塑料注射成型充填过程的数值模拟、优化与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注射成型是热塑性塑料和一部分热同性塑料最主要的成型加工方法。由于材料本身的特性以及复杂的加工条件,塑料注射成型过程加工过程相当复杂。长期以来,塑料注射成型过程的控制和模具设计与制造主要依赖工艺人员和设计人员的经验和技巧,设计的合理性只能通过试模才能知道,制造的缺陷主要靠修模来纠正,致使模具及塑料产品的设计与制造周期长、成本高、档次低。随着新材料和新成型方法的不断出现,问题更加突出。
     建立塑料注射成型过程的物理和数学模型,构造有效的数值计算方法,对该过程进行数值模拟,预测制品的结构和性能,可以在设计阶段及时发现问题,避免了在模具加工完成后在试模阶段才能发现问题的尴尬。
     但对注塑成型过程的数值模拟仅仅相当于数值实验,只能校核设计方案的合理性,无法“主动”给出合理的模具结构和成型工艺,最终的设计方案仍需设计者根据自己的经验和技巧,通过对多个方案的反复计算、分析、比较和判断来确定。设计方案的确定在很大程度上取决于数值模拟时设计者提供的输入数据以及对输出结果的正确判断与解释。将设计优化技术和数值模拟技术相结合,使计算机有了“主动”设计功能;自动确定最优成型工艺参数(如注射速率、保压压力、保压时间、模具温度等);自动确定最优模具结构等。这就大大降低了对注塑成型设计人员的要求,提高了设计质量。注塑成型计算机辅助优化设计技术具有较高使用价值,对我国塑料工业的发展具有重要意义。
     尽管对注塑成型过程进行模拟和优化可以得到好的成型工艺,但在实际加工过程中,由于机械磨损、摩擦或环境因素的变化,注射加工常常无法按照我们所期望的工艺进行。对注射机进行实时控制,使加工变量以一定的精度保持某一数值或按一定的规律发生变化,具有较高的实用价值。
     本文对塑料注射成型充填过程的数值模拟、优化与控制进行了研究,研究工作由三部分组成:1、改进了注塑成型充填过程的数值模拟算法。2、根据对注塑制品常见质量缺陷及其形成原因的分析,建立了优化模型,采用与数值模拟方法结合的设计优化技术,对模具浇口设计和加工工艺进行了优化。3、将自动控制理论应用于注射成型加工,消除或减小外界干扰影响,使加工过程按照优化的工艺进行,保证了制品质量。
    
     大连理工大学博士学位论文
    为了叙述方便,各章节的内容支排如下:
     第一章在查阅人量文献的基础上,概述了注塑成型模拟、优化与控制技术的研究
    历史和现状;介绍了国内外主要的注射模分析和设计软件,并对其特点进行了比较分
    析;总结了注塑成型研究和注射模软件的发展趋势。另外,介绍了注塑成型的一些基
    本知识,总结了注塑制品常见缺陷及注塑成型设计的一些准则。
     第二章研究了注塑成型充填过程数值模拟算法的改进。根据熔体在每个控制体积
    内质量守恒,建立了以结点压力和充填分数为未知量的控制方程;在每一时间步,对
    该方程进行迭代求解,得到压力场和充填分数场:根据充填分数场确定熔体前沿面的
    位置,得到熔体在型腔内的充填情况。
     第三章到第五章对模具结构和充填阶段的加工工艺优化进行了研究。
     第三章研究了注射模浇口位置的优化设计方法。通过对注塑成型过程进行分析,
    指出在加工条件和型腔结构相同的情况下,充填结束时注射压力最小的浇日位置设计
    能够实现塑料熔体的平衡充填;在此基础上,构造了浇日位置优化的数学模型,以充
    填结束时注射压力最小作为优化目标,对浇口位置进行优化设计,从而达到熔体平衡
    充填、减小塑件翘曲变形的目的;用有限差分法计算了设计灵敏度,用序列线性规划
    对优化模型进行求解;给出了确定单浇口位置可行设计空间的一种方法:以熔体同时
    到达型腔末端为目标,在总注射速率一定的情况下对给定浇口处的注射速率进行忧化,
    根据优化结果估计熔体在型腔中流动的流长和所受的阻力,从而确定单浇口位置的可
    行设计空间。
     第四章给出一种同时对注射模浇口数口和位置进行优化设计的方法。通过对充填
    过程进行分析,为达到减少塑件翘曲变形和熔接线的目的,以平衡充填和浇口数目最
    少为忧化目标,以最大注射压力作为约束条件;将浇口位置作为连续变量处理,以其
    坐标为设计变量;在充填模拟计算中根据浇日之间的距离对浇口数日和注射流率进行
    处理,实现对浇日数目的优化;将充填过程的数值模拟和遗传算法相结合,对优化模
    型进行求解,同时得到最优的浇口数口及其位置。
     第五章研究了注射成型工艺优化问题。通过对注射成型过程进行分析,指出熔体
    前沿流动速度变化造成的分子取向不均,是塑件发生翘曲变形的原囚之一。由此,给
    出一种注射成型工艺优化模型,以保持熔体前沿速度均匀、从而使分于取向均匀和减
    少塑件翘曲变形为目的,对注射速率进行优化设计。采用序列线性规划算法求解优化
    问题。
     11
    
     摘要
     对注射成型过程进行模拟和优化可以得
Injection molding is the mostly used processing technology for all thermoplastic materials and part of thermoset materials. The process of the injection molding is quite complicated because of the character of the material itself and the complexity of processing conditions. For a long time, the control of the injection molding process and the design of the mold mainly depended on the experience of the designers, and the reasonability of the design can only be verified by trial and error. The cycle was quite long and the cost was huge.
    By establishing the physical and mathematical model of injection molding process and adopting effective numerical algorithm, the process can be simulated numerically so that the structure and the property of the part can be predicted and the possible problems can be found at the design stage. The embarrassment of finding problems in the stage of mold trial after the manufacture of the mold can be avoided.
    However, the numerical simulation of the injection molding just behaves as numerical experiments. The designer's experience is still required and the determination of the design is mainly based on the input provided by the user and his correct judgement and explanation on the output. Combining the design optimization technology and the numerical algorithm, computer can determine the molding parameters and the gate locations automatically. These can remarkably reduce the requirements to the design personnel of the injection molding and improve the design quality.
    Although the improved molding process can be obtained by simulating and optimizing the injection molding process, usually, the process still cannot be proceeded as what we expect because of the mechanical erosion, friction and the variation of the environment factors in the real process. The on-line control on the injection molding to make the manufacture variables vary according to what we expected is very valuable practically.
    This dissertation studies on the simulation, optimization and control of the filling stage in plastic injection molding. The research work is composed of three parts: 1. Implicit algorithm is utilized to track the movement of the melt front in the filling stage. 2. According to the mostly occurred injection molded part defects and the analyses on the factors that cause those defects, optimization model has been established and mold configuration and processing conditions are optimized subsequently. 3. Theory of automatic control has been involved into
    
    
    
    injection molding to make the molding process proceed according to the optimized processing conditions. The disturbance from the environment is eliminated or reduced and parts quality is guaranteed. The contents of each chapter are as follows:
    In Chapter 1, based on literature reviews, the history and current status of the simulation, optimization and control technology of injection molding is illustrated. The popular software on analysis and design of injection molding are introduced and comparison has been made among them. The development tendency of the injection molding software is concluded. In addition, some elementary knowledge on injection molding is introduced.
    In Chapter 2, implicit algorithm is employed to track the moving melt front to achieve the numerical simulation of injection molding. According to the mass conservation of each control volume, governing equation of which the variables are nodal pressure and fill factor is established. By solving the equation iteratively, the pressure field and fill factor field are obtained. The position of the melt front is therefore determined by fill the factor field. The filling situation in the cavity in each time instant can be obtained as well. The employed implicit algorithm can describe the transient process in filling stage more reasonable and avoid the limit of Courant condition. The calculation efficiency is improved.
    Chapter 3, 4 and 5 are focused on the optimization of mold configuration and processing conditions of filling stage.
    In Chapter 3, the optimizing design o
引文
1.申长雨等.塑料注射模具计算机辅助工程.郑州:河南科技出版社,1997
    2.曹宏深,赵仲治.塑料成型工艺与模具设计.北京:机械工业出版社,1993
    3.《现代模具技术》编委会.现代模具技术.北京:国防工业出版社,1996
    4.王兴天.注塑成型技术.北京:化学工业出版社,1989
    5.Moldflow Corporation. AuthorWare software, version 1.0
    6.汪斌华等.注塑件熔合缝缺陷分析,工程塑料应用,2000,28(7):15-17
    7.申长雨等.注射模充模过程CAE技术Ⅱ——工程应用.模具工业,2001,3:51-56
    8.E.C. Bernhardt. ed.. Processing of thermoplastic materials. Reinhold, New York, 1959
    9.J.M. Mckelvey. Polymer processing. Wiley, New York, 1962
    10.Z. Tadmor, I. Klein. Engineering principle of plasticating extrusion. Wiley-Interscience, New York, 1970
    11.J. Klein, D. I. Marshall. Computer Programs for Plastics Engineers. Reinhold, New York,1968
    12.J.F. Stevenson, A. Galskoy, et al. Injection molding in disk-shaped cavities. Polym. Eng. Sci., 1977, 17(9): 706-710
    13.M. R. Kamal, S. Kenig. The injection molding of thermoplastics. Part Ⅰ: theoretical model. Polym. Eng. Sci., 1972, 12(4): 294-301
    14.M. R. Kamal, S. Kenig. The injection molding of thermoplastics. Part Ⅱ: experimental test of the model. Polym. Eng. Sci., 1972, 12(4): 302-308
    15.G. William, H. A. Lord. Mold-filling studies for the injection molding of thermoplastic materials. Polym. Eng. Sci., 1975, 15:553-595
    16.E. Broyer, C. Gutfinger, Z. Tadmor. A theoretical model for the cavity filling process in injection molding. Transaction of the society of rheology, 1975, 19:423-444
    17.W. L. Krueger, Z. Tadmor. Injection molding into a rectangular cavity with inserts. Ploym. Eng. Sci., 1980, 20(6): 426-431
    18.C.A. Austin. Computer Aided Engineering for Injection Molding. E. C. Bernhardt, ed., Hanser, NY
    19.C.A. Hieber, S. F. Shen. A finite-element/finite difference simulation of the injectionmolding filling process. J. Non-Newtonian Fluid Mech., 1980, 7(1): 1-32
    20.V.W. Wang, C. A. Hieber, K.K. Wang. Mold-filling simulation in injection molding of three-dimensional thin parts. ANTEC'86, SPE conference, 1986, 97-102
    21.黄峡宏,余敏强.聚合物注塑残余应力研究进展.力学进展,2000,30(2):272-282
    
    
    22. A. I. Isayev (ed.). Modeling of Polymer Processing: Recent Developments. Hanser, NY, 1991
    23. A. I. Leonov, C. A. Hieber. Toward a viscoelastic modeling of the injection molding of polymers. Rheol. Acta, 1980, 19: 168-182
    24. M. Kamal, P. Lafleur. Structure-oriented computer simulation of the injection molding of viscoelastic crystalline polymers. Part Ⅱ: model predictions and experimental results. Polym. Eng. Sci., 1986,26: 103-110
    25. H. Mavridis, A. N. Hrymak, J. Vlachoponlos. Finite element simulation of fountain flow in injection molding. Polymer Engineering and Science, 1986,26(7) : 449-454
    26. B. Friedrichs, S. I. Guceri. A novel hybrid numerical technique to model 3-D fountain flow in injection molding processes. J. Non-Newtonian Fluid Mech., 1993,49: 141-173
    27. Y. Yu, T. Liu. A hybrid 3D/2D finite element technique for polymer processing operations. Polym. Eng. Sci., 1999,39(1) : 44-53
    28. J. F. Hetu, D. M. Gao, et al. 3D finite element method for the simulation of the filling stage in injection molding. Polym. Eng. Sci., 1998,38(2) : 223-236
    29. H. Lee. Finite element analysis for the flow characteristics along the thickness direction in injection molding. Polym. Eng. Sci., 1997, 37(3) : 559-567
    30. E. Pichelin, T. Coupez. Finite element solution of the 3D mold filling problem for viscous incompressible fluid. Comput. Methods. Appl. Mech. Engng, 1998, 163(1-4) : 359-371
    31. S. Kihara, T. Gouda, K. Funatsu. Numerical simulation of three-dimensional viscoelastic flow within dies. Polym. Eng. Sci., 1999, 39(1) : 152-163
    32. S. Wang, A. Makinonchi, T. Nakagawa. Three-dimensional viscoplastic FEM simulation of a stretch blow molding process. Advances in Polymer Technology, 1998, 17(3) : 189-202
    33. A. Bogaerds, W. Verbeeten, et al. 3D viscoelastic analysis of a polymer solution in a complex flow. Comput. Methods. Appl. Mech. Engrg. 1999,180: 413-430
    34. G. Locati, M. Pegoraro, D. Nichetti. Model for the zero shear viscosity. Polym. Eng. Sci., 1999, 39(4) : 741-748
    35. P. Brincat, K. Talwar, C. Friedl. Extensional viscosity modeling for injection molding simulation. J. Reinforced Plastics and Composites, 1999, 18(6) : 499-507
    36. W. Michaeli, P. Niggemeter. Better simulation of shrinkage and warpage. Kunststoffe Plast. Europe, 1999, 89(6) : 17-19
    37. C. A. Hieber. Correlations for the quiescent crystallization kinetics of isotactic polypropylene and poly(ethylene terephthalate). Polymer, 1995, 36(7) : 1455-1466
    38. C. A. Hieber. Modeling the PVT behavior of isotactic polypropylene. Intern. Polym.
    
    Processing. 1997,3: 249-256
    39. D. Johnson. Shrinkage & warpage predictions improved. Plastics Engineering, May 1998, 43
    40. G. Arampatzis, D. Assimacoponlos. Numerical modeling of convection-diffusion phase change problems. Comput. Mech., 1998,21: 409-415
    41. V. R. Voller, C. R. Swaminathan. General source-based method for solidification phase change. Numer. Heat Transfer, Part B, 1991, 19: 175-189
    42. C. R. Swaminathan, V. R. Voller. A general enthalpy method for modeling solidification process. Metallurgical Transactions, 1992, 23B: 651-659
    43. K. Morgan, R. W. Lewis, O, C. Zienkiewicz. Improved algorithm for heat condition problems with phase change. Int. J. Num. Method. Engng., 1978, 12(7) : 1191-1195
    44. W. R. Rolph, K. J. Bathe. An efficient algorithm for analysis for nonlinear heat transfer with phase changes. Int. J. Num. Method. Engng, 1982,18: 119-134
    45. D. Celentano. A finite element formulation for phase-change for phase-change problems with advective effects. Commum. Numer. Meth. Engng, 1998, 14: 719-730
    46. K. H. Tacke. Discretization of the explicit enthalpy method for planar phase change. Int. J. Num. Meth. Engng, 1985,21: 543-554
    47. R. D. Zerkle, J. E. Sunderland. J. Heat Transfer, 1968, 90,183
    48. M. N. Ozisik, J. C. Mulligan. ASME J. Heat Transfer, 1969, 91, 385
    49. S. M. Richardson. Int. J. Heat Mass Transfer, 1979,22,1417
    50. P. Lin, Y. Jaluria. Heat transfer and solidification of polymer melt flow in a channel. Polym. Eng. Sci, 1997,37(7) : 1247-1258
    51. C. Benard, A. Afshari. Inverse stefan problem: tracking of the interface position from measurements on the solid phase. Int. J. Numer. Meth. Engng, 1992, 35: 835-851
    52. S. Navti, R. W. Lewis, C. Taylor. Numerical simulation of viscous free surface flow. Int. J.Num. Method. Engng, 1998, 8(4) : 445-464
    53. J. M. Floryan, H. Rasmussen. Numerical methods for viscous flows with moving boundaries. Appl. Mech. Rev, 1989,42(12) : 323-341
    54. F. H. Harlow, J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics Fluids, 1965, 8: 2182-2189
    55. C. W. Hirt, B. D. Nichols. Volume of fluid method for the dynamic of free boundaries. J. Computational Physics,1981, 39: 201-225
    56. S. P. Wang, K. K. Wang. A net inflow method for incompressible viscous flow with moving free surface. Int. J. Numer. Meth. Fluids, 1994, 18: 669-694
    57. N. Lock, M. Jaeger, et al. Local mesh adaptation technique for front tracking problems. Int. J. Numer. Meth. Fluids, 1998, 28: 719-736
    
    
    58. C. V. L. Kietzmann, J. Walt, Y. Morsi. A free-front tracking algorithm for a control-volume-based Hele-Shaw method. Int. J. Numer. Meth. Engng, 1998,41: 253-269
    59. A. S. Usmani, J. T. Cross, R. W. Lewis. A finite element model for the simulation of mould filling in metal casting and the associate heat transfer. Int J. Numer. Meth. Engng, 1992, 35: 787-806
    60. R. W. Lewis, A. S. Usmani, J. T. Cross. Efficient mould filling simulation in castings by an explicit finite element method. Int J. Numer. Meth. Fluids, 1995,20: 493-506
    61. E. Thompson. Use of pseudo-concentrations to follow creeping viscous flows during transient analysis. Int. J. Numer. Meth. Fluids, 1986,6: 749-761
    62. K. Ravindran, R. W. Lewis. Finite element modelling of solidification effects in mould filling. Finite Element in Analysis and Design, 1998,31: 99-116
    63. J. H. Jeong, D. Y. Yang. Finite element analysis of transient fluid flow with free surface using VOF method and adaptive grid. Int. J. Numer. Meth. Fluids, 1998,26: 1127-1154
    64. E. Thompson, R. E. Smelser. Transient analysis of forging operations by the pseudo-concentration method. Int. J. Numer. Meth. Engng, 1988,25: 177-189
    65. J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1984
    66. 李德元等.二维非定常流体力学数值方法。北京:科学出版社,1987
    67. V. W. Wang, K. K. Wang, C. A. Hieber. Interactive computer program for runner-system design in injection molding. ANTEC'83, SPE conference, 1983,663-665
    68. W. R. Jone, K. K. Wang. Integrated design system for 3-D runner balancing of injection-molding process. ANTEC'94, SPE conference, 1994,749-753
    69. B. H. Kim, M. Ramesh. Automatic runner balancing of injection molds using flow simulation. J. Engineering for Industry, Transactions of the ASME, 1995,117: 508-515
    70. 林旭东,王鹏驹.基于注塑CAE分析的流道优化设计.塑料工业,1997,4:72-75
    71. B. H. Lee, B. H. Kim. Automated design for the runner system of injection molds based on packing simulation. Polym.-Plast. Technol. Eng., 1996, 35(1) : 147-168
    72. C. C. Lee, J. F. Stevenson. Optimized Runner system for multi-cavity injection molds. Part I: Runner sizing. Polym. Eng. Sci., 1999,39(2) : 375-384
    73. R. Sahu, D. Yao, B. Kim. Design methodology for minimizing warpage. Plastics Engineering, 1998, May, 31-33
    74. B. H. Lee, B. H. Kim. Optimization of part wall thicknesses to reduce warpage of injection-molded parts based on the modified complex method. Polym.-Plast. Technol. Eng., 1995, 34(5) : 793-811
    75. I. Pandelidis, Q. Zhou. Optimization of injection molding design. Part I: Gate location optimization. Polym. Eng. Sci., 1990,30(15) : 873-882
    76. I. Pandelidis, Q. Zhou. Optimization of injection molding design. Part Ⅱ: Moldong
    
    conditions optimization. Polym. Eng. Sci., 1990, 30(15) : 883-892
    77. H. Ye, Y. Wu, K. K. Wang. An optimization scheme for part quality in injection molding. MD-Vol.79, CAE and Intelligent Processing of Polymeric Materials ASME, 1997, 139-149
    78. D. Yao, B. H. Kim. Direct-search-based automatic minimization of weldlines in injection-molded parts. Polym.-Plast. Technol. Eng., 1998, 37(4) : 509-525
    79. W. B. Young. Gate location optimization in liquid composite molding using genetic algorithm. J. Composite Materials, 1994, 28(12) : 1098-1113
    80. S. Chang, J. Hwang, J. Doong. Manufacturing process optimization of short glass fiber reinforced polycarbonate composites in injection molding. J. Reinforced Plastics and Composites. 2000,19(4) : 301-321
    81. S. Chang, J. Hwang, J. Doong. Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using gray relational analysis. J. Material Processing Technology. 2000, 186-193
    82. M. Lin, M. J. Murphy, H. T. Hahn. Resin transfer molding process optimization. Composites: part A. 2000,31: 361-371
    83. S. J. Park, T. H. Kwon. Optimal cooling system design for the injection molding process. Polym. Eng. Sci., 1998, 38(9) : 1450-1462
    84. S. H. Dillman, D. Howe, H. Robar. Optimization of the injection molding process. ANTEC'96, SPE conference, 1996, 754-758
    85. D. E. Smith, D. A. Tortorelli, C. L. Tucker. Optimal design for polymer extrusion. Part I: Sensitivity analysis for nonlinear steady-state systems. Comput. Methods. Appl. Mech. Engng, 1998,167(3-4) : 283-302
    86. D. E. Smith, D. A. Tortorelli, C. L. Tucker. Optimal design for polymer extrusion. Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems. Comput. Methods. Appl. Mech. Engng, 1998, 167(3-4) : 303-323
    87. D. E. Smith, D. A. Tortorelli, C. L. Tucker. Comput. Methods. Analysis and sensitivity analysis for polymer injection and compression molding. Comput. Methods. Appl. Mech. Engng, 1998, 167(3-4) : 325-344
    88. D. E. Smith. Optimal edge gate placement for the polymer injection molding process. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Sept. 15-18, St. Louis, MO, 1998
    89. 申长雨,程耿东.注塑模冷却系统优化设计理论及应用.郑州:河南科技出版社, 1992
    90. D. Yao, B. Kim. Optimizing injection molding toward multiple quality and cost issues. Polym.-Plast. Technol. Eng., 1999, 38(5) : 955-966
    
    
    91. A. M. Maniatty, M. F. Chen. Shape sensitivity analysis for steady metal-forming processes, hit. J. Numer. Math. Engng., 1996, 39: 1199-1217
    92. R. M. Mcdavid, J. A. Dantzig. Design sensitivity and finite element analysis of free surface flows with application to optimal design of casting rigging system. Int. J. Numer. Meth. Fluids, 1998,28: 419-442
    93. S. H. Chung, S. M. Hwang. Optimal process design in non-isothermal, non-steady metal forming by the finite element method. Int. J. Numer. Math. Engng., 1998,42: 1343-1390
    94. M. R. Kamal, W. I. Patterson, et al. Dynamics and control of pressure in the injection molding of thermoplastics. Polym. Eng. Sci., 1987,27(18) : 1403-1410
    95. M. R. Kamal, A. E. Varela, W. I. Patterson. Control of part weight in injection molding of amorphous thermoplastics. Polym. Eng. Sci, 1999,39(5) : 940-952
    96. C. P. Chiu, M. C. Shin, J. H. Wei. Dynamic modeling of the mold filling process in an injection molding machine. Polym. Eng. Sci., 1991, 31(19) : 1417-1425
    97. C. Chiu, J. Wei, M. Shih. Adaptive model following control of the mold filling process in an injection molding machine. Polym. Eng. Sci., 1991,31(15) , 1123-1129
    98. R. Thomos. Modern Plastics, November, 1997, 83
    99. M. Rafizadeh, W. I. Patterson, M. R. Kamal. Physically based dynamic model for control of cavity pressure in injection moulding of amorphous plastics. Plastics, Rubber, and Composites, 1999,28(2) : 47-61
    100. R. Dubay, A. C. Bell, Y. P. Gupta. Control of plastic melt temperature: a multiple input multiple output model predictive approach. Polym. Eng. Sci., 1997, 37(9) : 1550-1563
    101. S. Woll, D. Cooper. Pattern-based closed-loop quality control for the injection molding process. Polymer Engineering and Science, 1997, 37(5) : 801-812
    102. S. Woll, D. Cooper. Advanced method for injection molding part quality control. Journal of Engineering and Applied Science, 1996,2: 1975-1979
    103. S. Woll, D. Cooper. Online pattern-based part quality monitoring of the injection molding process. Polymer Engineering and Science, 1996, 36(11) : 1477-1488
    104. C. C. Carey, B. N. Jiang. Element-by-element linear and nonlinear solution schemes. Commu. Appl. Num. Methods, 1986, 2: 145-153
    105. L. Q. Tang, K. Pochirajn, et al. A computer-aided optimization approach for the design of injection molding cooling system. J. Mechanical Design, Transaction of ASME, 1998, 120:165-174
    106. L. Q. Tang, T. Cheng, T. T. H. Tsang. Transient solution for three-dimensional lid-driven cavity flows by a least-squares finite element method, Int. J. Num. Meth. Fluids, 1995,21:413-432
    107. L. Q. Tang, K. Pochirajn, et al. Three-dimensional transient mold cooling analysis based
    
    on galerkin finite element formulation with a matrix-free conjugate gradient techniques. Int. J. Num. Meth. Engng, 1996, 39:3049-3064
    108.L. Q. Tang, T. T. H. Tsang. Transient solutions by a least-squares finite-element method and jacobi conjugate gradient technique. J. Num. Heat Transfer, Part B, 1995, 28: 183-198
    109.J. S. Chen, C. Roque, et al. Analysis of metal forming process based on meshless method. J. Material Processing Technology, 1998, 80-81:642-646
    110.T. Belytschko, Y. Krongauz, et al. Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Engrg., 1996, 139:3-47
    111.S. M. Richardson. Rheol. Acta, 1987, 26, 102
    112.J. F. Agassant, H. Alles, et al. Polym. Eng. Sci, 1988, 28, 460
    113.R. Blanc, S. Philipon, et al. Intl. Polym. Process., 1987, 2, 21
    114.A, W. Chan, S. T. Hwang. Mold-filling simulations for the injection molding of continuous fiber-reinforced polymer. Polym. Eng. Sci, 1998, 28(5): 333-339
    115.R. L. Frutiger. Effect of flow on cavity surface temperatures in thermoset and thermoplastic injection molding. Polym. Eng. Sci., 1986, 26(3): 243-254
    116.S. W. Opolski, T. H. Kwon. Injection molding cooling system design. ANTEC'87, SPE conference, 1987, 264-268
    117.T. H. Kwon, S. F. Shen, K. K. Wang. Computer-aided cooling-system design for injection molding. ANTEC'86, SPE conference, 1986, 110-115
    118.A. Larsen. Injection molding of short fiber reinforced thermoplastics in a center-gated mold. Polym. Eng. Sci., 2000, 21(1): 51-64
    119.李俊贤.反应注射成型技术及材料.聚氨酯工业,1996,2:36-43
    120.廖昌明,黄汉雄.挤出吹塑中型坯成型研究的进展.中国塑料,2000,14(4):11-16
    121.瞿金平,吴宏武.振动场强化聚合物塑化注射成型技术.塑料,2000,29(6):9-12
    122.王喜顺,彭玉成.注射成型中模腔内振动剪切流动的理论模型.中国塑料,1999,13(6):999-105
    123.严正,申开智,宋大勇等.聚合物熔体在振动场中的流变行为研究.中国塑料,2000,14(12):63-67
    124.K. K. Wang. An implementation of concurrent engineering concept to injection molding. MD-Vol. 79, CAE and Intelligent Processing of Polymeric Materials ASME, 1997, 1-14
    125.于建.高分子材料的新型注射成型技术.塑料,2000,29(6):13-17
    126.1997—1999各期British Plastics & Rubber中的software review 专栏
    127.Modem Plastics, September, 1997
    128.European Plastics News,January, 1999
    129.Plastics Engineering, March, 1999
    
    
    130.Plastics Engineering, October, 1998
    131.C-Mold 及Moldflow 公司主页
    132.A. Fischer, A. Smolin, G. Elber. Mid-surfaces of profile-based freeforms for mold design. J. Of Manufacturing Science and Engineering, Transaction of the ASME, 1999, 121: 202-207
    133.张佑生.塑料模具计算机辅助设计.北京:机械工业出版社,1998
    134.肖景容.模具CAD/CAM的发展趋势.模具工业,1990,9:51-57
    135.Peter Kinnedy. Flow Analysis of Injection Molding. Hanser Publishers, NY, 1995
    136.赵学瑞,廖其奠.粘性流体力学.北京:机械工业出版社,1993
    137.H. H. Chiang, C. A. Hieber, K. K. Wang. A unified simulation of the filling and postfilling stages in injection molding. Part Ⅰ: Formulation. Polym. Eng. Sci., 1991, 31(2): 116-121
    138.J. F. Agassant, B. Vergnes, M. Vincent. Polymer processing modeling. Simplifying assumptions and computation methods. Proc. of Fourth Int. Conf. on Numerical Methods in Industrial Forming Processes, Valbonne, France, 1992, 3-13
    139.C. L. Tucker(ed.). Fundamentals of computer modeling for polymer processing, Hanser Publishers, NY, 1989
    140.A. I. Isayev(ed.). Injection and compression molding fundamentals.Marcel Dekker, NY, 1987
    141.H. H. Chiang, C. A. Hieber, K. K. Wang. A unified simulation of the filling and postfilling stages in injection molding. Part Ⅱ: Experimental Verification. Polym. Eng. Sci., 1991, 31(2): 116-121
    142.D. E. Smith. Optimal Design and analysis for polymer extrusion and molding. PH. D. Dissertation, University of Illinois at Urbana-Champaign, 1996
    143.H.Adlhard.模具设计对塑件质量的影响.模具工业,1991,2:56-61
    144.加藤和典.注射成型的成型特性与形状不良.模具工业,1991,3:51-55
    145.L. S. Turng. C-Mold design guide. AC Technology, Ithaca, N.Y., 1994
    146.E. J. Haug, K. K. Choi, V. Komkov. Design Sensitivity Analysis of Structural System. Academic Press, NY, 1986
    147.D. A. Tortorelli, P. Michaleris. Design sensitivity analysis: overview and review. Inverse Problems in Engineering, 1994, 1:71-105
    148.G. N. Vanderplaatts. Numerical Optimization Techniques for Engineering Design: with Application. McGraw Hill, New York, NY, 1984
    149.R. T. Haftka, Z. Gurdal. Elements of Structural Optimization. Kluwer Academic, Boston, MA, third edition, 1992
    150.吴文江,袁仪方.实用数学规划.北京:机械工业出版社,1993
    
    
    151.B. H. Lee, B. H. Kim. Automated selection of gate location based on desired quality of injection-molded part. Polym.-Plast. Technol. Eng., 1996, 35(2), 253-269
    152.Moldflow Corporation. Tutorials of Part Advisor Software, version 3.0.
    153.J. H. Holland. Adaptation in nature and artificial systems. MIT Press, 1992
    154.D. E. Goldberg. Genetic algorithm in search, optimization and machine learning. Addison-Wesley, 1989
    155.陈国良等.遗传算法及其应用.北京:人民邮电出版社,1996
    156.周明等.遗传算法原理及其应用.北京:国防工业出版社,1999
    157.陈根社,陈新海.遗传算法的研究与进展.信息与控制,23(4),1994
    158.F. Gao, W. I. Patterson. Cavity pressure dynamics and self-tuning control for filling and packing phases of thermoplastics injection molding. Polym. Eng. Sci., 1996, 36(9): 1272-1285
    159.J. W. Mann. Plastics Eng., Jan, 1974, P. 25
    160.C. P. Chin, M. C. Hsieh. ASME Trans., J. Eng. Mater. Tech., 1987, 109:171-181
    161.M. R. Kamal, W. Patterson, D.Abu Fara, et al. A study in injection molding dynamics. Polym. Eng. Sci., 1984, 24(9), 686-691
    162.D. Abu Fara. M. Eng. Thesis, McGill University, Montreal, Canada, 1984
    163.K. K. Wang, S. F. Shen, et al. Progress Report #10, Comell University, Ithaca, N. Y.,1984
    164.谢麟阁.自动控制原理.北京:水利电力出版社,1986
    165.郁顺康.自动控制理论.上海:同济大学出版社,1992
    166.W. J. Thayer, M. A. Davis. Moog Thchnical Bulltin. 145, June 1980
    167.W. J. Thayer. Plast. World, 45(March 1975)
    168.A. Shankar. PH. D. Thesis, Carnegie Inst. of Tech.. Carnegie Mellon Univ., 1978
    169.I. O. Pandelidis, A. R. Agrawal. Optimal anticipatory control of ram velocity in injection molding. Polym. Eng. Sci., 1988, 28(3), 147-154
    170.吴麒.自动控制原理.北京:清华大学出版社,1992
    171.徐家蓓.控制系统数字仿真.北京:北京理工大学出版社,1998
    172.张宇河等.计算机控制系统.北京:北京理工大学出版社,1996
    173.鄢景华.自动控制原理.哈尔滨:哈尔滨工业大学出版社,1996
    174.孙增圻.系统分析与控制.北京:清华大学出版社,1994
    175.薛定宇.控制系统计算机辅助设计.北京:清华大学出版社,1996
    176.徐昕等.Matlab工具箱应用指南.北京:电子工业出版社,2000
    177.钟庆昌等.控制系统Simulink仿真技巧.电气自动化,1999,3:28-30
    178.L. A. Zadeh. Fuzzy sets. Informat Control, 1965, 8:338-353
    179.E. H. Mamdani. Applications of fuzzy algorithm for simple dynamic plant. Proc. IEE.1974,121:1585-1588
    
    
    180.诸静等.模糊控制原理及应用.北京:机械工业出版社,1995
    181.王磊等.模糊控制理论及应用.北京:国防工业出版社,1997
    182.章正斌等.模糊控制工程.重庆:重庆大学出版社,1995
    183.王立新.自适应模糊系统与控制.北京:国防工业出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700