 2004. 96(Compendex): p. 367-392.
    [62] Kazhdan, M., Reconstruction of solid models from oriented point sets, in Proceedings of the third Eurographics symposium on Geometry processing. 2005, Eurographics Association: Vienna, Austria. p. 73.
    [63]田海山,何援军, and蔡鸿明,基于点的计算机图形学综述.系统仿真学报, 2006. 18(s1): p. 42-45.
    [64] Lhuillier, M. and L. Quan, A quasi-dense approach to surface reconstruction from uncalibrated images. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2005. 27(Compendex): p. 418-433.
    [65] Habbecke, M. and L. Kobbelt. A surface-growing approach to multi-view stereo reconstruction. in 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07, June 17, 2007 - June 22, 2007. Minneapolis, MN, United states. 2007.
    [66] 3D Warehouse. 2011; http://sketchup.google.com/3dwarehouse/.
    [67] Funkhouser, T., et al., A search engine for 3D models. Acm Transactions on Graphics, 2003. 22(1): p. 83-105.
    [68] Princeton 3D model search engine. 2011; http://shape.cs.princeton.edu/search.html.
    [69] Cadyou. 2011; http://www.cadyou.com/.
    [70] Polantis. 2011; http://www.polantis.com/.
    [71] 3dfilter. 2011; http://www.3dfilter.com/.
    [72] National Taiwan University 3D models search engine. 2011; http://3d.csie.ntu.edu.tw/~dynamic/cgi-bin/DatabaseII_v1.8/.
    [73] Chen, D.-Y., et al. On Visual Similarity Based 3D Model Retrieval. in European Association for Computer Graphics 24th Annual Conference EUROGRAPHICS 2003, September 1, 2003 - September 6, 2003. Granada, Spain. 2003, 223-232.
    [74] Informatics & Telematics Institute 3DSearch. 2011; http://3d-search.iti.gr/3DSearch.
    [75] Hou, S. and K. Ramani, Classifier combination for sketch-based 3D part retrieval. Computers & Graphics, 2007. 31(4): p. 598-609.
    [76] Gao, Y., et al., 3D model retrieval using weighted bipartite graph matching. Signal Processing: Image Communication, 2010.
    [77] Ansary, T.F., M. Daoudi, and J.P. Vandeborre, A bayesian 3-d search engine using adaptive views clustering. IEEE Transactions on Multimedia, 2007. 9(1): p. 78-88.
    [78] 3Dretrieval. 2011; http://www-rech.telecom-lille1.eu:8080/3Dretrieval/.
    [79] Yeh, J.-S., et al., Hand-shadow illusions and 3D DDR based on efficient model retrieval, in ACM SIGGRAPH 2006 Emerging technologies. 2006, ACM: Boston, Massachusetts. p. 13.
    [80] Shum, H.Y., M. Hebert, and K. Ikeuchi. On 3D Shape Similarity. in Proceedings of theIEEE Computer Vision and Pattern Recognition. 1996, 526-531.
    [81] Zaharia, T. and F. Pr¨oteux. 3D shape-based retrieval within the MPEG-7 framework. in SPIE Conference. 2001, 133-145.
    [82] Ankerst, M., et al., Nearest Neighbor Classification in 3D Protein Databases, in Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology. 1999, AAAI Press. p. 34-43.
    [83] Ankerst, M., et al., 3D Shape Histograms for Similarity Search and Classification in Spatial Databases, in Advances in Spatial Databases. 1999, Springer Berlin / Heidelberg. p. 207-226.
    [84] Osada, R., et al., Matching 3D models with shape distributions. International Conference on Shape Modeling and Applications, Proceeding, 2001: p. 154-166.
    [85] Osada, R., et al., Shape distributions. ACM Transactions on Graphics, 2002. 21(4): p. 807-832.
    [86] Akgül, C.B., et al., 3D model retrieval using probability density-based shape descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009: p. 1117-1133.
    [87] Horn, B.K.P., Extended gaussian images. Proceedings of the IEEE, 1984. 72(12): p. 1671-1686.
    [88] Sun, C.M. and J. Sherrah, 3D symmetry detection using the extended Gaussian image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997. 19(2): p. 164-168.
    [89] Zouaki, H., Representation and geometric computation using the extended Gaussian image. Pattern Recognition Letters, 2003. 24(9-10): p. 1489-1501.
    [90] Wong, H.S., K.K.T. Cheung, and H.H.S. Ip, 3D head model classification by evolutionary optimization of the Extended Gaussian Image representation. Pattern Recognition, 2004. 37(12): p. 2307-2322.
    [91] McWherter, D., et al. Transformation invariant shape similarity comparison of solid models. in Proc. ASME design engineering technical conferences,6th design for manufacturing conference. 2002.
    [92] McWherter, D., et al. Database techniques for archival of solid models. in Proc. Solid Modeling'01. 2001, 78-87.
    [93] Mukai, S., S. Furukawa, and M. Kuroda. An algorithm for deciding similarities of 3-D objects. in Proc. ACM Symposium on Solid Modelling and Applications 2002. Saarbrücken, Germany. 2002, 367-375.
    [94] Chuang, J.H., C.H. Tsai, and M.C. Ko, Skeletonization of three-dimensional object using generalized potential field. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2000. 22(11): p. 1241-1251.
    [95] Sundar, H., et al., Skeleton based shape matching and retrieval. Smi 2003: Shape Modeling International 2003, Proceedings, 2003: p. 130-139.
    [96] Cornea, N.D., et al. 3D object retrieval using many-to-many matching of curveskeletons. in Shape Modeling and Applications, 2005 International Conference. 2005, 366-371.
    [97] Xu, J., et al., Efficient and effective similarity search over probabilistic data based on earth mover's distance. Proceedings of the VLDB Endowment, 2010. 3(1-2): p. 758-769.
    [98] Iyer, N., et al., Shape-based searching for product lifecycle applications. Computer-Aided Design, 2005. 37(13): p. 1435-1446.
    [99] Chang, M.C. and B.B. Kimia, Measuring 3D shape similarity by graph-based matching of the medial scaffolds. Computer Vision and Image Understanding, 2010.
    [100] Biasotti, S., et al. 3D shape matching through topological structures. in DGCI. 2003, 194-203.
    [101] Hilaga, M., et al. Topology matching for fully automatic similarity estimation of 3D shapes. in SIGGRAPH. 2001, 203-212.
    [102] Berretti, S., A. Del Bimbo, and P. Pala, 3D Mesh decomposition using Reeb graphs. Image and Vision Computing, 2009. 27(10): p. 1540-1554.
    [103] Tarr, M.J., et al., Three-dimensional object recognition is viewpoint dependent. Nature Neuroscience, 1998. 1(4): p. 275-277.
    [104] Yubin, Y., L. Hui, and Z. Qing, Content-Based 3D Model Retrieval: A Survey. Chinese journal of computers, 2004. 27(10): p. 1297-1310.
    [105] Min, P., J. Chen, and T. Funkhouser. A 2D sketch interface for a 3D model search engine. in SIGGRAPH. 2002, 138-138.
    [106] Mahmoudi, S. and M. Daoudi, 3D models retrieval by using characteristic views. Pattern Recognition, 2002. 2: p. 20457.
    [107] Chen, D.Y., et al., On visual similarity based 3D model retrieval. Computer Graphics Forum, 2003. 22(3): p. 223-232.
    [108] Shin, H. and T. Igarashi. Magic canvas: Interactive design of a 3-D scene prototype from freehand sketches. in Graphics Interface 2007. Montreal, QC, Canada. 2007, 63-70.
    [109] Papadakis, P., et al., PANORAMA: A 3D Shape Descriptor Based on Panoramic Views for Unsupervised 3D Object Retrieval. International Journal of Computer Vision, 2010. 89(2-3): p. 177-192.
    [110] Passalis, G., T. Theoharis, and I.A. Kakadiaris, PTK: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. The Visual Computer, 2007. 23(1): p. 5-14.
    [111] Shih, J.L., C.H. Lee, and J.T. Wang, A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognition, 2007. 40(1): p. 283-295.
    [112] Ohbuchi, R., M. Nakazawa, and T. Takei, Retrieving 3D shapes based on their appearance, in Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval. 2003, ACM: Berkeley, California. p. 39-45.
    [113] Liu, X., et al. Directional histogram model for three-dimensional shape similarity. inIEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). 2003, 813-820.
    [114] Vrani , D.V. and D. Saupe. 3D shape descriptor based on 3D Fourier transform. in Proc. the EURASIP Conf. on Digital Signal Processing for Multimedia Communications and Services. 2001, 271-274.
    [115] Vranic, D. and D. Saupe. A feature vector approach for retrieval of 3D objects in the context of MPEG-7. in Proc. Intl. Conf. on Augmented, Virtual Environments and ThreeDimensional Imaging. 2001, 37-40.
    [116] Richard, C.W. and H. Hemami, Identification of three-dimensional objects using Fourier descriptors of the boundary curve. Systems, Man and Cybernetics, IEEE Transactions on, 1974(4): p. 371-378.
    [117] Zhang, H. and E. Fiume. Shape matching of 3-D contours using normalized Fourier descriptors. in Proc. Intl. Conf. on Shape Modeling and Applications. 2002, 261-271.
    [118] Makadia, A. and K. Daniilidis, Spherical correlation of visual representations for 3d model retrieval. International Journal of Computer Vision, 2010. 89(2): p. 193-210.
    [119] Kazhdan, M., T. Funkhouser, and S. Rusinkiewicz, Rotation invariant spherical harmonic representation of 3D shape descriptors, in Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. 2003, Eurographics Association: Aachen, Germany. p. 156-164.
    [120] Ferreira, A., et al., Thesaurus-based 3d object retrieval with part-in-whole matching. International Journal of Computer Vision, 2010. 89(2): p. 327-347.
    [121] Xing, W. and B. Bir, Gabor wavelet representation for 3-D object recognition. Image Processing, IEEE Transactions on, 1997. 6(1): p. 47-64.
    [122] Paquet, E. and M. Rioux. The MPEG-7 standard and the content-based management of three-dimensional data: a case study. in Multimedia Computing and Systems, 1999. IEEE International Conference on. 1999, 375-380.
    [123] Zhu, K.P., et al., A diffusion wavelet approach for 3-D model matching. Computer-Aided Design, 2009. 41(1): p. 28-36.
    [124] Zarpalas, D., et al., 3D model search and retrieval using the spherical trace transform. EURASIP Journal on Applied Signal Processing, 2007. 2007(1): p. 207-207.
    [125] Daras, P. and A. Axenopoulos, A 3D Shape Retrieval Framework Supporting Multimodal Queries. International Journal of Computer Vision, 2010. 89(2): p. 229-247.
    [126] Wang, J., Y. He, and H. Tian, Voxel-based shape analysis and search of mechanical CAD-models. Engineering Research, 2007. 71(3): p. 189-195.
    [127] Wang, J., et al., Retrieving 3D CAD model by freehand sketches for design reuse. Advanced Engineering Informatics, 2008. 22(3): p. 385-392.
    [128] Novotni, M. and R. Klein. A geometric approach to 3D object comparison. in In Proc. of Shape Modeling International. 2001, 154-166.
    [129] Sanchez-Cruz, H. and E. Bribiesca, A method of optimum transformation of 3Dobjects used as a measure of shape dissimilarity. Image and Vision Computing, 2003. 21(12): p. 1027-1036.
    [130] Ait Lmaati, E., et al., A 3-D Search engine based on Fourier series. Computer Vision and Image Understanding, 2010. 114(1): p. 1-7.
    [131] Lou, K., K. Ramani, and S. Prabhakar. Content-based three-dimensional engineering shape search. in Data Engineering, 2004. Proceedings. 20th International Conference on. 2004, 754-765.
    [132] Ansary, T.F., J.-P. Vandeborre, and M. Daoudi. 3D-Model search engine from photos. in 6th ACM International Conference on Image and Video Retrieval, CIVR 2007, July 9, 2007 - July 11, 2007. Amsterdam, Netherlands. 2007, 89-92.
    [133] Khan, S.M., P. Yan, and M. Shah. A homographic framework for the fusion of multi-view silhouettes. in 2007 IEEE 11th International Conference on Computer Vision, ICCV, October 14, 2007 - October 21, 2007. Rio de Janeiro, Brazil. 2007.
    [134] Stauffer, C. and W.E.L. Grimson, Adaptive background mixture models for real-time tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999. 2(Compendex): p. 246-252.
    [135] Lowe, D.G. Object recognition from local scale-invariant features. in Proceedings of the 1999 7th IEEE International Conference on Computer Vision (ICCV'99), September 20, 1999 - September 27, 1999. Kerkyra, Greece. 1999, 1150-1157.
    [136] Lowe, D.G., Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004. 60: p. 91-110.
    [137] Mikolajczyk, K. and C. Schmid, A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005. 27: p. 1615-1630.
    [138] Fischler, M.A. and R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981. 24(Compendex): p. 381-395.
    [139] RANSAC. 2011; http://en.wikipedia.org/wiki/RANSAC.
    [140] Jiantao, P., et al., 3D Model Retrieval Based on 2D Slice Similarity Measurements, in Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium. 2004, IEEE Computer Society. p. 95-101.
    [141] Hilaga, M., et al., Topology matching for fully automatic similarity estimation of 3D shapes, in Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 2001, ACM. p. 203-212.
    [142] Shilane, P., et al., The Princeton shape benchmark. Proceedings of the International Conference on Shape Modeling and Applications, 2004: p. 167-178
    [143] Nooruddin, F.S. and G. Turk, Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Transactions on Visualization and Computer Graphics, 2003. 9(2): p. 191-205.
    [144] Schwarz, M. and H.-P. Seidel, Fast parallel surface and solid voxelization on GPUs. ACM Trans. Graph., 2010. 29(6): p. 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700