摄像测量的温度补偿方法和位姿传递像机网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机、数字图像处理、自动控制等技术的发展,尤其是CCD和CMOS图像传感器性价比的不断提高,摄像测量以其客观、非接触、高精度等特点得到了迅速的发展和应用。然而,在利用摄像测量技术对大型结构体的位姿变形进行测量和监测时,会遇到两个难题:一方面,与激光陀螺、加速度计等高精度测量器件类似,摄像机也存在所谓的温度效应,而在长期测量的过程中不可避免的会遇到环境温度的变化,从而带来测量误差;另一方面,传统的摄像测量技术只能用于测量存在通视光路或处于同一视场内目标间的位姿关系,对科技或工程建设领域中大量存在的大型结构体上不通视或不处于同一视场的多个目标间的位姿关系测量则无能为力。本文对上述两个问题进行了研究,分别提出了用于减小摄像测量中温度效应的温度补偿方法和用于同时测量多个不通视目标间位姿关系的位姿传递像机网络摄像测量方法。
     在第二章中首先介绍了两种典型的摄像测量形式——双目位姿估计和单目位姿估计的原理以及它们在工程中的实际应用。由于单目位姿估计是像机链和像机网络中实现位姿关系传递的基础,因此着重介绍了目前常用的正交迭代位姿估计算法。此外,针对单目位姿估计在沿摄像机光轴方向上位移测量精度较低的缺陷,提出了一种利用高精度激光测距仪辅助的方法将两者的测量数据融合起来以提高系统的测量精度。
     在第三章中以经典的针孔成像模型为基础,以平面网格板为目标,对由温度变化引起的摄像机图像漂移与其内外参数变化之间的数学关系进行了研究。通过对模型中各个摄像机参数间的耦合进行仿真分析,推导出了不需要特定假设条件的线性图像漂移模型和适用于近距离应用下的简化图像漂移模型。分别设计了摄像机开启后自热阶段的图像漂移实验和通过开关空调改变环境温度的图像漂移实验,验证了图像漂移模型的正确性。实验中发现,摄像机开启后机身温度会迅速上升,引起摄像机内外参数产生相应的变化,大约1个小时后逐渐保持稳定,因此,在对摄像机进行高精度标定和测量时应当先开机预热1个小时,以减小摄像机自身发热带来的标定误差和测量误差。
     在第四章中对摄像测量中的温度补偿方法进行了研究。对基于系统辨识的线性动态系统建模方法进行了详细介绍,并利用该方法对温度变化环境下各个摄像机参数的温度变化模型进行了标定和验证实验,补偿结果显示,温度补偿能够显著减小摄像机的图像漂移量。为了验证温度补偿方法的可行性和有效性,进一步比较了单目摄像测量系统在温度补偿前后对平面目标的位姿测量数据,测量结果表明温度补偿方法能够显著减小由于环境温度变化引起的位姿测量误差。
     在第五章中对位姿传递像机网络摄像测量方法的基本原理及其表示方法进行了研究。首先介绍了像机链位姿传递摄像测量的原理和其在大型船体变形测量应用中的软硬件设计与实现,然后,提出了往返双像机链位姿传递摄像测量方法和基于平差的数据优化方法,最后,提出了位姿传递像机网络摄像测量方法,并讨论了图论算法在像机网络表示和数据优化中的应用。
     最后,在第六章中对位姿传递像机网络摄像测量中的两个关键技术——多目传递站位姿关系的最优标定和像机网络中的数据优化进行了研究。在分析多目传递站自身结构的基础上,提出了基于冗余标定的平差法优化标定方法。仿真结果表明,由于充分利用了多目传递站自身固有的各种约束关系,通过对原始的两两标定值进行平差法优化,可以显著提高多目传递站内各摄像机间相对位姿关系的标定精度。对于像机网络中的数据优化问题,提出了首先利用图论的方法得到像机网络中的有效约束条件,然后进一步提出了基于平差的数据优化方法和基于SPGD算法的数据优化方法。仿真结果表明,两种方法都能有效的利用像机网络中存在的固有约束,减小像机网络整体的测量误差,但是,平差法的复杂度会随着像机网络复杂度的增加而急剧增大,而基于SPGD算法的数据优化方法形式简单,复杂度基本保持不变,所以在大型结构体的位姿变形测量中具有良好的实际应用前景。
Videometrics develops fast and is widely applied because of its impersonality, high precision and non-contact feature with the development of computer, image processing and automatic control technologies in recent years, especially for the image sensors such as CCD/CMOS becoming increasingly performance-cost. However, there are two difficulties encounterd in applying videometrics to measure the pose deformations of large structures. Firstly, video cameras have temperature effects as well as other high precision sensors such as the ring laser gyroscopes, the accelerometers, and so on, then thermal errors will be introduced when the videometrics apllying in a long period where the temperature of environment will change unavoidably. Secondly, traditional videometrics cannot be used to measure the pose deformation of objects in a large viewing field or non-intervisible objects in large structures, which are commonly used in technological and engineering construction today. To overcome the aforementioned difficulties, this thesis proposes a temperature compensation method to reduce the thermal errors in long time videometrics and develops the pose relay videometrics method using camera network to measure multiple non-intervisible objects.
     Firstly, principles and real applications of the monocular videometrics methods are introduced in chapter 1 as well as the binocular ones. Orthogonal iterative algorithm, which is one of the most popular monocular pose estimation algorithms, is presented in detail for the monocular pose estimation method is the base of pose relay in camera series and camera network. Furthermore, a new data fusion method is proposed to improve the precision of translation measurements along the optical axis of camera with a high precision laser rangefinding sensor.
     Secondly, mathematic relations between the image drift and the intrinsic/exterior parameters of the camera are studied targeted on the plane grid based on the classic pinhole camera model in chapter 3. The linear image drift model as well as the simplified one used in close range applications are farther proposed by analyzing and simulating the coupling between the varieties of camera parameters. Experiments of camera warm-up as well as experiments of environment temperature variations are implemented to validate the image drift models, in which the fact is found out that parameters of the camera rises immediately after camera startup for about 1 hour. So cameras had better to be warm-up for about 1 hour before calibrating and measuring in order to reduce the thermal errors introduced by the temperature rising of the camera.
     Then temperature compensation methods of videometrics are studied in chapter 4. Linear dynamic system modeling based system identification is particular introduced, with which the variety models of camera parameters are calibrated and verified under temperature variety environments. Experimental results show that image drift is reduced strongly under the temperature compensation method. Feasibility and validity of the method are further confirmed by comparing the pose estimations on plane object with/without temperature compensations.
     Principles of the pose relay videometrics using camera network are studied in chapter 5 as well as the representation methods. Software design and hardware realization of the pose relay videometrics using camera series as well as its application in the large ship deformation measurements are introduced firstly, then measurements of the pose relay videometrics using parallel camera series are studied and an adjustment based data optimization method is proposed to reduce the measurement errors. In the end, the pose relay videometrics using camera network is proposed, in which the graph theory is used in representing the camera network and optimizing the measurements.
     Lastly, the optimization calibration of multi-cameras relay station as well as the data optimization in the videometric using camera network are studied in chapter 6. An adjustment optimization method based redundancy calibrations is proposed by analyzing the structure of the multi-camera relay station. Simulation results show that the method could suppress noises effectively and improve the calibration precision because the full utilizing of constraint conditions in the relay station. Adjustment based method as well as SPGD (Stochastic Parallel Gradient Descent) based method are proposed in optimizating the measurements of pose relay videometrics system using camera network. Simulation results show that both methods could suppress noises and improve the measurement precision effectively because they can take full advantages of the constraint conditions intrinsic in the camera network, however, it is noticeable that complexity of the adjustment based algorithm will increase drastically as the complexity of the camera network increases, while complexity of the SPGD based method remains same, so the latter one is expected to find wide applications in the attitude angular deformation measurements of large structures.
引文
[1]于起峰,尚洋.摄像测量学原理与应用研究[M].北京:科学出版社, 2009.
    [2]张广军.视觉测量[M].北京:科学出版社, 2008.
    [3] Faig W. Calibration of Close-Range Photogrammetry Systems: Mathematical Formation[J]. Photogrammetric Engineering and Remote Sensing, 1975, 41(12): 1479-1486.
    [4] Karara H M. Handbook of Close-Range Photogrammetry[M] America Society of Photogrammetry, 1979.
    [5] Hartley R I, Zisserman A. Multiple View Geometry in Computer Vision[M] Cambridge University Press, 2000.
    [6] Tsai R Y. A Versatile Camera Calibration Technique for 3d Machine Vision[J]. IEEE Journal for Robotics & Automation, 1987, 3(4): 323-344.
    [7] Weng J, Cohen P, Herniou M. Camera Calibration with Distortion Models and Accuracy Evaluation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965-980.
    [8] Zhang Z. A Fexible New Technique for Camera Calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330~1334.
    [9]邱茂林,马颂德,李毅.计算机视觉中摄像机标定综述[J].自动化学报, 2000, 26(11): 43-55.
    [10] Pollefeys M, Koch R, Gool L V. Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Intrinsic Camera Parameters[C]. in Proceedings of the IEEE International Conference on Computer Vision. Bombay 1998:90-95.
    [11] Kim H, Hong K S. A Practical Self-Calibration Method of Rotating and Zooming Cameras[J]. Proceeding of the 15th International Conference on Pattern Recognition, 2000: 354-357.
    [12] Wu Y, Shen J. A Method of Self-Calibration About the Camera Variable Intrinsic Parameters[C]. in Proceedings of the IEEE International Conference on Information Acquisition 2004:358~364.
    [13] Willson R G. Modeling and Calibration of Automated Zoom Lenses[J]. SPIE Proceedings, Videometrics III, 1994, 2350: 170-186.
    [14] Li M. Some Aspects of Zoom Lens Camera Calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(11): 1105-1110.
    [15] Urbanek M, Horaud R, Sturm P. Combining Off- and on-Line Calibration of Digital Camera[J]. Proceeding of the 3rd International Conference on 3D Digital Imaging and Modeling, 2001: 99-106.
    [16] Wikipedia. Thermal Expansion. Available from: http://en.wikipedia.org/wiki/Coefficient_of_thermal_expansion. 2011.2.13
    [17] Bass M. Handbook of Optics[M]. Third ed. Volume Iv: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, ed. W.J. Tropf, M.E. Thomas, and E.W. Rogala. New York: McGraw-Hill Companies, 2010: 8. Thermal Compensation Techniques.
    [18] Weber M J. Handbook of Optical Matrerials[M]. Berkely, California: CRC Press, 2002.
    [19] Jamieson T H. Thermal Effects in Optical Systems[J]. Optical Engineering, 1981, 20(2): 156-160.
    [20] Baumer S, Timmers W, Krichever M, et al. Temperature Compensated Plastic Lens for Visible Light[C]. in EUROPTO Conference on Design and Engineering of Optical Systems. Berlin, Germany 1999:354-362.
    [21] Seto E, Sela G, Mcilroy W E, et al. Quantifying Head Motion Associated with Motor Tasks Used in Fmri[J]. NeuroImage, 2001(14): 284-297.
    [22] Yu Q, Jiang G, Fu S, et al. Fold-Ray Videometrics Method for the Deformation Measurement of Nonintervisible Large Structures[J]. Appl. Opt, 2009, 48(24): 4683~4687.
    [23] Jiang G, Fu S, Chao Z, et al. Pose-Relay Videometrics Based Ship Deformation Measurement System and Sea Trials[J]. Chinese Science Bulletin, 2011, 56(1): 113-118.
    [24]人民网.杭州地铁坍塌事故. Available from: http://society.people.com.cn/GB/8217/138837/index.html. 2008.11.16
    [25]郑梓祯,刘德耀.船用惯性导航系统海上试验[M].北京:国防工业出版社, 2006.
    [26]周永余,许江宁,高敬东.舰船导航系统[M].北京:国防工业出版社, 2006.
    [27] Machalov A V, Kazantasev A V. Use of the Ring Laser Units for Measurement of the Moving Object Deformation[C]. in SPIE,4680 2002, 4680:85~92.
    [28] Roy J P, Tao L, Britcher C P. Extracting Dynamic Loads from Optical Deformation Measurements[R] 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf 2006-2187,2006
    [29] Morris M J, Brown M, Spreeman J. Measurement of the Bending and Twist in a Deforming Airfoil Using Laser-Based Imaging[R]. Nevada, Reno:2006-1031,2005
    [30] K. W. Wong M L, Ke Y. Experience with Two Vision Systems[J]. Close Range Photogrammetry meets machine vision, 1990, 1395: 3-7.
    [31] Beyer H A. Geometric and Radiom Analysis of a CCD Camera Based Photogrammetric Close-Range System[J]. Mitteilungen Nr., 1992, 51.
    [32] Robson S, Clarke T A, Chen J. Suitability of the Pulnix Tm6cn CCD Camera for Photogrammetric Measurement[J]. SPIE Proceedings, Videometrics II, 1993, 2067: 66-77.
    [33] Bass M. Handbook of Optics[M]. Third ed. Volume Ii: Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, ed. P.J. Rogers and M. Roberts. New York: McGraw-Hill Companies, 2010: 8. Thermal Compensation Techniques.
    [34] Gilmore D G. Spacecraft Thermal Control Handbook[M] The Aerospace Corporation Press, 2002.
    [35] Podbreznik P, Potocnik B. Analytical Camera Model Supplemented with Influence of Temperature Variations[J]. International Journal of Computer and Information Science and Engineering, 2008: 268~275.
    [36] Podbreznik P, Potocnik B. Influence of Temperature Variations on Calibrated Cameras[J]. International Journal of Computer and Information Science and Engineering, 2008: 261~267.
    [37] Smith M J, Cope E. The Effects of Temperature Variation on Single-Lens-Reflex Digital Camera Calibration Parameters[C]. in International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Newcastle upon Tyne, UK. 2010, XXXVIII:554~559.
    [38] Handel H. Analyzing the Influences of Camera Warm-up Effects on ImageAcquisition[J]. ACCV, 2007, 4844: 258-268.
    [39] Handel H. Analyzing the Influence of Camera Temperature on the Image Acquisition Process[C]. in Three-Demensional Image Capture and Applications, Proc of SPIE 2008, 6805:68050X1~68050X8.
    [40]张鹏飞.二频机抖激光陀螺捷联惯导系统及其实时温度补偿方法的研究[D].长沙:国防科技大学博士学位论文, 2006.
    [41] He H O, Zhao Z, Wang L. Temperature Error Modeling Study for Laser Gyro[C]. in International Symposium on Instrumentation Science and Technology 2006, 48:245~249.
    [42] Guo C, Xu Y J, Zhao X N. Investigation on Temperature Compensating Model for Ring Laser Gyoscope[J]. Chinese Opticals Letters, 2006, 4(10): 576~579.
    [43]刘明雍,周良荣,赵涛.激光陀螺温度误差补偿方法[J].鱼雷技术, 2009, 17(5): 53-57.
    [44]王淑娟,吴广玉.惯性器件温度误差补偿综述[J].中国惯性技术学报, 1998, 6(3): 44~49.
    [45]胡伍生,潘庆林,黄腾等.土木工程施工测量手册[M].北京:人民交通出版社, 2005.
    [46]徕卡中国.指点经纬天地畅游[M].北京:徕卡应用文集, 2008.
    [47]李兴民,王国田,严兵. Gps用于船体变形的测量研究[J].零八一科技, 2007(1): 1~4.
    [48]万德钧,刘玉峰.消除舰船变形的影响和为全舰提供高精度姿态基准[J].中国惯性学报, 2005, 13(4): 77~82.
    [49]郑荣才,陈超英,扬功流.大型舰船甲板变形测量[J].天津大学学报, 2006, 39(9): 1077~1081.
    [50]汪顺亭,汪湛清,朱昀炤等.船体变形的监测方法及其对航向姿态信息的修正[J].中国惯性技术学报, 2007, 15(6): 635~641.
    [51]朱昀炤,汪顺亭,缪玲娟等.粒子滤波在船体大角度变形测量中的应用[J].北京理工大学学报, 2008, 2008(28): 4.
    [52]柳爱利,卢伟.甲板变形测量技术研究[J].海军航空工程学院学报, 2009, 24(2): 178~180.
    [53]裵福俊,万德钧.一种基于应变模态分析的舰船分布式挠曲姿态测量方法[J].中国惯性技术学报, 2005, 13(1): 15~20.
    [54] Kiddy J, Baldwin C, Salter T. Hydrostatic Testing of a Manned Underwater Vehicle Using Fiber Optic Sensors[C]. in Proceedings of MTS 2005, 2:1876~1881.
    [55] Prane K, Johnson G, Jensen A E. Instrumentation of a High-Speed Surface Effect Ship for Structural Response Characterisation During Seatrials[C]. in Proceedings of SPIE 2000, 3986:372~379.
    [56] Murawski L. Shaft Line Alignment Analysis Taking Ship Construction Flexibility and Deformation into Cosideration[J]. Marin Structures, 2005(18): 62~84.
    [57] Baldwin C, Kiddy J, Salter T. Fiber Optic Stucture Health Monitoring System: Rough Sea Trials Testing of the Rv Triton[C]. in Proceedings of MTS 2002, 2:1806~1813.
    [58]张尧禹,李岷,于萍等.测量船船体变形测量系统的研究[J].仪器仪表学报, 2006, 27(6): 1505~1506.
    [59]李岷,张尧禹,李岩等.基于测量船角变形光电测量系统的研究[J].长春理工大学学报, 2006, 39(3): 14~15.
    [60]李向荣,乔彦峰,李清安等.干涉法在船体角度变形测量中的应用[J].计量技术, 2005(4): 36~28.
    [61]李向荣,乔彦峰,刘微等.船体三维角度变形的自准直干涉测量方法[J].光学技术, 2005, 31(5): 761~763.
    [62]潘良.航天测量船船姿船位测量技术[M].北京:国防工业出版社, 2009.
    [63]姜广文.像机链位姿传递摄像测量方法及船体变形测量研究[D].长沙:国防科技大学博士学位论文, 2010.
    [64]伍雪冬.计算机视觉中摄像机定标及位姿和运动估计方法的研究[D].长沙:湖南大学电气与信息工程学院博士学位论文, 2004.
    [65]祝世平,强锡富.用于摄像机定位的单目视觉方法研究[J].光学学报, 2001, 21(3): 339~342.
    [66]于起峰,孙祥一,邱志强.从单站光测图像确定空间目标三维姿态[J].光学技术, 2002, 28(1): 77~82.
    [67]唐自力,马彩文,刘波等.单站光测图像确定空间目标三维姿态[J].光子学报, 2004, 33(12): 1480~1485.
    [68]黄桂平,李广云,王保丰等.单目视觉测量技术研究[J].计量学报, 2004, 25(4): 314~317.
    [69]马颂德,张正友.计算机视觉[M].北京:科学出版社, 1998.
    [70]祝世平,强锡富.工件特征点三维坐标视觉测量方法综述[J].光学精密工程, 2000, 8(2): 192~198.
    [71]郝颖明,朱枫,欧锦军.目标位姿测量中的三维视觉方法[J].中国图像图形学报, 2002, 7A(12): 1247~1251.
    [72] Philip N K, Ananthasayanam M R. Relative Position and Attitude Estimation and Control Schemes for the Final Phase of an Autonomous Docing Mission of Spacecraft[J]. Acta Astronautica, 2003, 52: 511~522.
    [73]徐刚锋,李飚,沈振康.基于双目视觉模型的运动参数测量[J].红外与激光工程, 2003, 32(2): 199~202.
    [74] Okutomi M, Kanada T. A Multi-Baseline Stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15: 353~363.
    [75] Jia B, Zhang Y J. Stereo Matching Using Both Orthogonal and Multiple Image Pairs[C]. in Proc. ICASSP. 4 2000:2139~2142.
    [76]邱志强.基于仿射近似从航空图像重建目标三维结构[D].长沙:国防科技大学博士学位论文, 2004.
    [77]高满屯,曲仕茹,李西琴.计算机视觉研究中的投影理论和方法[M].西安:西北工业大学出版社, 1998.
    [78] Triggs. Autocalibration and the Absolute Quadric[C]. in Proceedings of International Conference on Pattern Recognition 1997,
    [79] Hartley R I. Estimation of Relative Camera Positions for Uncalibrated Cameras[C]. in Proceedings of the ECCV92 1992:379-387.
    [80] Ma S. A Self-Calibration Technique for Active Vision System[J]. IEEE Transactions on Robot Automation, 1996, 12(1): 114-120.
    [81] Hartley R I. Self-Calibration of Stationary Cameras[J]. International Journal of Computer Vision, 1997, 22(1): 5-23.
    [82]胡占义,吴福朝.基于主动视觉的摄像机标定方法[J].计算机学报, 2002, 25(11): 1149-1156.
    [83]张永军.基于序列图像的视觉检测理论与方法[M].武汉:武汉大学出版社, 2008.
    [84]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社, 2002.
    [85]邱志强.从透视图像恢复刚体三维运动参数的理论与方法研究[D].长沙:国防科技大学硕士学位论文, 2000.
    [86] Horn K P. Closed-Form Solution of Absolute Orientation Using Unit Quaternions[J]. Journal of the Optical Society of America, 1987, 4(4): 629~642.
    [87] Horn K P, Hilden M, Negahdaripour S. Closed-Form Solution of Absolute Orientation Using Orthonormal Matrices[J]. Journal of the Optical Society of America, 1987, 5(7): 1127~1135.
    [88] Arun K S, Huang T S, Blostein S D. Least-Squres Fitting of Two 3-D Point Sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698~700.
    [89] Umeyama S. Least-Squares Estimation of Transformation Parameters between Two Point Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(4): 376~380.
    [90] Walker M W, Shao L, Volz R A. Estimating 3d Location Parameters Using Dual Number Quaternions[J]. CVGIP: Image Understanding, 1991, 54(3): 358~367.
    [91] Quan L, Lan Z. Linear N-Point Camera Pose Determination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(8): 774-780.
    [92]汤建良.透视n点定位(Pnp)问题研究[D].北京:中国科学院数学与系统科学研究院博士学位论文, 2003.
    [93] Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[C]. in Communications of the ACM 1981, 24:381~395.
    [94] Horaud R, Conio B, Leboulleux O. An Analytic Solution for the Perspective 4-Point Problem[C]. in CVGIP 1989, 47:33~44.
    [95]吴福朝,胡占义.关于p5p问题的研究[J].软件学报, 2001, 12(5): 768~775.
    [96]吴福朝,胡占义. Pnp问题的线性求解算法[J].软件学报, 2003, 14(3): 682~688.
    [97] Wolfe W J, Mathis D. The Perspective View of Three Points[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(1): 66~73.
    [98]苏成,徐迎庆,李华等.判定p3p问题正解数目的充要条件[J].计算机学报, 1998, 21(12): 1084~1095.
    [99] Liu M L, Wong K H. Pose Estimation Using Four Correponding Points[J]. Pattern Recognition Letters, 1999, 20: 69~74.
    [100] Haralick R M, Lee C, Ottenberg K, et al. Analysis and Solutions of the Three Point Perspective Pose Estimation Problem[C]. in Proc. IEEE Conf. Computer Vision and Pattern Recognition 1991:592~598.
    [101] Dementhon D, Davis L S. Extact and Approximate Solutions of the Perspective-Three-Point Problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11): 1100~1105.
    [102] Lowe D G. Fitting Parameterized Three-Dimensional Models to Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5): 441~450.
    [103] Lu C. Fast and Globally Convergent Pose Estimation from Video Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 610-622.
    [104] Dementhon D, Davis L S. Model-Based Object Pose in 25 Lines of Code[J]. International Journal of Computer Vision, 1995, 15: 123~141.
    [105] Horaud R, Dornaika F, Lamiroy B. Object Pose: The Link between Weak Perspective, Paraperspective, and Full Perspective[J]. International Journal of Computer Vision, 1997, 22(2): 173~189.
    [106] Kumar R, Hanson A R. Robust Methods for Estimating Pose and a Sensitivity Analysis[J]. Computer Vision and Image Understanding, 1994, 60(3): 313~342.
    [107] Dhome M, Richetin M, Lapreste J T. Determination of the Attitude of 3d Objects from a Single Perspective View[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(12): 1265~1278.
    [108] Fiore P D. Efficient Linear Solution of Exterior Orientation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 140~148.
    [109] Ansar A, Daniilidis K. Linear Pose Estimation from Points or Lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 578-589.
    [110] Abdel-Aziz Y I, Karara H M. Direct Linear Transformation into Object Space Coordinates in Close-Range Photogrammetry[C]. in Proceedings of Symp Close-range Photogrammetry 1971:1-18.
    [111] Faugeras O D, Toscani G. Camera Calibration for 3d Computer Vision[C]. in Proc. International Workshop Machine Vision and Machine Intelligence. Tokyo 1987,
    [112] Vincent L, Francesc M N, Pascal F. Epnp: An Accurate O(N) Solution to the Pnp Problem[J]. International Journal of Computer Vision, 2008.
    [113] Lowe D G. Three-Dimentional Object Recognition from Single Two-Dimensional Image[J]. Artificial Intelligence, 1987, 31: 355~395.
    [114] Zhang Z Y, Zhu D Y, Zhang J. An Improved Pose Estimation Algorithm for Real-Time Vision Applications[C]. in International Conference on Communications, Circuits and Systems Proceedings 2006, 1:402~406.
    [115]张政,张小虎,傅丹.一种高精度鲁棒的基于直线对应的位姿估计迭代算法[J].计算机应用, 2008, 28(2): 326~329.
    [116]许允喜,蒋云良,陈方.基于点和直线段对应的扩展正交迭代位姿估计算法[J].光学学报, 2009, 29(11): 3129~3135.
    [117]许允喜,蒋云良,陈方.多摄像机系统位姿估计的广义正交迭代算法[J].光学学报, 2009, 29(1): 72~77.
    [118]杨湘杰,刘焕焕,王文林.月球探测器的软着陆技术[J].机电产品开发与创新, 2008, 21(3): 27~33.
    [119]尚洋,于起峰,陆宏伟.圆形对角标志自动识别与精确定位[C]. in 2002年全国光电技术学技术交流会.成都2002:218~223.
    [120] Yu Q, Jiang G, Chao Z, et al. Deformation Monitoring System of Tunnel Rocks with Innovative Broken-Ray Videometrics[C]. in Proc. SPIE 2008, 73752C
    [121] Yu Q, Jiang G, Fu S, et al. Measuring Deformation of Large Vessels with Innovative Broken-Ray Videometrics[C]. in The XXII International Congress of Theoretical and Applied Mechanics Adelaide, Australia 2008,
    [122] Yu Q, Jiang G, Fu S, et al. Broken-Ray Videometric Method and System for Measuring the Three-Dimensional Position and Pose of the Non-Intervisible Object[C]. in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2008, 37:145~148.
    [123] Chao Z, Yu Q, Jiang G, et al. Study of a Pose-Relay Videometric Method Using Parallel Camera Series[J]. Appl. Opt, 2010, 49(28): 5192~5198.
    [124]高学海,徐科军,张瀚等仪器仪表学报.基于单目视觉和激光测距仪的位姿测量算法[J].仪器仪表学报, 2007, 28(8): 1479~1485.
    [125] Golub G H, Vanloan C F. Matrix Computations[M]. Baltimore: Johns Hopkins University Press, 1997.
    [126]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [127]陈怀,张嵘,周斌等.微机械陀螺仪温度特性及补偿算法研究[J].传感器技术, 2004, 9(10): 24-26.
    [128]段靖远,宋凝芳,杜新政等.光纤陀螺的温度试验及温度补偿方法研究[J].山西大学学报, 2005, 28(4): 376~379.
    [129]田酉牧.光纤陀螺温度漂移与补偿方法的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2007.
    [130]刘攀龙.石英挠性加速度计的标定与温度补偿研究[D].长沙:国防科技大学硕士学位论文, 2008.
    [131]熊伟.挠性陀螺和加速度计温度特性模型研究及误差补偿技术[D].西安:西北工业大学硕士学位论文, 2006.
    [132]李维善.光纤bragg光栅应变测量中温度分离和补偿的研究[D].南京:南京理工大学硕士学位论文, 2009.
    [133]郭子学.光纤bragg光栅的制作及温度补偿方法的研究[D].大连:大连理工大学硕士学位论文, 2005.
    [134] Moody J, Darken C J. Fast Learning in Networks of Locally-Tuned Processing Units[J]. Neural Computation, 1989(1): 281~294.
    [135]刘树棠,王薇洁译, Lathi B P.线性系统与信号[M].西安:西安交通大学出版社, 2006.
    [136]郑君里,应启衍,杨为理.信号与系统引论[M].北京:高等教育出版社, 2009.
    [137] Haykin S, Veen B V. Signals and System[M]. Second Edition: John Wiley & Sons, Inc. and Publishing House of Electronics Industry, 2003.
    [138]刘党辉,蔡远文,苏永芝等.系统辨识方法及应用[M].北京:国防工业出版社, 2010.
    [139]祝俊淞.基于直接加权优化的激光陀螺温度误差模型辨识[D].长沙:国防科技大学硕士学位论文, 2009.
    [140] Ljung L. System Identification: Theory for the User[M]. Upper Saddle River, N. J.: Prentice Hall, 1999.
    [141] Ljung L, Soderstrom T. Theory and Practice of Recursive Identification[M] MIT Press, 1983.
    [142] Soderstrom T, Stoica P. System Identification[M]. New York: Prentice-Hall, 1989.
    [143]廖惜春,丘敏,麦汉荣.基于参数估计的多传感器数据融合算法研究[J].传感技术学报, 2007, 20(1): 193~197.
    [144]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社, 2003.
    [145]徐俊明.图论及其应用[M].合肥:中国科学技术大学出版社, 2010.
    [146] Chartrand G, Zhang P. Introduction to Graph Theory[M] The McGraw-Hill Company, 2007.
    [147]王海英,黄强,李传涛等.图论算法及其matlab实现[M].北京:北京航空航天大学出版社, 2010.
    [148]杜端甫.运筹图论——图、网络理论中的运筹问题[M].北京:北京航空航天大学, 1990.
    [149] Daniilidis K. Hand-Eye Calibration Using Dual Quaternions[J]. International Journal of Robotics Research, 1999, 18(3): 286~298.
    [150] Shiu Y, Ahmad H. Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form Ax=Xb[J]. IEEE T. Robotic, 1989, 5(1): 16~29.
    [151] Park F, Martin B. Robot Sensor Calibration: Solving Ax=Xb on the Euclidean Group[J]. IEEE T. Robotic, 1994, 10(5): 717~721.
    [152] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive Phase-Distortion Correction Based on Parallel Gradient-Descent Optimization[J]. Opt. Lett., 1997, 22(12): 907~909.
    [153] Spall J C. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control[M]. Hoboken: John Wiley & Sons, 2003.
    [154] Spall J C. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation[J]. IEEE Transactions on Automatic Control, 1992, 37(3): 332~341.
    [155] Weyrauch T, Vorontsov M A. Dynamic Wave-Frant Distortion Compensation with a 134-Control-Channle Submillisecond Adaptive System[J]. Opt. Lett., 2002, 27(9): 751~753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700