山核桃成花机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成花是植物发育过程中的重要时期,是植物生活史中从营养生长向生殖生长、孢子体向配子体转变的重要转折点,处于形态更替和世代交替的关键时期。100多年来科学家们孜孜不倦地探索着成花的机理。
     山核桃(Carya cathayensis Sarg.)属胡桃科山核桃属(Carya Nutt.),是浙江区域优势明显的特色经济干果,是高档的干果和木本油料植物。山核桃已经成为浙西北山区农民实现富裕的重要经济支柱。
     山核桃营养生长期长,始果期需要十年以上。雌雄同株,雄花为下垂的葇荑花序,雌花为短穗状花序。雌雄花的形成存在时空上的差异。山核桃雌花形成直接决定当年的产量,无论从成花理论还是为解决实际问题都有必要研究山核桃的成花问题。
     本文利用石蜡制片技术结合扫描电镜观察,研究山核桃雌雄花发育的形态发生;利用cDNA-AFLP技术、基因芯片技术结合454深度测序,探讨山核桃成花过程的基因代谢网络调控体系;利用PCR法从山核桃中同源克隆FT、AG、AP1等成花重要基因,从形态解剖学和分子生物学角度探讨山核桃成花机理,并利用拉枝、喷施生长调节剂等园艺措施研发成花控制技术,主要结果如下:
     (1)从形态解剖学角度掌握了山核桃雌雄花发育过程。3月下旬在雄花原基顶部形成雄蕊原基,4月中旬形成雄蕊并进一步分化。4月下旬,花药内形成花粉囊,花粉母细胞减数分裂形成四分体,之后四分体解体产生单胞花粉粒,5月上旬形成2-胞花粉粒。雌花发育过程从3月下旬开始到5月中旬基本完成,整个过程可分为未分化期、分化初期、花序分化期、总苞形成期和雌蕊形成期共五个时期。分化初期生长点趋于半圆形;花序分化期三个小花原基形成;总苞形成期每一小花周围形成1个总苞片和3个小苞片;雌蕊形成期小花继续发育,胚囊形成。山核桃胚珠为直生胚珠,单珠被,厚珠心型。雌配子体为八核七细胞蓼形胚囊。
     (2)利用cDNA-AFLP技术克隆获得山核桃成花过程的278个TDFs,其中65个TDFs为未知基因序列,213个TDFs具有同源序列。已知功能的同源基因可分为11类,分别是:细胞信号转导、细胞生长、衰老与死亡、细胞分化与植物成熟、激素合成、胁迫与抗病、物质运输、光合作用、物质和能量代谢、矿物质同化与有机物合成、光形态建成,在山核桃成花过程中起着直接或间接的作用。利用Real-time RT PCR技术对cDNA-AFLP分析进行了验证,两者基本吻合,从而证实了cDNA-AFLP结果的可靠性。对278个TDFs进行了功能注释和代谢分析,共65(23.4%)个无功能注释,213个有功能注释。有功能注释的TDFs中,158(54.7%)个属于生物进程,211(73.0%)个属于细胞组分,分子功能包含173(59.9%)个TDFs。生物进程中占比例最大的是氧化还原作用,其次是翻译功能,然后是蛋白水解、光合作用、对紫外线B的反应、负调控、运输,等等;细胞组分中占比例最大的是叶绿体,其次是类囊体、线粒体、质膜,等等;分子功能中,占比例最大的前两个是ATP绑定和蛋白绑定,其次是丝氨酸型肽链内切酶,等等。
     (3)通过基因芯片杂交分析,在山核桃成花过程各时间点总共有232个基因表达发生变化,占总基因数的1.0%左右,有196个基因表达至少发生2倍及以上的变化,占总基因数的0.9%左右。其中,总共有106个上调基因和90个下调基因。山核桃成花过程中响应的基因主要涉及到细胞壁合成,细胞周期调控,细胞信号转导,胁迫响应,光合代谢,脂类代谢,蛋白代谢,碳水化合物代谢,转录调控,细胞凋亡,激素合成与运输,核酸代谢,物质运输,氨基酸代谢等等,从分子水平上证实了现代成花的细胞生物学理论。
     (4)根据已知FT同源基因的保守区设计特异引物和简并引物,对山核桃DNA进行PCR扩增克隆到4个FT基因片段,长度分别为382bp、82bp、80bp和152bp,其中第四片段已在GenBank注册(注册号FJ858260.1),命名为CcFT。CcFT经4次步移共获得1526bp片段,该片段含FT基因的第三外显子和第四外显子。其次克隆到2个AG同源基因片段,长度分别为131bp、122bp,在GenBank上注册(注册号FJ858261.1)命名为CcAG。还克隆到486bp的AP1同源基因片段。该片段包含2个内含子,长度分别为86bp和291bp,在GenBank上注册(注册号EU155118)命名为CcAP1。
     (5)山核桃CcLFY基因在山核桃不同部位的表达量有差异,花芽中表达最高,其次是幼茎,再次是幼叶,根中表达量最低。成花各时期CcLFY的表达情况大致是,3月上旬表达量较低,在3月18日表达量达到高峰,随后表达量下降。
     (6)用潮霉素初选获得转CcLFY基因烟草并经PCR检测鉴定确认。形态学观察表明,转基因植株较对照高大,开花提前,种粒大。
     (7)454测序共获得876,664个reads,样A和样B读数分别为431,759和444,905。平均长度为332bp。序列拼接后样A和样B分别有25339和26935个contigs。从样A和样B的contigs中分别获得15,085和16,387个ORFs。样A与样B特异序列(B与A)分别为6,138和7,346个;两者共有序列(AI B)分别为19,201和19,589个;两者共含不重复的contig序列(AU B)最小为32,685个。对样A与样B共七个集合(A、B、A+B、AU B、AI B、B、A )进行功能注释。在集合AU B共32,685个contigs中,无功能注释的有1,506(4.6%)个,有功能注释的有31,179(95.4%)个。把这些有功能注释的contigs分为生物进程(Biological Process)、细胞组分(Cellular Component)和分子功能(Molecular Function)3种类型,其数量(比例)分别是22,515(68.9%)、21,788(66.7%)、24,037(73.5%)个。其它六个集合的相似性序列的功能注释和分类与上述情况基本一致。对四个集合(B、A、AU B、AI B)的contigs进行了数据库比较的代谢分析。与拟南芥KEGG数据库相比,约有5~8%的contigs有代谢途径;与杨树KEGG数据库相比,约有8~13%的contigs有代谢途径。获得的已知成花候选基因有:GI、AP1、AP2、EMF1、TFL2、EMF2、FLC、PAF1、DET1、FRI、PLE、PI、HD1、AGL24、VRN1、SOB3、CRY1、FCA、FKF1、PIE、PIE1、AGL75,等等。山核桃雌花成花可能存在多条途径。从样A共25339个contigs中,共检出792个含有SSR的序列,占3.1%;从样B共26935个contigs中,共检出783个含有SSR的序列,占2.9%。
Process of flowering is very vital in lifetime of plants, it is also the turning point that plants development from vegetation to generation, and from sporophyte to gametophyte. Many researchers have worked on the mechanism of flowering for around a century.
     Hickory(Carya cathayensis Sarg., Carya Nutt., Juglandaceae) is one of important economic trees, which is also one of very important oil tree plants and has become one of the resource of income for indigene in Zhejiang Province of China.
     Hickory has a long vegetative period, and it needs nearly 10 years for the first fruit set. The flowers of hickory are monoecism. Its staminate flowers are catkin, and female flowers spica. Flowering (staminate flowers and female flowers) of hickory is different in space and time. Because of the importance of flowering for female flowers, which decides to the yield, more attention should be paid to the flowering mechanism.
     Olefin slices about different period of time of flowering were observed through scanning electron microscope for the scale of studying the development of staminate flowers and female flowers. The technique of cDNA-AFLP and genechip were exerted to study the network control system of flowering. The important homologous genes on flowering, FT, AG, AP1 and so on, were cloned through the technique of PCR; The mechanism of flowering was studied from the point of view of anatomy and molecular biology. And also flowering control was studied with the use of the means of pulling branches and spraying plant growth regulators. The results were as follows:
     (1) The formation and development of female and male flower of hickory was mastered in anatomy. Androecium anlages form in the top of male flower anlages in the last ten-day of March. Stamens come into being and farther differentiate in the middle ten-day of April. In the last ten-day of April, pollen sacs forms from anther and microspore mother cells forms into tetrad spores with miosis. Then, tetrad spores disaggregate and produce one-cell microspores. In the first ten-day of May, two-cell microspores come into being. The development of female flower mainly accomplish from the last ten-day of March to the middle ten-day of May. The course can divided into five periods: the period of undifferentiation, pre-differentiation, inflorescence differentiation, involucrum formation, and gynoecium formation. In the early days of differentiation, the growing point goes semi-circle. In the period of inflorescence differentiation, three flowerets anlages come into being. In the period of involucrum formation, one involucrum and three bracts forms around the floweret. In the period of gynoecium formation, the flowerets continue to develop, and the embryo-sac comes into being in this period. The ovule type of hickory is orthogropous with single integument and thick nucellus. The female gametophyte is an embryo-sac with eight-nucleolus or seven-cell.
     (2) 278 TDFs during flowering in hickory were obtained by cDNA-AFLP technology. The 278 genes were composed of 65 genes of unknown function and 213 genes of known function. The 213 genes of known functions were involved in cell signal transduction, cell growth, senescence and death, cell differentiation and plant mature, plant hormone synthensis, stress and resistance, material transport, photosynthesis, material and energy metabolism, mineral assimilation and organic synthesis, photomorphogenesis, which play a direct or indirect role in hickory flowering process. The expression patterns of these genes were confirmed by Real-time RT PCR analysis. Both are basically consistent, which confirms the reliability of the results of cDNA-AFLP. There are 213(76.6%) annotated TDFs and 65(23.4%) non-annotated ones. Of annotated TDFs, the number or percentage of Biological Process, Cellular Component ,and Molecular Function are 158(54.7%), 211(73.0%), 173(59.9%), respectively. Of biological process, the turn of percentage in descending order is oxidation reduction, translation, proteolysis, photosynthesis, response to UV-B, negative regulation, transport, etc. Of cellular component, the turn of percentage in descending order is chloroplast, integral to membrane, thylakoid, mitochondrion, plasma membrane, etc. Of molecular function, the turn of percentage in descending order is ATP binding, protein binding, serine-type endopeptidase, etc.
     (3) The expression patterns of total 232 genes during hickory flowering process were obtained by microarry, which accounted for about 1% of total genes. 196 genes with at least 2-fold changes were obtained, which accounted for about 0.9% of total genes. Among them, there were 106 upregulated genes and 90 downregulated genes. The genes during flowering in hickory were invloved in cell wall synthesis, cell cycle regulation, cell signal transduction, stress response, photosynthetic metabolism, lipid metabolism, protein metabolism, carbohydrate metabolism, transcription regulation, apoptosis, hormone synthesis and transport, nucleic acid metabolism, material transport, amino acid metabolism, etc., which confirmed in molecular level the modern flowering theory of cell biology.
     (4) We designed the special primers according to the conserved sequence of the known FT, AG and AP1 homologues and cloned four FT, two AG and one AP1 fragments, respectively. The length of the four FT sequences are 382bp, 82bp, 80bp and 152bp respectively. The 152bp sequence (GenBank accession number: FJ858260.1) named CcFT, which included the third and fourth exons. The length of two AG homologues fragments are 131bp and 122bp (GenBank accession number: FJ858261.1) named CcAG. One AP1 homologue fragments (GenBank accession number: EU155118) were cloned and named CcAP1, which included two introns (86bp and 291bp).
     (5) The gene expression of CcLFY in different position in hichory are different. The highest expression was noticed in blossom buds, followed by young stems and young leaves, and the lowest expression was in roots. In the flowering process, CcLFY expression generally was a low expression in early March, a peak in March 18, followed by a decline as time progressed.
     (6) Both hygromycin assays and PCR amplification demonstrated that CcLFY was integrated into T0 genomes. The Morphological observation showed that the transgenic tobacco plants that survived under natural condition were tall, early flowering and seed grain larger than the wild-type controls.
     (7) 876,664 reads are derived by 454 sequencing from two samples labeled as A and B in hickory. There are 431,759 and 444,905 reads in sample A and B, respectively. After sequence aligning, there are 25,339 and 26,935 contigs in sample A and B. And 15,085 and 16,387 contigs are derived fromsample A and B, respectively. The number of specific contigs in sample A and B are 6,138 and 7,346. The number of common contigs in the two samples are 19,201 and 19,589, respectively. And all contigs number in both samples is 32,685. Seven sets, A, B, A+B, AU B, AI B, B , A , are annotated. For example, there are 31,179(95.4%) annotated contigs and 1,506(4.6%) non-annotated ones in set AU B. For annotated contigs, there are 3 type named Biological Process, Cellular Component ,and Molecular Function which contig number or percentage are 22,515(68.9%), 21,788(66.7%), 24,037(73.5%), respectively. The rest 6 sets are similar to AU B. Pathway analysis are implemented for B , A , AU B, AI B sets. There are 5~8% contigs have pathways, in which Ncotinate and nicotinamide metabolism, oxidative phosphorylation, steroid biosynthesis have higher percentages than others, comparing to KEGG Arabidopsis thaliana database. And there are around 8~13% contigs have pathways, in which purine and pyrimidine metabolism have higher percentages than others, comparing to KEGG Populus trichocarpadatabase. Several known flowering candidate genes are derived, such as GI, AP1, AP2, EMF1, TFL2, EMF2, FLC, PAF1, DET1, FRI, PLE, PI, HD1, AGL24, VRN1, SOB3, CRY1, FCA, FKF1, PIE, PIE1, AGL75. It’s suggested that there are several flowering routes in hickory. Eventually, 792 (3.1%) and 783 SSRs (2.9%) are derived from sample A and B, respectively.
引文
Badawi A. M. Effects of‘SADH’on the endogenous gibberellin-like substance of buds and spurs, in relation to floral differentiation and bienniall bearing og‘Le-Conte’pear trees. Egyptian. J. Horticulture, 1978, 5(2): 153-165
    Bernier G. Structural and metabolic changes in the shoot apex in transition to flowering. Can. J. Bot., 1970, (49): 803-819
    Beth A. Krizek and Jennifer C. Fletcher. Molecular mechanisms of flower development: an armchair guide, Nature Reviews, 2005, 6: 688
    Bernier, G. The flowering process at the meristem: anatomical and histological events. p: 35-53. In: G. Bernier, J. M. Kinet and R. M. Sachs(eds) The physiology of flowering. Volume II. CRC. Press. Inc., Boca Roton, Florida
    Bernier G. The control of floral evocation and morphogenesis. Ann Rev Plant Physiol Plant Mol. Biol, 1988, (39): 175-219
    Bodson M, W H Outlaw. Elevation in the sucrose contents of the shoots apical meristem of Sinapis alba at floral evocation. Plant Physiol, 1985, (79): 420-424
    Brix H., F T Portlok. Flowering response to stimulate flowering and corn production in a loblolly pine seed orchard. South J. App. Forest, 1981, (1):20-23
    Breyne P, Zabeau M. Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol, 2001, 4: 136-142
    Brian Thomas. Light signal and flowering. Journal of Experimental Botany, 2006, 57(13): 3387-3393
    Brown C. S., et al. Rootstock and scion effects on carton partitioning in apple leaves. J. Amer. Soc. Hort. Sci., 1985, 110(5): 701-705
    Buban T. and F. Sagi. The possibility of regulating flowering in apple trees. Fruit Sci. Rep., 1976, (3): 1-14 Deb B, et al. Growth retardant, gibberellin and their interacting regulations on chlorophyll nucleic acid and histone protein levels of Litchi Chineness sonn. Seeding. Plant Science, 1976, (8): 32-37
    Buban T. and I. Simon. Cytochemical investitions in apices of apple tree buds with special references to flower formation. Acta. Hortic., 1978, (80): 193-198
    Buban T., et al. Cytochemical investigations of the shoot apex of apple trees I. DNA, RNA and histone content of meristematic cell nucleic in terninal buds of spurs with and without fruits. Acta Botanica Academic Scientiarum Hungaricae, 1979, 25(1-2): 53-62
    Buban T. and M. Faust. Flower bud induction in apple trees: Internal control and differentiation. Hort. Rev, 1982, (4): 174-203
    Chuan-Yu Hsu et al. Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering. Plant Cell, July 14, 2006
    Clarke A. E. and E. Denuis., et al. Forefront of flowering. Plant Cell, 1992, 4(8): 867-869
    Coen E S, Romero J M, Elliot R, et al. FLORICAULA: a homeotic gene required for flower development in Antirrhinum majus. Cell, 1990,63: 1311-1322
    Evans L. T. Flower induction and the florigen concept. Ann. Rev Plant Physiology, 1971, (22): 365-394
    Evans L. T. Inflorescence initiation in Lolium lemulentium L. V. The role of auxins and gibberelins. Aust. J. Biol. Sci, 1964, (17): 10-23
    Elena R. Alvarez-Buylla, et al. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. Journal of Experimental Botany, 2006, 57(12): 3099-3107
    Elizabeth Pennisi. Long-sought plant flowering signal unmasked, again. Science, 2007, 316: 350-351
    Goren R, et al. Promotion of flower formation and fruit set in citrus by antimetabolites of nucleic acid and protein synthesis. Planta, 1969, (88): 364-368
    Grochowska M. J. A possible role of hormones in growth and development of apple trees and a suggestion on how to modify their action. Acta. Hort, 1978, (80): 1457-1464
    Grochowska. Gibberellins and flowering in the biochemistry and physiology of gibberellins. Ed. Crozier, 1983, New York
    Grochowska M. J. The pattern of hormone of intact apple shoots and its changes after spraying with growth regulators. Acta. Hort., 1984, (149): 25-38
    Grochowska M. J. The transport of hormones through the apple pedcial. Acta. Hort., 1978, (80): 181-185
    Grochowska M. J. and Lubinska A. Comparative studies on physiological and morphological features of bearing and non-bearing spurs of the apple treeⅡ. The effect of fruiting and growth regulator sprays on respiration mate of leaves. Physiologia plantarum, 1973, 29(3): 425-429
    Harley C. P., et al. Comparative effectiveness of naphthyleneacetic acid and naphthylacetamide sprays for fruit thinning Youk Imperial apples and initiation blossom bud on delicious apple trees. Proc. Amer. Soc. Hort. Sci., 1959, (74): 64-66
    Harley C. P., et al. Evidence that post apple-thinning sprays of naphthyleneacetic acid increase blossom bud formation. Proc. Amer. Soc. Hort. Sci., 1958, (72): 52-56
    Henrik Bo¨hlenius, et al. CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees. Science, 312,19, 2006
    Hoad G. V. The role of seeds derived hormones in the control of flowering in apple. Acta. Hort., 1978, (80): 93-103
    Isabel Barle, Caroline Dean. The Timing of Developmental Transitions in Plants. Cell, 125, May 19, 2006 Jackson D. I. and G. B. Sweet. Flower initiation in temperate woody plants. Hort. Abstract, 1972, (42): 9-24
    Jacqmard A, R., Kettmann, et al. Ribosomal RNA genes and floral evocation on sinapis. Ann. Bot., 1981, (47): 415-417
    Jackson W D. The dwarfing effect of single application of growth inhibitors to the root stem connection. J. Hort Sci., 1997, (72): 83-91
    Ji Hoon Ahn, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 2006, 25(3): 605-614
    Katja E. Jaeger, et al. The control of flowering in time and space. Journal of Experimental Botany, 57(13): 3415-3418
    Kato R. and T. Fuji. Increase in the activities of protein kinases under a flower-inducing condition in Lemna paucieostata. Plant Cell Physiol., 1988, 29(10): 85-88
    Kinet J. M, et al. The physiol of flowering. CRC Press, Inc. Boca Raton, Florida, Vol. 3. p: 198
    Kinet J M. Environmental, chemical and genetic control of flowering. Hot Rev., 1993, (7): 279-334
    Koornneef M, Alonso-Blanco C, Peeters A J M, et al. Genetic control of flowing time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 345-370
    Kolomiets I. A, et al. Biochemical changes in the growing points of shoots during the development of reproductive buds in apple trees. Hort. Abstract, 42(2): 3033
    Krauss A. Physiological Aspects of Crop Productivity. 1980, IPI: 175-184
    Krishnamoothy H N. Plant growth substance including application in agriculture. Tata McGraw-Hill Co., 1981, New Delhi
    Lang A. The effect of gibberellin on flower formation. Pro. Natl. Acad. Sci., 1957, (43): 709
    Takeno K., T. Truruta, T. Maeda. Gibberellins are not essential photoperiodic flower induction of Pharbitis nil. Physiologa Plantarum, 1996, 97(2): 397-401
    Lay-yee M. R., et al. Changes in cotyledon mRNA during ethylene inhibition of floral induction of Pharbitis nil Strain Violet. Plant physiol, 1987, (84): 545-548
    Leopold A C. BioScience, 1975, (25): 659-662
    Lifschitz et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. PNAS, 2006, 103 (16): 6398
    Lilov D., et al. Auxin flower formation and fruit formation in grapevine. Proc. 19th Intern. Hort. Cong., 1974, IA: 89
    Luckwill L. C. A new look at the process of fruit bud formation on apple. Proc. 19th intern. Hort. Cong.(Warsaw), 1974, (3): 237-245
    Luckwill L. C, et al. The effects of daminozide and gibberellic acid on flower intiation, growth and fruiting of apple cv. Golden Delicious. J. Hort. Sci., 1979, 54(3): 217-223
    M. Abe et al. FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex, Science, 309, 1052, 2005
    Martin M. Kater et al. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany, 2006, 57(13): 3433-3444
    Miguel A.Blazquez. The right time and place for making flowering, Science, 309: 1024-1025, 2005
    Minter T. C. and E. M. Lord. Effects of water stress abscisic acid, and gibberellic acid on flower production and differentiation in the cleistogamous species Collmia grandiflora donl Exlindl. (Polemoniacese). Amer. J. Bot, 1983, 70(4): 418-426
    Moon J, Lee H, Kim M, et al. Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol , 2005,10: 1093-1110
    Moritz T, Philipson J J, Oden P C. Quantification of gibberellins A1, A3, A9 and a putative A9-congugated in good-and-flowering clones of Sitka Spruce(Picea sitchensis) during the period of flower-bud differentiation. Planta, 1990, (182): 97-106
    Nancy A. Eckardt. Functional divergence of AG3 genes in the MAD world of flower development. The Plant Cell, 2006, 18: 1779-1781
    Nickell L G. Plant growth regulators agricultural uses. Spring-verlag Berlin, 1982
    P.A.Wigge et al. Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309, 1056, 2005
    Ramirez H., et al. Effects of growth substances on fruit bud initiation in apple. Acta. Hort., 1981, (120): 131-136
    Robert Sablowski. Flowering and determinacy in Arabidopsis. Journal of Experimental Botany, 2007, 58(5): 899-907
    Rod W. King, et al. Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiology, 2006, 141: 498-507
    Rud J J, Franklin V E. Cacium signaling in plants cell. Mol. Lif. Sci., 1999, 55: 214-232
    Sachs R M, Hackett, W P. Source-sink relationships and flowering. In: Meudt, W J, eds, Beltsville Symposia in Agricultural Research. Strategies of Plant Reproduction, Totowa, N J: Kluwer Academic, 1983, 263-272 Sedgley M. Flowering of deciduous perennial fruit crops. Hort. Rev., 1990, (12): 223-264
    Shojiro Tamaki, et al. Hd3a protein is a mobile flowering signal in Rice. Science express, 19, April, 2007
    Sven Eriksson, et al. GA4 is the active gibberellin in the regulation of leafy transcription and Arabidopsis floral initiation. the Plant Cell, 2006, 18: 2172-2181
    Tamimoto S. and H. Harada. Chemical factors controlling floral bud formation of Torenica stem segments cultured in vitro. I. Effects of mineral nutrleuts and sugars. Plant Cell Physiol, 1981, 22(3): 533-541
    Tamimoto S. and H. Harada. Effects of IAA, Zeatin ammonium nitrate and sucrose on the initiation and development of floral buds in Torenica stem segments Cultured in vitro. Plant Cell Physiol., 1981, 22(8): 1553-1560
    Tamimoto S. and H. Harada. Physiological and factors influencing organogenesis in Ruclbeckia bicolor explants cultured in vitro. Plant Cell Physiol., 1982, 23(1): 107-113
    Taminoto S. Regulation by Abscisic acid of in vitro flower formation in Torenica stem segments. Plant Cell Physiol., 1985, 26(4): 657-682
    Tao Huang, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot and induces flowering, Science, 2005, 309: 1694-1696
    Tran Thanh Van K M. Control of morphogenesis in vitro cultures. Ann Rev. Plant Physiol., 1981, (32): 291-311
    Weigel D, Alvarez J, Smyth D R, et al. LEAFY controls floral meristem identity in Arabidopsis. Cell , 1992, 69: 843-859
    Wellensiek S. J. Principles of flower formation. Acta Horticulturae, 1977, (68): 17-27
    Werzilov W. F., et al. Growth regulators in relation to apple bud differentiation. Acta Horticulaturae, 1978, (80): 175
    Yanofsky M. F. Floral meristems to floral organs: Genes controlling early events in Arabidopsis flower development. Ann. Cev. Plant Plant Physiol. Plant Mon. Biol., 1995, (46): 167-188
    Yu H, Ito T, Zhao Y, et al. Floral homeotic genes are targets of gibberellin signaling in flower development.Proc Natl Acad Sci, 2004, 101(20): 7827-7832
    伴野洁.日本梨的花芽形成及其促进技术.园艺学会1992年度研究发表要旨, 1992, p: 23-25
    白晋和,许明宪,等.主干环切处理对金冠苹果幼树短枝顶芽花诱导期核酸动态的影响.果树科学, 1987, 4(1): 1-5
    曹尚银,等.苹果花芽孕育过程中内源激素的变化.果树科学, 2000, (17): 244-248
    陈超.海南地区年菊花期的调控技术.热带农业科学, 1999, 59-65
    陈国瑞,黄必恒.影响山核桃产量的主要气象因子分析.浙江林学院学报, 1992, 9(2): 144-150
    程有龙,徐荣章.传统山核桃林分的立体经营及其效益.浙江林业科技,1996, 16(1):10-19
    盖树鹏,孟祥栋.利用RAPD技术进行植物性状标记及辅助选择.生物技术通报, 1999, 15(6): 33-38
    谷本静史,石冈奈穗子.成花诱导物质.植物的化学调节, 1992, 27(1): 44-55
    何方.山核桃生态习性和引种问题.浙江林业科技, 1988, (8): 28-32
    洪游游,唐小华,王慧.山核桃林土壤肥力的研究.浙江林业科技, 1997, 17(6): 1-8
    黄海.关于果树花芽分化的研究.果树科学, 1987, 4(1-4): 41-49
    黄辉白,程洪,等.柑桔促进与抑制成花情况下激素与核酸代谢.园艺学报, 1991, 18(3): 198-204
    黄坚钦,章滨森,陆建伟.山核桃嫁接愈合过程的解剖学观察.浙江林学院学报, 2001, 18(2): 111-114
    黄坚钦,章滨森,王正加,郭传友.中国山核桃属植物种间亲缘关系RAPD分析.西南林学院报, 2003, 23(4): 1-3
    黎章矩.山核桃生长发育年周期的研究.浙江林学院科技通讯, 1982, (1): 54-56
    黎章矩,钱莲芳.山核桃科研成就和增产措施.浙江林业科技, 1992, 12 (6): 49-53
    黎章矩.山核桃芽、梢发育状况与结果关系的研究.浙江林学院学报, 1985, 2 (2): 27-32
    谷澎芳.山核桃雌花芽的分化与雌花发育的现象.浙江林学院学报, 1984, 1 (1): 15-20
    黎章矩.山核桃花芽分化与开花习性的初步研究.经济林研究, 1984, 2 (1): 28-37
    黎章矩.山核桃花芽分化与开花习性的研究.南京林业大学学报, 1986, (3): 37-43
    黎章矩,夏逍鸿,施洪生.山核桃种间杂交试验研究.浙江科技通讯地, 1983, (1): 47-48
    黎章矩.山核桃育苗技术调查与试验.山核桃论文集, 1988: 68-75
    梁立峰.植物激素与果树的花芽分化.植物生理学通讯, 1982, (4): 1-6
    梁立峰,等.大红柑花芽及营养芽形成过程中内源细胞分裂素的变化动态.华南农业大学学报, 1986, (11): 11-16
    刘胜清.山核桃栽培技术初探.浙江林业科技, 2001, 21(2): 57-61
    刘微,朱丽萍.制定《山核桃丰产栽培技术规程》解决低产质差的技术难题.中国标准导报, 1998, (4): 8
    罗正荣,许明宪.“红星”苹果花芽分化期细胞分裂素的动态研究.园艺学报, 1987, 14(1): 17-22
    钱尧林.培育山核桃粗壮苗主要技术措施.杭州科技, 2000, (3): 35-36
    钱尧林.山核桃嫁接技术初探.浙江林业科技, 1984, (1): 47-48
    汤仁发.山核桃小年变大年的原因分析.浙江林业科技, 1980, (4): 26
    藤冈昭三.紫萍科植物的花芽形成.日本遗传杂志, 1986, 40(5): 45-51
    田中修.青紫萍的成花诱导机制.日本遗传杂志, 1986, 40(8): 23-29
    王隆华.植物开花生理.植物生理与分子生物学进展.北京:科学出版社, 1992
    汪祥顺,蔡传山,徐德传,等.山核桃嫁接技术研究.林业科技通讯, 1997, (11): 30-32
    王正加,黄坚钦,郭传友,杨萍,王华芳.山核桃RAPD反应体系的优化.浙江林学院学报, 2003, 20(4): 429-433
    徐江森.山核桃施肥效益初报.浙江林业科技, 1988, 8(2): 46-48
    徐江森.山核桃施肥的经济效益分析.浙江林学院学报, 1990, 7(3): 276-279
    叶茂富.关于促进山核桃丰产问题的研究.亚林科技, 1978, (2): 13-15
    叶茂富,吴厚钧.山核桃与薄壳山核桃杂交的研究.林业科学, 1965, (1): 50-56
    章晓光,陶明星.临安市山核桃产量模式及其气象义.浙江林业科技, 1989, 9(3): 29-33
    章小明,汪祥顺,黄奎武等.山核桃嫁接技术的可行性分析.林业科技开发, 1999, (5): 45-47
    章旭东,章基应.山核桃早衰原因的调查分析.安徽林业科技, 1993, (4): 17-18
    郑文达,占森梁,戴爱君.山核桃老林截干更新研究.浙江林业科技, 1994, 13(6): 31-34
    周根土.浅议大别山区山核桃分布与开发.经济林研究1998, 16(2): 68-69
    周学明.不同时期苹果花芽叶芽中GA, ABA, CTK活性的变化.园艺学报, 1988, 21(1): 157-161
    竹叶刚,木崎晓子,木户毅.由肽类研究植物的成花机制.植物的化学调节, 1992, 27(1): 80-89
    朱永军.浙江山核桃丰产栽培技术.林业科技开发, 1992, (4): 37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700