媒介和宿主中伯氏疏螺旋体感染调查及基因分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伯氏疏螺旋体是莱姆病的病原体,它主要在媒介和宿主中循环传播,人被感染病原体的媒介叮咬而感染。不同基因型伯氏疏螺旋体感染人引起疾病的临床症状及严重程度不同,而不同基因型伯氏疏螺旋体的地理分布与媒介和宿主分布相关,因此开展媒介和宿主中伯氏疏螺旋体感染调查及基因分型研究对预测不同地区莱姆病发生的危险有非常重大的现实意义。为了解我国不同地区莱姆病的潜在威胁及宿主动物在伯氏疏螺旋体进化和莱姆病发生或流行中作用,我们于2004-2008年在我国内蒙古大兴安岭林区、黑龙江长白山林区、新疆伊犁草原、贵州荔波林区和浙江金华和天台林区5个已知莱姆病自然疫源地,及西藏阿里草原和云南横断山脉林区2个莱姆病的潜在自然疫源地进行分子流行病学调查研究,调查潜在媒介和宿主中伯氏疏螺旋体的感染情况,确定伯氏疏螺旋体的基因型及其地理分布,探索致病性不明确的伯氏疏螺旋体对人类的致病性,分析生态类型和气候状况等地理环境因素,及媒介、宿主动物感染和伯氏疏螺旋体基因型分布等生物因素对莱姆病发生的潜在影响。
     本研究采用现场调查和实验研究相结合的方法进行。首先进行现场调查和标本采集,进而进行巢式PCR检测。结果显示,在除新疆外的其它调查点采集的标本中均检测到伯氏疏螺旋体存在,这一结果提供了莱姆病自然疫源地依然存在于多数调查地区的分子流行病学证据。检测的38种鼠中11种阳性,并且气候温暖的浙江和贵州林区鼠中伯氏疏螺旋体的感染率(分别为8.00%,7.14%)显著高于气温较低的内蒙古和黑龙江林区及云南高原林区(分别为3.45%,4.84%,0.84%) (χ2=21.255,df = 5, P=0.001),提示气候温暖的地区伯氏疏螺旋体的传播循环可能比气候寒冷的地区更易于维持。并证实棕背鼠平是东北林区伯氏疏螺旋体的主要储存宿主,提示社鼠可能是浙江林区伯氏疏螺旋体的主要宿主动物。还发现短耳兔和长尾鼩携带伯氏疏螺旋体,提示在我国作为伯氏疏螺旋体潜在储存宿主的小动物种类较多。
     采自大兴安岭林区的3种蜱中,全沟硬蜱的感染率(21.93%)显著高于森林革蜱(4.17%) (χ2=62.965,df = 2, P=0.000),未检测出嗜群血蜱有带菌情况,全沟硬蜱是当地林区优势蜱种,证实全沟硬蜱依然是该林区伯氏疏螺旋体的主要传播媒介。采自西藏阿里地区寄生于羊体表的羊蜱蝇存在伯氏疏螺旋体的感染(33/916, 3.6%),提示伯氏疏螺旋体可能通过羊蜱蝇的吸血活动在牲畜间传播,因此该牧区牲畜可能面临发生莱姆病的危险。
     对标本中伯氏疏螺旋体进行了RFLP分析,结果显示,我国存在3种基因型(群)伯氏疏螺旋体:Borrelia garinii、Borrelia afzelii和Borrelia valaisiana-like group。致病基因型B. garinii普遍存在于各调查地区,因此各地区均有必要采取防控措施预防莱姆病的发生或流行,B. valaisiana-like group只在南方地区发现,其确切的分类学地位和致病性尚不明确。同时发现单只蜱复合感染B. garinii和B. afzelii,这些蜱叮咬人可能使人发生复合感染,人感染这两种伯氏疏螺旋体表现的临床症状不同,因此临床医生在诊治表现复杂症状的疑似莱姆病病人时应考虑这种情况的存在,并采取相应的措施。此外,还发现B. garinii和B. valaisiana-like group及表现不同RFLP带型的B. valaisiana-like group同时存在于单只羊蜱蝇中,这种现象有利于伯氏疏螺旋体间的重组,从而促进变异体的产生,加速病原体的进化;可能是伯氏疏螺旋体遗传多样性出现的原因之一。
     对RFLP分析不能确定分类学地位的B. valaisiana-like group,进行了16S rRNA和fla基因片段的系统发育分析,结果表明B. valaisiana-like group与B. valaisiana在系统发育上接近,但又存在差别。进一步的MLSA分析表明B. valaisiana-like group菌株与B. valaisiana、B. afzelii及其它基因型伯氏疏螺旋体菌株7个位点的串联序列相似性低于判别基因型别的截点值,证明B. valaisiana-like group是一种新基因型伯氏疏螺旋体,并建议命名为Borrelia yangtze sp.,这一结果解释了B. valaisiana-like group与B. valaisiana在表型和传播循环等方面的差异。
     为探索B. valaisiana-like group对人类的致病性,选取3株菌株感染模型动物C3H/HeN实验小鼠,并用对C3H/HeN小鼠致病性明确的B. garinii菌株JW1作对照,病理结果显示B. valaisiana-like group菌株与JW1引起小鼠病理改变的器官相同,病变的程度相当或更严重,病变出现的时间和变化趋势相近。B. valaisiana-like group菌株对小鼠肾脏的病理损伤较为严重,而且呈持续加重的趋势;并引起小鼠心肌纤维细胞坏死,且病变也呈加重趋势;引起小鼠关节和脾脏的一过性病理改变;对脑组织病理改变在感染后第4周最为严重,此后间歇性复发并呈减轻趋势;对小鼠肝脏没有损伤。推测B. valaisiana-like group可能感染人类引起多器官不同程度的损伤。
     为进一步了解宿主动物在伯氏疏螺旋体扩散及莱姆病发生和流行中的作用,对广泛分布于欧亚地区的B. garinii和B. afzelii进行了基于8个看家基因的多位点序列分析,结果表明B. garinii的遗传多样性高于B. afzelii,并且对人致病性较强的OspA血清型4的B. garinii广泛分布于欧亚地区,该血清型的B. garinii以鼠为主要宿主,并被提议命名为一个新基因型B. bavariensis sp;序列相似性分析及聚类分析表明,我国东北部与日本岛的B. bavariensis遗传距离较近,而两者与欧洲该基因型伯氏疏螺旋体遗传距离稍远;同样以鼠为主要宿主的B. afzelii,欧洲菌株和与欧洲接壤的我国西北部菌株遗传距离较近,而两者与我国东北部该基因型伯氏疏螺旋体遗传距离均稍远;而以鸟为宿主的B. garinii,我国东北部分离株与欧洲分离株遗传距离较近。提示宿主的活动(迁移或迁徙)可能引起伯氏疏螺旋体在欧亚两地间播散,同时这些结果也进一步证实了伯氏疏螺旋体的进化和地理分布受其宿主分布的影响。
     本研究明确了目前我国不同地区媒介和宿主感染伯氏疏螺旋体的情况和伯氏疏螺旋体的基因型,确定了B. valaisiana-like group为一种新基因型伯氏疏螺旋体,并对其致病性作了进一步探讨,分析我国与相邻地区B. garinii和B. afzelii遗传特征的区别和联系,不仅为我国莱姆病的防治提供了理论依据,而且为我国莱姆病的深入研究奠定了基础。
The spirochetes of the Borrelia burgdorferi sensu lato complex, the causative agents of Lyme borreliosis, are maintained in natural foci by circulation between the vector ticks in the Ixodes ricinus complex and animal hosts in various vertebrate taxa. This complex comprises at least 13 species, among which 4 species have been believed to be pathogenic to humans, including Borrelia burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii and Borrelia spielmanii. Some of species have a wide and overlapping distribution while other species are distributed in different geographical regions. Different species are associated with distinct ecologic features, levels of pathogenicity, and clinical symptoms in patients.
     In order to find out underlying risk of Borrelia infection in the different regions of mainland China, and to infer the role of hosts that shape the evolution and epidemiology of B. garnii and B. afzelii, which were widely distributed in Eurasia, surveys were conducted in endemic foci (i.e. Heilongjiang province, Inner Mongolia autonomous region, Zhejiang province, Guizhou province, Xinjiang autonomous region) and potential endemic foci (i.e. Yunan province and Tibet autonomous region) in peak seasons of ticks during 2004 to 2008. Samples were collected, and Borrelia strains were isolated, and further PCR-RFLP analysis of 5S-23S rRNA intergenic spacer was conducted to investigate the prevalence and genospecies of B. burgdorferi s.l. in vectors and hosts. For samples which genospecies were not be clearly identified by using PCR-RFLP analysis, phylogenetic analyses of single gene (i.e. 16S rRNA,fla) and multilocus sequence analysis (MLSA) were performed to clarify their taxonomic status. Moreover, three B. valaisiana-like strains were inoculated into C3H/HeN mice in order to examine their pathogenic potential to humans. Besides, we analyzed the phylogeographic population structure of B. burgdorferi sensu lato in Eurasia by using a recently developed multilocus sequence typing (MLST) scheme based on eight chromosomally located housekeeping genes.
     A total of 1632 unfed adult ticks (i.e. Ixodes persulcatus, Dermacento silvarum, Haemaphysalis concinna and Haemaphysalis tibetensis) and 929 small animals (i.e. rodent, hare and animals of insectivora) and 916 Melophagus ovinus were collected and detected by nested PCR targeting 5S-23S rRNA intergenic spacer and RFLP analysis, with additional sequence analysis when necessary. B. burgdorferi s.l. was found in other six study areas except for Xinjiang autonomous region. This finding suggested that the endemic foci of Lyme disease might be still maintained in most of survery areas in mainland.
     Among 38 rodent species detected, 11 species were positive. Significant difference in prevalence of B. burgdorferi s.l. in rodents was observed among various regions (χ2=21.255,df = 5, P=0.001), with the highest in southern areas, which might be caused by the difference of climate. This finding suggested that the transmission cycle of B. burgdorferi s.l. might be easily maintained in the region with the warmer climate than that with the colder climate. In addition, B. burgdorferi s.l. was also detected in 3 Chinese hares (Lepus sinensis Gray) and 1 Hodgson’s brown-toothed shrew (Soriculus caudatus), which suggested that there were much species of animals serving as potential reservoir host of B. burgdorferi s.l. in mainland China.
     In Inner Mongolia autonomous region, the infection rate of I. persulcatus was significantly higher than that of D. silvarum, and H. concinna was free of B. burgdorferi s.l. (χ2=62.965,df = 2, P=0.000). I. persulcatus is the principal species of ticks in this forest area. These results indicated that I. persulcatus was still the major vector of B. burgdorferi s.l. in this area. However, D. silvarum and H. concinna usually inhabit grassland. This suggested that the threat of Lyme disease to humans might be less in grassland than that in forested area. Additionally, 3.6% (33/916) of M. ovinus samples was positive in Tibet, which indicated that some sheep in this pasture might be infected with B. burgdorferi s.l. or in risk of Lyme disease.
     Three genospecies (or group) were identified as B. garinii, B. afzelii and B. valaisiana-like group according to PCR-RFLP analysis. B. garinii being pathogenic to humans was the most prevalent genospecies and widely distributed in five regions except for Xinjiang, followed by B. afzelii. This finding suggested that the risk of Lyme disease to humans and livestock existed far and wide in mainland China. Multiple infections of different genospecies were found in single tick from Inner Mongolia and in single M. ovinus sample from Tibet. Multiple infections of different genospecies might also occur in humans by the tick bite. Since different genospecies of B. burgdorferi s.l. are related with distinct clinical manifestation of human Lyme disease, clinical symptom of patient being multiply infected with different Borrelia genospecies may be untypical and even complex, which should be noticed in diagnosis. B. valaisiana-like group was only found in Zhejiang, Guizhou, Yunnan and Tibet of south China, and its taxonomic status and pathogenic potential to humans remain unclear.
     Phylogenetic analyses of 16S rRNA gene and fla gene indicated that B. valaisiana-like strains were closely related to B. valaisiana. Meanwhile, difference was observed between two species. Further study based on multilocus sequence analysis (MLSA) indicated that the concatenated sequences of B. valaisiana-like strains used in this study were 98.4-99.8% identical with each other, whereas they were 96.4-96.9% related to those of B. valaisiana strains and only 92.5-94.9% related to those of other B. burgdorferi s.l. on the basis of the sequence identity matrix. According to MLSA sequence identity cut-off of 97.9% to differentiate B. burgdorferi s.l. species, B. valaisiana-like strains deserve a species status and are proposed to be named Borrelia yangtze sp., because of its distribution usually in the valley of Yangtze River. The finding explained the differences in transmission cycle and phenotype between B. valaisiana strains from Europe and B. valaisiana-like strains from Eastern Asia.
     Three low-passage B. valaisiana-like strains as well as positive control B. garinii isolate JW1 were inoculated into C3H/HeN mice and disease was monitored by histopathology at 4 weeks, 8 weeks and 12 weeks after spirochaete challenge. Joint, heart, kidney, spleen, brain and liver were examined. B. valaisiana-like strains induced similar or more serious lesions in the joints, hearts, kidneys, spleens, brains of infected mice with B. garinii isolate JW1. No lesions were noted in the livers with inoculation of with B. valaisiana-like strains or B. garinii isolate JW1. But the pathogeneicity of these B. valaisiana-like strains to humans remains to be further clarified by the data of the infected patients.
     Based on sequence analyses of multiple housekeeping genes (i.e. clpA, clpX, nifS, pepX, pyrG, recG and rplB), B. garinii represented the most diverse species in Eurasia, followed by B. burgdorferi sensu stricto, B. afzelii and B. valaisiana. B. garinii OspA serotype 4 strains, which were seriously pathogenic to humans and proposed to be classified as a new species Borrelia bavariensis, were also widely distributed in Eurasia. Phylogenetic analyses on basis of the concatenated sequence analyses of 8 housekeeping genes showed that B. bavariensis strains from Europe fell into a cluster, which was separated from that of Asian B. bavariensis strains. B. afzelii strains from Europe branched into one cluster with one strains XY1 from Northwest China, which was separated from the cluster of B. afzelii strains from Northeast China. The form of geographical cluster of Borrelia strains might be caused by the highly parapatric distribution of their reservoir host of rodents. Moreover, B. garinii strains from Europe also clustered with those from Northeast China. Unfortunately, B. garinii strains from Northwest China was absent in this study. Further study is needed to clarify whether the high genetic similarity of B. garinii strains from Europe and Northeast China was associated with the migration of their reservoir host of birds. Above all, this study captured the genetic diversity and phylogeographic population structure of B. garinii and B. afzelii in Eurasia, which were related to the species and distribution of their reservoir host.
引文
1. Ai, C. X., Wen, Y. X., Zhang, Y. G., Wang, S. S., Qiu, G. C., Shi, Z. X., Cheng, Z. Q., Li, D. Y. & Liu., X. D. Epidemiological study on Lyme disease in Hailin of Heilongjiang. Chin Public Health 1987, 6: 82-85.
    2.万康林,张哲夫,张金声,朱桂凤,寇桂兰,李牧青,郑理,梁军钢,侯学霞,王宏英.我国莱姆病的流行病学和病原学研究.中华流行病学杂志. 1997, 18: 8-11.
    3.万康林,张哲夫,窦桂兰,侯学霞,王宏英,张金声,朱桂凤.中国莱姆病螺旋体主要生物媒介的调查研究.中国流行病学杂志. 1998, 19: 263-266.
    4.万康林,张哲夫,张金声,寇桂兰,王宏英,侯学霞,朱桂凤.中国20个省、区、市动物莱姆病初步调查研究.中国媒介生物学及控制杂志. 1998, 9: 366-370.
    5.王定明,郝琴,蔡星和,万康林,王昭孝,陈健.贵州省莱姆病螺旋体的核糖体基因分型研究. 2003, 24: 1129-1131.
    6. Masuzawa, T., Takada, N., Kudeken, M., Fukui, T., Yano, Y., Ishiguro, F., Kawamura, Y., Imai, Y. & Ezaki, T. (2001). Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 51, 1817-1824.
    7. Masuzawa, T., Hashimoto, N., Kudeken, M., Kadosaka, T., Nakamura, M., Kawabata, H., Koizumi, N. & Imai, Y. (2004). New genomospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J Med Microbiol 53, 421-426.
    8. Anderson, J. F. (1991). Epizootiology of Lyme borreliosis. Scand J Infect Dis Suppl 77, 23-34.
    9. Burgdorfer, W., Anderson, J. F., Gern, L., Lane, R. S., Piesman, J. & Spielman, A. (1991). Relationship of Borrelia burgdorferi to its arthropod vectors. Scand J Infect Dis Suppl 77, 35-40.
    10. Hengge, U. R., Tannapfel, A., Tyring, S. K., Erbel, R., Arendt, G. & Ruzicka, T. (2003). Lyme borreliosis. Lancet Infect Dis 3, 489-500.
    11. Wang, G., van Dam, A. P., Schwartz, I. & Dankert, J. (1999). Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12, 633-653.
    12. Balmelli, T. & Piffaretti, J. C. (1995). Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146, 329-340.
    13.张媛春,李六九,雷素娟,姚云波,陈良,朱林,苏永,李永明,赵立庆.云南玉溪地区莱姆病调查.中国人兽共患病杂志, 2000, 16: 107-108.
    14.张启恩.流行病学调查集刊(军事医学科学出版社).卢登明,马仕金,张有植,张欣.西藏察隅河谷人群莱姆病血清流行病学调查. 1996, 2: 19-22.
    15. Dsouli N, Younsi-Kabachii H, Postic D, Nouira S. Gern L. Reservoir role of lizard Psammodromus algrius in transmission cycle of Borrelia burgdorferi sensu lato (spirochaetaceae) in Tunisia. J. Med. Entomol. 2006, 43: 737-742.
    16. Anderson, J. F., L. A. Magnarelli, R. B. LeFebvre, T. G. Andreadis, J. B. McAninch, G. C. Perng, and R. C. Johnson. Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits and Ixodes dentatus in rural and urban areas. J. Clin. Microbiol. 1989, 27: 13-20.
    17. Brown, R. N., and R. S. Lane. Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 1992, 256: 1439-1442.
    18.刘增加,华满堂,石淑珍.西北部分地区莱姆病与人、家养动物、啮齿动物关系的研究.医学动物防制,2000,16:298-301.
    19.王昭孝,王定明,翁超然.贵州莱姆病调查研究.中国人兽共患病杂志,2003,19(2):113-114.
    20. Anderson, J. F. Epizootiology of Lyme borreliosis. Scand. J. Infect. Dis. 1991, Suppl. 77: 23-34.
    21. Burgdorfer, W., J. F. Anderson, L. Gern, R. S. Lane, J. Piesman, and A. Spielman. Relationship of Borrelia burgdorferi to its arthropod vectors. Scand. J. Infect. Dis. 1991, Suppl. 77: 35-40.
    22. Dennis, D. T., T. S. Nekomoto, J. C. Victor, W. S. Paul, and J. Piesman. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J. Med. Entomol. 1998, 35: 629-638.
    23. Nakao, M., K. Miyamoto, and M. Fukunaga. Lyme disease spirochetes in Japan: enzootic transmission cycles in birds, rodents, and Ixodes persulcatus ticks. J. Infect. Dis. 1994, 170: 878-882.
    24. Derdáková, M. Beati, L. Pet'ko, B. Stanko, M. Fish, D. Genetic variability within Borrelia burgdorferi sensu lato genospecies established by PCR-single-strand conformation polymorphism analysis of the rrfA-rrlB intergenic spacer in Ixodes ricinus ticks from the Czech Republic. Appl. Environ. Microbiol. 2003, 69: 509-516.
    25. Magnarelli, L. A., and J. F. Anderson. Ticks and biting insects infected with the etiologic agent of Lyme disease, Borrelia burgdorferi. J. Clin. Microbiol. 1988, 26:1482-6.
    26. Magnarelli, L. A., J. F. Anderson, and A. G. Barbour. The etiologic agent of Lyme disease in deer flies, horse flies, and mosquitoes. J. Infect. Dis. 1986, 154: 355-8.
    27. Teltow, G. J., P. V. Fournier, and J. A. Rawlings. Isolation of Borrelia burgdorferi from arthropods collected in Texas. Am. J. Trop. Med. Hyg. 1991, 44: 469-74.
    28. Postic, D., M. V. Assous, P. A. Grimont and G. Baranton. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int. J. Syst. Bacteriol. 1994, 44: 743-752.
    29. Mediannikov, O. Y., L. Ivanov, N. Zdanovskaya, R. Vorobyova, Y. Sidelnikov, P. E. Fournier, I. Tarasevich and D. Raoult. Diversity of Borrelia burgdorferi sensu lato in Russian Far East. Microbiol. Immunol. 2005, 49: 191-7.
    30. Randolph, S. E. Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitol. Today 1998, 14: 186-192.
    31. Guttman, D. S., P. W. Wang, I. N. Wang, E. M. Bosler, B. J. Luft, and D. E. Dykhuizen. Multiple infections of Ixodes scapularis ticks by Borrelia burgdorferi as revealed by single-strand conformation polymorphism analysis. J. Clin. Microbiol. 1996, 34: 652-656.
    32. Demaerschalck, I., A. Ben Messaoud, M. De Kesel, B. Hoyois, Y. Lobet, P. G. Hoet, Bigaignon, A. Bollen and E. Godfroid. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J. Clin. Microbiol. 1995, 33: 602-8.
    33. Nakao, M. and K. Miyamoto. Mixed infection of different Borrelia species among Apodemus speciosus mice in Hokkaido, Japan. J. Clin. Microbiol. 1995, 33: 490-492.
    1. Masuzawa, T., N. Takada, M. Kudeken, T. Fukui, Y. Yano, F. Ishiguro, Y. Kawamura, Y.Imai, and T. Ezaki. Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int. J. Syst. Evol. Microbiol. 2001, 51:1817-24.
    2. Postic, D., M. Garnier, and G. Baranton. Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates--description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int. J. Med. Microbiol. 2007, 297: 263-71.
    3. Richter, D., D. Postic, N. Sertour, I. Livey, F. R. Matuschka, and G. Baranton. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56: 873-81.
    4. Wang, G., A. P. van Dam, I. Schwartz, and J. Dankert. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin. Microbiol. Rev. 1999, 12: 633-53.
    5.万康林,张哲夫,张金声,朱桂凤,寇桂兰,李牧青,郑理,梁军钢,侯学霞,王宏英.我国莱姆病的流行病学和病原学研究.中华流行病学杂志. 1997, 18: 8-11.
    6. Masuzawa, T., N. Hashimoto, M. Kudeken, T. Kadosaka, M. Nakamura, H. Kawabata, N. Koizumi, and Y. Imai. New genomospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J. Med. Microbiol. 2004, 53: 421-6.
    7.王定明,郝琴,蔡星和,万康林,王昭孝,陈健.贵州省莱姆病螺旋体的核糖体基因分型研究. 2003, 24: 1129-1131.
    8. Kee, S. H., J. H. Yoon, H. B. Oh, Y. H. Park, Y. W. Kim, M. K. Cho, K. S. Park, and W. H. Chang. Genetic analysis of Borrelia burgdorferi sensu lato in Korea using genomic hybridization and 16S rRNA gene sequence determination. Microbiol. Immunol. 1996, 40: 599-605.
    9. Masuzawa, T., T. Fukui, M. Miyake, H. B. Oh, M. K. Cho, W. H. Chang, Y. Imai, and Y. Yanagihara. Determination of members of a Borrelia afzelii-related group isolated from Ixodes nipponensis in Korea as Borrelia valaisiana. Int. J. Syst. Bacteriol. 1999, 49: 1409-15.
    10. Kurtenbach, K., H. S. Sewell, N. H. Ogden, S. E. Randolph, and P. A. Nuttall. Serum complement sensitivity as a key factor in Lyme disease ecology. Infect. Immun. 1998, 66: 1248-51.
    11. Fraser, C. M., S. Casjens, W. M. Huang, G. G. Sutton, R. Clayton, R. Lathigra, O. White, K. A. Ketchum, R. Dodson, E. K. Hickey, M. Gwinn, B. Dougherty, J. F. Tomb, R. D. Fleischmann, D. Richardson, J. Peterson, A. R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. van Vugt, N. Palmer, M. D. Adams, J. Gocayne, and J. C. Venter. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997, 390: 580-586.
    12. Baranton, G., D. Postic, I. S. Girons, P. Boerlin, J. C. Piffaretti, M. Assous, and P. A. Grimont. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int. J. Syst. Bacteriol. 1992, 42: 378-383.
    13. Chu C. Y., B. G. Jiang, W. Liu, Q. M. Zhao, X. M. Wu, P. H. Zhang, L. Zhan, H. Yang, and W. C. Cao. Presence of pathogenic Borrelia burgdorferi sensu lato in ticks and rodents inZhejiang, south-east China. J Med Microbiol. 2008, 57: 980-985.
    14. Masuzawa, T., M. J. Pan, T. Kadosaka, M. Kudeken, N. Takada, Y. Yano, Y. Imai, and Y. Yanagihara. Characterization and identification of Borrelia isolates as Borrelia valaisiana in Taiwan and Kinmen Islands. Microbiol. Immunol. 2000, 44: 1003-1009.
    1. Masuzawa, T., N. Takada, M. Kudeken, T. Fukui, Y. Yano, F. Ishiguro, Y. Kawamura, Y. Imai, and T. Ezaki. Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int. J. Syst. Evol. Microbiol. 2001, 51:1817-1824.
    2. Postic, D., M. Garnier, and G. Baranton. Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates--description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int. J. Med. Microbiol. 2007, 297: 263-271.
    3. Richter, D., D. Postic, N. Sertour, I. Livey, F. R. Matuschka, and G. Baranton. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56: 873-881.
    4. Wang, G., A. P. van Dam, I. Schwartz, and J. Dankert. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin. Microbiol. Rev. 1999, 12: 633-653.
    5. Foldvari, G., R. Farkas, and A. Lakos. Borrelia spielmanii erythema migrans, Hungary. Emerg. Infect. Dis. 2005, 11: 1794-1795.
    6. van Dam, A. P., H. Kuiper, K. Vos, A. Widjojokusumo, B. M. de Jongh, L. Spanjaard, A. C.Ramselaar, M. D. Kramer, and J. Dankert. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 1993, 17: 708-717.
    7. Wang, G., A. P. van Dam, and J. Dankert. Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with lyme borreliosis. J. Clin. Microbiol. 1999, 37: 3025-3028.
    8. Masuzawa, T., T. Fukui, M. Miyake, H. B. Oh, M. K. Cho, W. H. Chang, Y. Imai, and Y. Yanagihara. Determination of members of a Borrelia afzelii-related group isolated from Ixodes nipponensis in Korea as Borrelia valaisiana. Int. J. Syst. Bacteriol. 1999, 49: 1409-1415.
    9. Masuzawa, T., N. Hashimoto, M. Kudeken, T. Kadosaka, M. Nakamura, H. Kawabata, N. Koizumi, and Y. Imai. New genomospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J. Med. Microbiol. 2004, 53: 421-426.
    10. Kee, S. H., J. H. Yoon, H. B. Oh, Y. H. Park, Y. W. Kim, M. K. Cho, K. S. Park, and W. H. Chang. Genetic analysis of Borrelia burgdorferi sensu lato in Korea using genomic hybridization and 16S rRNA gene sequence determination. Microbiol. Immunol. 1996, 40: 599-605.
    11. Masuzawa, T., M. J. Pan, T. Kadosaka, M. Kudeken, N. Takada, Y. Yano, Y. Imai, and Y. Yanagihara. Characterization and identification of Borrelia isolates as Borrelia valaisiana in Taiwan and Kinmen Islands. Microbiol. Immunol. 2000, 44: 1003-1009.
    12. Wretlind, B., R. C. Johnson, K. Hansen and V. Preac-Mursic. Antibiotic susceptibility of Borrelia burgdorferi in vitro and in animal models. Scand. J. Infect. Dis. Suppl. 1991, 77: 143-144.
    13. Jonsson, M., T. Elmros and S. Bergstrom. Subcutaneous implanted chambers in different mouse strains as an animal model to study genetic stability during infection with Lyme disease Borrelia. Microb. Pathog. 1995, 18: 109-114.
    14. Oteo, J. A., P. B. Backenson, M. del Mar Vitutia, J. C. Garcia Monco, I. Rodriguez, R. Escudero and P. Anda. Use of the C3H/He Lyme disease mouse model for the recovery of a Spanish isolate of Borrelia garinii from erythema migrans lesions. Res. microbiol. 1998, 149: 39-46.
    15. Hengge, U. R., A. Tannapfel, , S. K. Tyring, R. Erbel, G. Arendt and T. Ruzicka. Lyme borreliosis. The Lancet infectious diseases. 2003, 3: 489-500.
    16. van der Linde, M. R. Lyme carditis: clinical characteristics of 105 cases. Scand. J. Infect. Dis. Suppl. 1991.77:81-84.
    17. Steere, A. C., S. E. Malawista, D. R. Snydman, R. E. Shope, W. A. Andiman, M. R. Ross, and F. M. Steele. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis Rheum. 1977, 20:7-17.
    18. Garcia-Monco, J. C., and J. L. Benach. Lyme neuroborreliosis. Ann. Neurol. 1995, 37:691-702.
    19. Cimmino, M., M. Granstrom, J. S. Gray, E. C. Guy, S. O’Connell, and G. Stanek. EuropeanLyme borreliosis clinical spectrum. Zentbl. Bakteriol. 1998, 287:248-252.
    20. Zeidner, N. S., Nuncio, M. S., Schneider, B. S., L. Gern, J. Piesman, O. Brandao and A. R. Filipe. A portuguese isolate of Borrelia lusitaniae induces disease in C3H/HeN mice. Journal of medical microbiology. 2001, 50:1055-1060.
    1. Hengge, U. R., A. Tannapfel, , S. K. Tyring, R. Erbel, G. Arendt and T. Ruzicka. Lyme borreliosis. The Lancet infectious diseases. 2003, 3: 489-500.
    2. Falco, R. C., T. J. Daniels, and D. Fish. Increase in abundance of immature Ixodes scapularis (Acari: Ixodidae) in an emergent Lyme disease endemic area. J. Med. Entomol. 1995, 32: 522-526.
    3. Hanincová, K., K. Kurtenbach, M. Diuk-Wasser, B. Brei and D. Fish. Epidemic spread of Lyme borreliosis, northeastern United States. Emerg. Infect. Dis. 2006, 12: 604-611.
    4. Masuzawa, T., N. Takada, M. Kudeken, T. Fukui, Y. Yano, F. Ishiguro, Y. Kawamura, Y. Imai, and T. Ezaki. Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int. J. Syst. Evol. Microbiol. 2001, 51:1817-24.
    5. Postic, D., M. Garnier, and G. Baranton. Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates--description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int. J. Med. Microbiol. 2007, 297:263-71.
    6. Richter, D., D. Postic, N. Sertour, I. Livey, F. R. Matuschka, and G. Baranton. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56:873-81.
    7. Wang, G., A. P. van Dam, I. Schwartz, and J. Dankert. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin. Microbiol. Rev. 1999, 12:633-53.
    8. Foldvari, G., R. Farkas, and A. Lakos. Borrelia spielmanii erythema migrans, Hungary. Emerg. Infect. Dis. 2005, 11:1794-5.
    9. van Dam, A. P., H. Kuiper, K. Vos, A. Widjojokusumo, B. M. de Jongh, L. Spanjaard, A. C. Ramselaar, M. D. Kramer, and J. Dankert. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 1993, 17:708-17.
    10. Wang, G., A. P. van Dam, and J. Dankert. Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with lyme borreliosis. J. Clin. Microbiol. 1999, 37:3025-8.
    11. Kurtenbach, K., S. De Michelis, S. Etti, S. M. Schafer, H. S. Sewell, V. Brade, and P. Kraiczy. 2002. Host association of Borrelia burgdorferi sensu lato-the key role of host complement. Trends Microbiol 10:74-79.
    12. Kurtenbach K., H. Klára, I. T. Jean, M. Gabriele, F. Durland and H. O. Nicholas. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature. Rev. Microbiol. 2006, 4: 660-669.
    13. van Dam, A. P. 2002. Diversity of Ixodes-borne Borrelia species - clinical, pathogenetic, and diagnostic implications and impact on vaccine development. Vector Borne Zoonotic Dis 2:249-254.
    14. Vitorino, L. R., G. Margos, E. J. Feil, M. Collares-Pereira, L. Ze-Ze, and K. Kurtenbach. Fine-scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing. 2008, PloS ONE 3: e4002.
    15. Margos G., A. G. Gatewood, D. M. Aanensen, K. Hanincová, D. Terekhova, S. A. Vollmer, M. Cornet, J. Piesman, M. Donaghy, A. Bormane, M. A. Hurn, E. J. Feil, D. Fish, S. Casjens, G. P. Wormser, I. Schwartz and K. Kurtenbach. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. 2008, 105: 8730-8735.
    16. Casjens S. Borrelia genomes in the year 2000. J. Mol. Microbiol. Biotechnol. 2000, 2: 401-410.
    17. Casjens, S., N. Palmer, R. van Vugt, W. M. Huang, B. Stevenson, P. Rosa, R. Lathigra, G. Sutton, J. Peterson, R. J. Dodson, D. Haft, E. Hickey, M. Gwinn, O. White and C. M. Fraser. A bacterial genome in flux: The twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000, 35: 490-516.
    18. Will, G., S. Jauris-Heipke, E. Schwab, U. Busch, D. Rossler, E. X. W. B. Soutschek and V. Preac-Mursic. Sequence analysis of ospA genes shows homogeneity within Borrelia burgdorferi sensu stricto and Borrelia afzelii strains but reveals major subgroups within the Borrelia garinii species. Med. Microbiol. Immunol. 1995, 184:73-80.
    19. Wang I. N., D. E. Dykhuizen, W. Qiu, J. J. Dunn, E. M. Bosler and B. J. Luft. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999,151:15-30.
    20. Fingerle V, G. Goettner, L. Gern, B. Wilske and U. Schulte-Spechtel. Complementation of a Borrelia afzelii OspC mutant highlights the crucial role of OspC for dissemination of Borrelia afzelii in Ixodes ricinus. Int. J. Med. Microbiol. 2007, 297: 97-107.
    21. Pal, U. X. Yang, M. Chen, L. K. Bockenstedt, J. F. Anderson, R. A. Flavell, M. V. Norgard and E. Fikrig. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 2004, 113: 220-230.
    22. Stewart, P. E. X. Wang, D. M. Bueschel, D. R. Clifton, D. Grimm, K. Tilly, J. A. Carroll, J. J. Weis and P. A. Rosa. Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect. Immun. 2006, 74: 3547-3553.
    23. Tilly, K., A. Bestor, M. W. Jewett and P. Rosa. Rapid clearance of Lyme disease spirochetes lacking OspC from skin. Infect. Immun. 2007, 75: 1517-1519.
    24. Bergstrom, S., V. G. Bundoc, and A. G. Barbour. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol. Microbiol. 1989, 3: 479-486.
    25. Samuels, D. S., R. T. Marconi, and C. F. Garon. Variation in the size of the ospA-containing linear plasmid, but not the linear chromosome, among the three Borrelia species associated with Lyme disease. J. Gen. Microbiol. 1993, 139: 2445-2449.
    26. Liveris D, Gazumyan A and Schwartz I. Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 1995, 33: 589-595.
    27. Fukunaga, M. and Y. Koreki. A phylogenetic analysis of Borrelia burgdorferi sensu lato isolates associated with Lyme disease in Japan by flagellin gene sequence determination. Int. J. Syst. Bacteriol. 1996, 46: 416-421.
    28. Mathiesen, D. A., J. H. Oliver Jr., C. P. Kolbert, E. D. Tullson, B. J. Johnson, G. L. Campbell, P. D. Mitchell, K. D. Reed, S. R. Telford, J. F. Anderson, R. S. Lane, and D. H. Persing. Genetic heterogeneity of Borrelia burgdorferi in the United States. J. Infect. Dis. 1997, 175: 98-107.
    29. Qiu, W. G., J. F. Bruno, W. D. McCaig, Y. Xu, I. Livey, M. E. Schriefer and B. J. Luft. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 2008, 14: 1097-104.
    30. Richter, D., D. Postic, N. Sertour, I. Livey, F. R. Matuschka, and G. Baranton. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56: 873-881.
    31. Michel, H., B. Wilske, G. Hettche, G. Gottner, C. Heimerl, U. Reischl, U. Schulte-Spechtel and V. Fingerle. An ospA-polymerase chain reaction/restriction fragment length polymorphism-based method for sensitive detection and reliable differentiation of all European Borrelia burgdorferi sensu lato species and OspA types Med. Microbiol. Immunol. 2004, 193:219-226
    32. Dsouli N, Younsi-Kabachii H, Postic D, Nouira S. Gern L. Reservoir role of lizard Psammodromus algrius in transmission cycle of Borrelia burgdorferi sensu lato (spirochaetaceae) in Tunisia. J. Med. Entomol. 2006, 43: 737-742.
    1. Barbour, A. G., and S. F. Hayes. Biology of Borrelia species. Microbiol. Rev. 1986, 50:381–400.
    2. Masuzawa, T., N. Takada, M. Kudeken, T. Fukui, Y. Yano, F. Ishiguro, Y. Kawamura, Y. Imai, and T. Ezaki. Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int. J. Syst. Evol. Microbiol. 2001, 51:1817-24.
    3. Postic, D., M. Garnier, and G. Baranton. Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates--description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int. J. Med. Microbiol. 2007, 297:263-71.
    4. Richter, D., D. Postic, N. Sertour, I. Livey, F. R. Matuschka, and G. Baranton. Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56:873-81.
    5. Wang, G., A. P. van Dam, I. Schwartz, and J. Dankert. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin. Microbiol. Rev. 1999, 12:633-53.
    6. Foldvari, G., R. Farkas, and A. Lakos. Borrelia spielmanii erythema migrans, Hungary. Emerg. Infect. Dis. 2005, 11:1794-5.
    7. van Dam, A. P., H. Kuiper, K. Vos, A. Widjojokusumo, B. M. de Jongh, L. Spanjaard, A. C. Ramselaar, M. D. Kramer, and J. Dankert. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 1993, 17:708-17.
    8. Wang, G., A. P. van Dam, and J. Dankert. Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with lyme borreliosis. J. Clin. Microbiol. 1999, 37:3025-8.
    9. Casjens, S., R. van Vugt, K. Tilly, P. A. Rosa, and B. Stevenson. Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J. Bacteriol. 1997, 179:217-227.
    10. Fraser, C. M., S. Casjens, W. M. Huang, G. G. Sutton, R. Clayton, R. Lathigra, O. White, K. A. Ketchum, R. Dodson, E. K. Hickey, M. Gwinn, B. Dougherty, J. F. Tomb, R. D. Fleischmann, D. Richardson, J. Peterson, A. R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. van Vugt, N. Palmer, M. D. Adams, J. Gocayne, and J. C. Venter. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997, 390:580-586.
    11. Sunit K. S. and J. G. Hermann. Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi. Lancet. Infect. Dis. 2004, 4: 575-83
    12. Anguita J., V. Thomas, S. Samanta, R. Persinski, C. Hernanz, and S. W. Barthold. Borreliaburgdorferi induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. J. Immunol. 2001, 167: 3383-90.
    13. Liang F. T., M. B. Jacobs, and M. T. Philipp. C-terminal invariable domain of VlsE may not serve as target for protective immune response against Borrelia burgdorferi. Infect Immun 2001, 69: 1337-43.
    14.万康林,张哲夫,窦桂兰,侯学霞,王宏英,张金声,朱桂凤.中国莱姆病螺旋体主要生物媒介的调查研究.中国流行病学杂志. 1998, 19: 263-266.
    15. Rand P. W., E. H. Lacombe, and R. P. Smith. Competence of Peromyscus maniculatus (Rodent: Cricetidae) as a reservoir host for Borrelia burdorferi (Spirochaetaceae) in the wild. J. Med. Entomol. 1993, 30: 614-618.
    16.万康林,张哲夫,张金声,寇桂兰,王宏英,侯学霞,朱桂凤.中国20个省、区、市动物莱姆病初步调查研究.中国媒介生物学及控制杂志. 1998, 9: 366-370.
    17. Postic, D., M. Garnier, and G. Baranton. Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates--description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int. J. Med. Microbiol. 2007, 297: 263-71.
    18. Kurtenbach K., H. Klára, I. T. Jean, M. Gabriele, F. Durland and H. O. Nicholas. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature. Rev. Microbiol. 2006, 4: 660-669.
    19. Masuzawa, T., N. Hashimoto, M. Kudeken, T. Kadosaka, M. Nakamura, H. Kawabata, N. Koizumi, and Y. Imai. New genomospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J. Med. Microbiol. 2004, 53:421-6.
    20. Burgdorfer, W., A. G. Barbour, S. F. Hayes, J. L. Benach, E. Grunwaldt, and J. P. Davis. Lyme disease—a tick-borne spirochetosis? Science, 1982, 216:1317–1319.
    21. Johnson, R. C. Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int. J. Syst. Bacteriol. 1984, 34: 496–497.
    22. Kurtenbach, K., Sch?er, S. M., De Michelis, S., Etti, S. & Sewell, H.-S. in Lyme Borreliosis: Biology of the Infectious Agents and Epidemiology of Disease (eds Gray, J. S., Kahl, O., Lane, R. S. & Stanek, G.). CABI Publishing, Wallingford, Oxon, UK. 2002, 117-148.
    23. Kurtenbach, K.. Host association of Borrelia burgdorferi sensu lato-the key role of host complement. Trends Microbiol. 2002, 10:74-79.
    24. Randolph, S. E. Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitol. Today 1998, 14: 186-192.
    25. Piesman, J. in Lyme Borreliosis: Biology of the Infectious Agents and Epidemiology of Disease (eds Gray, J. S., Kahl, O., Lane, R. S. & Stanek, G.). CABI Publishing, Wallingford, Oxon, UK. 2002, 223-250.
    26. Miyamoto, K. and Masuzawa, T. in Lyme Borreliosis: Biology of the Infectious Agents and Epidemiology of Disease (eds Gray, J. S., Kahl, O., Lane, R. S. & Stanek, G.) CABI Publishing, Wallingford, Oxon, UK. 2002, 201-220
    27. Gern, L. and Humair, P.-F. in Lyme Borreliosis: Biology of the Infectious Agents and Epidemiology of Disease (eds Gray, J. S., Kahl, O., Lane, R. S. & Stanek, G.) CABI Publishing, Wallingford, Oxon, UK. 2002, 149-174
    28. Fish, D. in Ecology and Environmental Management of Lyme Disease. (ed. Ginsberg, H.) Rutgers University Press, New Brunswick, New Jersey. 1993, 25-42.
    29. Randolph, S. E. Ticks and tick-borne disease systems in space and from space. Adv. Parasitol. 2000, 47, 217-243.
    30. Kurtenbach, K. Differential immune responses to Borrelia burgdorferi in European wild rodent species influence spirochete transmission to Ixodes ricinus L. (Acari: Ixodidae). Infect. Immun. 1994, 62: 5344-5352.
    31. Bockenstedt, L. K.. Borrelia burgdorferi strainspecific OspC-mediated immunity in mice. Infect. Immun. 1997, 65: 4661-4667.
    32. Dizij, A. and K. Kurtenbach. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus (Acari: Ixodidae), the main European vector of Borrelia burgdorferi. Parasite. Immunol. 1995, 17: 177-183.
    33. Hudson, P. J. and O. N. Bj?nstad. Vole stranglers and lemming cycles. Science. 2003, 302: 797-798.
    34. Bj?nstad, O. N. and B. T. Grenfell. Noisy clockwork: time series analysis of population fluctuations in animals. Science. 2001, 293: 638-643.
    35. Grenfell, B. and O. N. Bj?nstad. Epidemic cycling and immunity. Nature. 2005, 433: 366–367.
    36. Gog, J. R. and B. T. Grenfell. Dynamics and selection of many-strain pathogens. Proc. Natl Acad. Sci. USA. 2002, 99: 17209-17214.
    37. Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 2004, 164 (Suppl. 5): 64-78.
    38. Qiu, W. G., D. E. Dykhuizen, M. S. Acosta, and B. J. Luft. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States. Genetics. 2002, 160: 833-849.
    39. Spielman, A. The emergence of Lyme disease and human babesiosis in a changing environment. Ann. N. Y. Acad. Sci. 1994, 740: 146-156.
    40. Falco, R. C., T. J. Daniels, and D. Fish. Increase in abundance of immature Ixodes scapularis (Acari: Ixodidae) in an emergent Lyme disease endemic area. J. Med. Entomol. 1995, 32: 522-526.
    41. Telford, S. R., T. N. Mather, S. I. Moore, M. L. Wilson, and A. Spielman. Incompetence of deer as reservoirs of the Lyme disease spirochete. Am. J. Trop. Med. Hyg. 1988, 39: 105-109.
    42. Richter, D., A. Spielman, N. Komar and F. R. Matuschka. Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg. Infect. Dis. 2000, 6: 133-138.
    43. Hanincová, K., K. Kurtenbach, M. Diuk-Wasser, B. Brei and D. Fish. Epidemic spread of Lyme borreliosis, northeastern United States. Emerg. Infect. Dis. 2006, 12: 604-611.
    44. Kampen, H., D. C. R?zel, K. Kurtenbach, W. A. Maier and H. M. Seitz. Substantial rise in the prevalence of Lyme borreliosis spirochetes in a region of western Germany over a 10-year period. Appl. Environ. Microbiol. 2004, 70: 1576–1582.
    45. Michel, H. An ospA-polymerase chain reaction/restriction fragment length polymorphism-based method for sensitive detection and reliable differentiation of all European Borrelia burgdorferi sensu lato species and OspA types. Med. Microbiol. Immunol. 2004, 193: 219-226.
    46. Hanincova, K.. Association of Borrelia afzelii with rodents in Europe. Parasitology. 2003, 126: 11-20.
    47. Huegli, D., C. M. Hu, P. F. Humair, B. Wilske and L. Gern. Apodemus species mice are reservoir hosts of Borrelia garinii OspA serotype 4 in Switzerland. J. Clin. Microbiol. 2002, 40: 4735-4737.
    48. Kurtenbach, K. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl. Environ. Microbiol. 1998, 64: 1169-1174.
    49. Pichon, B., M. Rogers, D. Egan and J. Gray. Blood meal analysis for the identification of reservoir hosts of tick-borne pathogens in Ireland. Vec. Born. Zoo. Dis. 2005, 5: 172-180.
    50. Randolph, S. E. and K. Storey. Impact of microclimate on immature tick–rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J. Med. Entomol. 1999, 36: 741-748.
    51. Ogden, N. H., Nuttall, P. A. and S. E. Randolph. Natural Lyme disease cycles maintained via sheep by co-feeding ticks. Parasitology. 1997, 115: 591-599.
    52. Alitalo, A. Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect. Immun. 2001, 69: 3685-3691.
    53. Stevenson, B., N. El-Hage, M. A. Hines, J. C. Miller and K. Babb. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect. Immun. 2002, 70: 491-497.
    54. von Lackum, K. Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal–tick infection cycle. Infect. Immun. 2005, 73: 7398-7405.
    55. Kurtenbach, K.. Differential survival of Lyme borreliosis spirochetes in ticks that feed on birds. Infect. Immun. 2002, 70: 5893-5895.
    56. Probert, W. S., M. Crawford, R. B. Cadiz and R. B. LeFebre. Immunization with outer surface surface protein (Osp) A, but not OspC, provides crossprotection of mice challenged with North American isolates of Borrelia burgdorferi. J. Infect. Dis. 1997, 175: 400–405.
    57. Brisson, D. and D. E. Dykhuizen. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics 2004, 168: 713-722.
    58. Derdakova, M. Interaction and transmission of two Borrelia burgdorferi sensu stricto strains in a tick–rodent maintenance system. Appl. Environ. Microbiol. 2004, 70: 6783-6788.
    59. Woolhouse, M. E., L. H. Taylor and D. T. Haydon. Population biology of multihost pathogens.Science. 2001, 292: 1109-1112.
    60. Combes, C. Fitness of parasites: Pathology and selection. Int. J. Parasitol. 1997, 27: 1-10.
    61. Kawecki, T. J. Red queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am. Nat. 1998, 152: 635-651.
    62. Timms, R. and A. F. Read. What makes a specialist special? Trends Ecol. Evol. 1999, 14: 333-334.
    63. McCoy, K. D., T. Boulinier, C. Tirard and Y. Michalakis. Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. J. Evol. Biol. 14, 395–405 (2001).
    64. Hanincová, K., K. Kurtenbach, M. Diuk-Wasser, B. Brei and D. Fish. Epidemic spread of Lyme borreliosis, northeastern United States. Emerg. Infect. Dis. 2006, 12: 604–611.
    65. Donahue, J. G., J. Piesman, and A. Spielman. Reservoir competence of white-footed mice for Lyme disease spirochetes. Am. J. Trop. Med. Hyg. 1987, 36: 92-96.
    66. Lindsay, L. R., I. K. Barker, G. A. Surgeoner, S. A. McEwen an G. D. Campbell. Duration of Borrelia burgdorferi infectivity in white-footed mice for the tick vector Ixodes scapularis under laboratory and field conditions in Ontario. J. Wildl. Dis. 1997, 33: 766-775.
    67. Mount, G. A., D. G. Haile and E. Daniels. Simulation of management strategies for the blacklegged tick (Acari: Ixodidae) and the Lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 1997, 34: 672-683.
    68. Anderson, R. M. and R. M. May. Infectious Diseases of Humans: Dynamics and Control. Oxford Univ. Press, Oxford, 1991.
    69. Porco, T. C. A mathematical model of the ecology of Lyme disease. IMA J. Math. Appl. Med. Biol. 1999, 16: 261-296.
    70. Schauber, E. M. and R. S. Ostfeld. Modeling the effects of reservoir competence decay and demographic turnover in Lyme disease ecology. Ecol. Appl. 2002, 12: 1142-1162.
    71. O’Callaghan, C. J., G. F. Medley, T. F. Peter and B. D. Perry. Investigating the epidemiology of heartwater (Cowdria ruminantium infection) by means of a transmission dynamics model. Parasitology. 1998, 117: 49-61.
    72. Richter, D., R. Allgower and F. R. Matuschka. Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochete Borrelia afzelii. Emerg. Infect. Dis. 2002, 81: 421-1425.
    73. Gylfe, A. Phylogeographic relationships of Ixodes uriae (Acari: Ixodidae) and their significance to transequatorial dispersal of Borrelia garinii. Hereditas. 2001, 134: 195-199.
    74. Bunikis, J. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology. 2004, 150: 1741-1755.
    75. Dykhuizen, D. E. Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc. Natl Acad. Sci. USA. 1993, 90: 10163-10167.
    76. Qiu, W. G. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc. Natl Acad. Sci. USA. 2004, 101: 14150-14155.
    77. Eggers, C. H. Transduction by BB-1, a bacteriophage of Borrelia burgdorferi. J. Bacteriol. 2001, 183: 4771-4778.
    78. Wikel, S. K. Tick modulation of host immunity: an important factor in pathogen transmission. Int. J. Parasitol. 1999, 29: 851-859.
    79. Johns, R. Contrasts in tick innate immune responses to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). J. Med. Entomol. 2001, 38: 99-107.
    80. Piesman, J., J. R. Oliver and R. J. Sinsky. Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am. J. Trop. Med. Hyg. 1990, 42: 352-357.
    81. Pal, U. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004, 119: 457-68.
    82. Ramamoorthi, N. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005, 436: 573-577.
    83. Grimm, D. Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc. Natl Acad. Sci. USA 2004, 101: 3142-3147.
    84. Pal, U. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 2004, 113: 220-230.
    85. Randolph, S. E., D. Miklisova, J. Lysy, D. J. Rogers and M. Labuda. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999, 118: 177-186.
    86. Wilson, M. L. and A. Spielman. Seasonal activity of immature Ixodes dammini (Acari: Ixodidae). J. Med. Entomol. 1985, 26: 408-414.
    87. Ogden, N. H. A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int. J. Parasitol. 2005, 35 : 375-389.
    88. Tsao, J. I. An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc. Natl Acad. Sci. USA. 2004, 101: 18159-18164.
    89. Lederer, S. Quantitative analysis of Borrelia burgdorferi gene expression in naturally (tick) infected mouse strains. Med. Microbiol. Immunol. 2005, 194: 81-90.
    90. Jones, C. G., R. S. Ostfeld, M. P. Richard, E. M. Schauber and J. O. Wolff. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science. 1998, 279: 1023-1026.
    91. Wolff, J. O. Population regulation in mammals: An evolutionary perspective. J. Animal Ecol. 1997, 661-613.
    92. Ostfeld, R. S. and R. D. Holt. Are predators good for your health? Evaluating evidence fortop-down regulation of zoonotic disease reservoirs. Frontiers Ecol. Environ. 2004, 2: 13-20.
    93. Lewellen, R. H. and S. H. Vessey. The effect of density dependence and weather on population size of a polyvoltine species. Ecol. Monogr. 1998, 68: 571-594.
    94. Keesing, F., R. D. Holt and R. S. Ostfeld. Effects of species diversity on disease risk. Ecol. Lett. 2006, 9: 485-498.
    95. Ostfeld, R. S. and F. Keesing. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 2000, 14: 722-728.
    96. Norman, R., R. G. Bowers, M. Begon and P. J. Hudson. Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasitemediated competition. J. Theor. Biol. 1999, 200: 111-118.
    97. LoGiudice, K., R. S. Ostfeld, K. A. Schmidt and F. Keesing. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl Acad. Sci. USA. 2003, 100: 567-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700