GPS非差相位精密单点定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文全面展示了作者关于GPS非差相位精密单点定位所做的研究,内容涵盖了数学模型,误差改正模型,数据预处理方法和参数估计方法以及相关的实验、分析与应用。
     文中简要介绍了精密单点定位的数学模型、误差改正模型和数据预处理方法。重点研究了精密单点定位参数估计方法。针对传统Kalman滤波的缺陷,提出了适合动态精密单点定位事后处理的二次Kalman滤波方法。详细推导了平方根信息滤波与平滑算法的公式并给出了参数分类的方法。推导了通用的递归最小二乘公式,新公式基于正交变换解法,是递归最小二乘和平方根信息滤波与平滑的统一表示。
     为了进一步开展研究,作者开发了具有静态和动态事后处理功能的精密单点定位软件。软件综合考虑了各种误差改正,同时实现了二次Kalman滤波,平方根信息滤波与平滑和递归最小二乘三个参数估计模块。三个模块都采用了灵活的参数消去和恢复技术。静态和动态实测数据解算实验表明,软件可以实现2-3厘米的静态定位精度和10-20厘米的动态定位精度,其中动态数据来源包括陆地、空中和海上的运动载体。
     基于这个软件平台,作者进行了相关的实验和分析,得出了以下结论。
     1.二次Kalman滤波能有效克服传统Kalman滤波的缺陷,取得了较好的动态定位精度。
     2.三个参数估计模块的定位结果非常接近;Kalman虑波用于静态定位效率最高,平方根信息滤波与平滑用于动态定位耗时最少。
     3.不同轨道和钟差产品的静态定位精度相当,采用30秒钟差产品的动态定位精度要比5分钟钟差产品的定位精度提高约50%。
     4.忽略DCB会引起精密单点定位结果系统性误差并且主要体现在接收机钟差上。DCB对静态定位的影响可以忽略;对动态定位的影响较大,应该认真加以考虑。
     最后,作者有机会获得了汶川地震时中国天津地区12个GPS连续运行站的1秒采样观测数据,采用精密单点定位技术进行了地震期间地表运动分析实验。实验结果令人鼓舞,能够分辨出地震期间测站在东西和南北方向的周期性运动。
This thesis exhibits a comprehensive investigation on GPS Precise Point Positioning (PPP)with un-differenced carrier phase which includes mathematical models, error mitigations, datapreprocessing and parameter estimation as well as TcorrelativeT experiments, analysis andapplication.
     A brief introduction of mathematical models, error mitigations and data preprocessingtechniques was presented. Research was emphasized on methods of parameter estimation. A newapproach named“Tow-Way”Kalman Filter was proposed to conquer the disadvantage oftraditional Kalman Filter for kinematic PPP post processing. TA detailed deduction of Square RootInformation Filtering & Smoothing (SRIF&SRIS) and the method to categorise the unknownparameters were presented. A set of more universal Tformulas of Recursive Least Square (RLS)was derived by the author. The new formula using orthogonal transformation algorithm unifiestraditional RLS and SRIF&SRIS.
     To further our research, a piece of softwareT named“GPS-PPP”with the function for staticand kenamatic precise point positioning post processing was developed by the author. In thisTsoftwareT, varied error mitigations were implemented along with three modules for parameterestimation which include Tow-Way Kalman Filter, SRIF&SRIS and RLS. TFlexible Ttechniquesfor parameter elimination and restoration were employedT Tin all the three estimation modules.Test with plenty of both static and dynamic data demonstrated that an accuracy of 2-3 cmprecision and 10-20 cm precision has been achieved for static and kinematic positioningrespectively. The dynamic data used for test came from land, marine and airborne vehicles.
     Supported by the software package GPS-PPP, a series of correlative experiments andanalysis were carried out and conclusions were as follows: Firstly, Tow-Way Kalman Filter hassucceeded in overcoming the shortcoming of traditional Kalman Filter, and the result ofkinematic PPP with Tow-Way Kalman Filter is close to that with the other parameter estimationmethods presented by many references. Secondly, PPP results with different estimation moduleswere consistent to each other, and Kalman Filter has the highest calculating efficiency for staticpositioning while SRIF&SRIS enjoys the least time cost for kinematic positioning. Thirdly,Experiments demonstrated that static PPP results using different Orbit & Clock products sharenearly the same precision while using products with 30 sec sample rate Clocks would improvekinematic PPP result by 50% than that using products with 5min Clock. Fourthly, it has beenconcluded that ignoring DCB correction will result in systemic errors for PPP result whichmainly influence receiver clock estimation and the influence of DCB on static positioning is small enough to be ignored, but for kinematic PPP it has to be considered seriously.
     Last but no least, it occurs to the author to receive a set of data with 1 Hz sample rate from 12 continuous operation stations in Tianjin China on the date of Wenchuan Earthquake 12 May, 2008. Experiment of using PPP for far-field ground motion analysis of Wenchuan Earthquake was carried out and the result was really encouraging that the periodic motion in both east-west and south-north directions of the stations could be distinguished.
引文
[1]周忠谟,易杰军,周琪. GPS卫星测量原理与应用[Ed].北京:测绘出版社, 2004: 302.
    [2]李征航,黄劲松. GPS测量与数据处理[M].武汉:武汉大学出版社, 2005: 197.
    [3] Abdel-salam, M. A. t. Precise Point Positioning Using Un-Differenced Code and Carrier Phase Observations [D]. Calgary: Uinversity of Calgary, 2005: 206.
    [4] Kleusberg, A. and P. J. G. Teunissen. GPS for Geodesy [Ed]. Berlin,Germany: Springer-Verlag, 1996: 407.
    [5]刘基余. GPS卫星导航原理与定位方法[M]. (2版).北京:测绘出版社, 2008.
    [6]叶世榕. GPS非差相位精密单点定位理论与实现[D].武汉:武汉大学, 2002: 115.
    [7] Colombo, O. L. and A. W. Sutter. Evaluation of Precise, Kinematic GPS Point Positioning [C]. Proceedings of the Institute Of Navigation (ION) GNSS-2004 Meeting, Long Beach, California, 2004.
    [8] Gao, Y. and K. Chen. Performance Analysis of Precise Point Positioning Using Real-Time Orbit and Clock Products [J]. Journal of Global Positioning Systems, 2004,3(1-2): 95-100.
    [9] Kouba, J. A GUIDE TO USING INTERNATIONAL GPS SERVICE(IGS) PRODUCTS [OL]. ftp://igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf. 2003: 31.
    [10] Kouba, J. and P. Heroux. Precise Point Positioning Using IGS Orbit and Clock Products [J]. GPS Solutions, 2001,5(2): 12-28.
    [11] Zhang, X. Precise Point Positioning Evaluation and Airborne Lidar Calibration [R]: Danish National Space Center, 2005.
    [12] Heroux, P. and J. Kouba. GPS Precise Point Positioning Using IGS Orbit Products [J]. Phys Chem Earth, 2001,26(6-8): 573-378.
    [13] Bisnath, S. Precise Orbit Determination of Low Earth Orbiters with a Single GPS Receiver-Based, Geometric Strategy [R]. Fredericton, New Brunswick, Canada: Department of Geodesy and Geomatics Engineering, University of New Brunswick, 2004: 143.
    [14] HU, C., W. CHEN, S. GAO, et al. Data Processing for GPS Precise Point Positioning [J]. Transaction of Najing University of Aeronautics & Astronautics, 2005,22(2): 124-131.
    [15] Shen, X. Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning [D]. Calgary: University of Calgary, 2002: 195.
    [16] Witchayangkoon, B. ELEMENTS OF GPS PRECISE POINT POSITIONING [D]. Maine: The University of Maine, 2000: 286.
    [17] Le, A. Q. and C. Tiberius. Single-frequency precise point positioning with optimal filtering [J]. GPS Solutions, 2006,11: 61-69.
    [18] Muellerschoen, R. J., B. Iijima, R. Meyer, et al. Real-Time Point Positioning Performance Evaluation of Single-Frequency Receivers Using NASA's Global Differential GPS System [J], 2003.
    [19]张小红,李星星,郭斐,等. GPS单频精密单点定位软件实现与精度分析[J].武汉大学学报·信息科学版, 2008,33(8): 783-787.
    [20] Bar-Sever, Y., L. Young, F. Stocklin, et al. NASA’s global differential GPS system and the TDRSS augmentation service for satellites [J], 2003.
    [21]熊刚,束焕然,廖七一,等. STARFIREPTMP星基差分实时精密单点定位原理、测试与应用[J].全球定位系统, 2006,(5): 32-37.
    [22] Shi, C., Y. D. Lou, Q. L. Zhao, et al. Real-Time Orbit And Clock Estimation Using PANDA Software [C]. IGS Analysis Center Workshop 2008, Miami, Florida, USA, 2008.
    [23] Kj?rsvik, N. S. Precise Point Positioning for Airborne Applications [C]. EuroSDR meeting 2008, 2008.
    [24] Ovstedal, O., N. S. Kjorsvik and J. G. O. Gjevestad. Surveying using GPS Precise Point Positioning [C].Shaping the Change XXIII FIG Congress, Munich, Germany, 2006: 1-10.
    [25] Waypoint-Products-Group. Airborne Precise Point Positioning (PPP) in GrafNav 7.80 with Comparisons to Canadian Spatial Reference System (CSRS) Solutions [R]: NovAtel Inc., 2006: 8.
    [26]韩保民.基于GPS非差观测值进行精密单点定位研究[J].武汉大学学报·信息科学版, 2003,28(4): 409-412.
    [27] Teferle, N., E. Orliac and R. Bingley. Bernese GPS Software Precise Point Positioning (PPP) For Geodynamic Applications [C]. COMET -Advances in GPS Data Processing and Modellingfor Geodynamics, Lodon, 2005.
    [28] Perez, J. A. S., J. F. G. Monico and J. C. Chaves. Velocity Field Estimation Using GPS Precise Point Positioning: The South American Plate Case [J]. Journal of Global Positioning Systems, 2003,2(2): 90-99.
    [29]张小红,鄂栋臣.用PPP技术确定南极Amery冰架的三维运动速度[J].武汉大学学报·信息科学版, 2005,30(10): 909-912.
    [30] Gao, Y. and M. Wang. Precise Point Positioning for Deformation Monitoring Using Post-Mission and Real-Time Precise Orbit and Clock Products [C]. EGU Conference, Vienna, Austria, 2007.
    [31] Chen, W., C. Hu, Z. Li, et al. Kinematic GPS Precise Point Positioning for Sea Level Monitoring with GPS Buoy [J]. Journal of Global Positioning Systems, 2004,3(1-2): 302-307.
    [32]程世来,张小红.基于PPP技术的GPS浮标海啸预警模拟研究[J].武汉大学学报·信息科学版, 2007,32(9): 764-766.
    [33] Petit, G. and Z. Jiang. Precise Point Positioning for TAI Computation [J]. International Journal of Navigation and Observation, 2008,2008: 1-8.
    [34] Ray, J. and J. Griffiths. Overview of IGS Products & Analysis Center Modeling [C]. International GNSS Service Analysis Center Workshop 2008, Miami Beach, Florida, USA, 2008.
    [35] Lichten, S. M., Y. Bar-Sever, W. Bertiger, et al. GIPSY-OASISII: A HIGH PRECISION GPS DATA PROCESSING SYSTEM AND GENERAL SATELLITE ORBIT ANALYSIS TOOL [R]. Pasadena,CA: Jet Propulsion Laboratory, 1995.
    [36] Gao, Y. and X. Shen. Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning [C]. Proceeding of ION GPS 2001, Salt Lake City,US, 2001.
    [37] Bisnath, S. B. and R. B. Langley. Precise Orbit Determination of Low Earth Orbiters with GPS Point Positioning [C]. ION National Technical Meeting, The Institute of Navigation. Long Beach,California, 2001: 725-733.
    [38]黄维彬.近代平差理论及其应用[M].北京:解放军出版社, 1990: 525.
    [39]魏子卿,葛茂荣. GPS相对定位的数学模型[M].北京:测绘出版社, 1997: 182.
    [40] Goad, C. C. and C. D. Chadwell. Investigation for Improving GPS Orbits Using a Discrete Sequential Estimator and Stochastic Models Of Selected Physical Processes [R]. Greenbelt, Maryland: Goddard Space Flight Center, 1993: 42.
    [41] Gelb, A. Applied Optimal Estimation [Ed]. Cambridge, Massachusetts: THE M.I.T. PRESS, 1974: 374.
    [42] Bierman, G. J. Fractorization Methods for Discrete Sequential Estimation [M]. New York: Academic Press, 1977: 241.
    [43] Kim, D. and R. B. Langley. Quality Control Techniques and Issue in GPS Applications: Stochastic Modeling and Reliability Test [C]. 2001 International Symposium on GPS/GNSS (the 8PthP GNSS Workshop), Jeju Island, Korea, 2001: 10.
    [44] Bar-Sever, Y. E. A New Model for Yaw Attitude of Global Positioning System Satellites [R]1995: 37-47.
    [45] Kouba, J. A simplified yaw-attitude model for eclipsing GPS satellites [J]. GPS Solutions, 2008.
    [46] Wu, J. T., S. C. Wu, G. A. Hajj, et al. Effects of antenna orientation on GPS carrier phase [J]. Manuscripta Geodaetic, 1993,(18): 91-98.
    [47] Beohm, J., A. Neill, P. Tregoning, et al. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data [J]. Geophysical Research Letters, 2006,33.
    [48]徐杰,孟黎,任超,等.对流层延迟改正中投影函数的研究[J].大地测量与地球动力学, 2008,28(5): 120-124.
    [49] Weston, N. D. and S. A. Hilla. Impact of the Antenna Model Change on IGS Products [C]. International GNSS Service Analysis Center Workshop 2008, Miami Beach, Florida, USA, 2008.
    [50] IGSMAIL-2320. Handling mixed receiver types. Date accessed: Aug. 2008.
    [51] IGSMAIL-2744. new pseudorange bias convention. Date accessed: Aug, 2008.
    [52] Schaer, S. Differential Code Biases (DCB) in GNSS Analysis [C]. IGS Workshop 2008, Miami Beach, Florida, USA, 2008.
    [53] Schaer, S. and P. Steigenberger. Determination and Use of GPS Differential Code Bias Values [C]. IGS Workshop 2006, Darmstadt, DE, 2006: 14.
    [54] IERS. IERS Conventions (2003) [R]2003: 127.
    [55] Kouba, J. Sub-daily Earth Rotation Parameters and the International GPS Service Orbit/Clock Solution Products [J]. Studia Geophysica et Geodetica, 2002,46(2002): 9-25.
    [56]付梦印. Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社, 2003.
    [57]杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006: 324.
    [58]赵齐乐. GPS导航星座及低轨卫星的精密定轨理论和软件研究[D].武汉:武汉大学, 2004.
    [59] Tapley, B. D., B. E. Schutz and G. H. Born. Statistical Orbit Determination [M]. Burlington, MA, USA: Elsevier Inc., 2004: 547.
    [60] Tiberius, C. C. J. M. Recursive data processing for kinematic GPS surveying [M]. Delft: NCG Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission, 1998: 248.
    [61]祁芳.卡尔曼滤波算法在GPS非差相位精密单点定位中的应用研究[D].武汉:武汉大学, 2003: 63.
    [62] Campbell, L. A., J. W. Cook, K. E. Cunningham, et al. Experiences in Implementation and Use of the Square Root Information Filter & Smoother for Orbit Determination [C]. Proceedings of the 27th Conference on Decision and Control, Austin, Texas,USA, 1988: 9.
    [63] Wang, T.-C., J. B. Collier, J. E. Ekelund, et al. Application of Square-Root Information Filtering and Smoothing in Spacecraft orbit determination [J]. Decision and Control Proceedings, 1988, 27.
    [64]杨元喜,何海波. GPS动态测量中模糊度实数解的序贯最小二乘估计[J].测绘科学与测绘工程, 2005,25(1): 1-4.
    [65] Kleijer, F. Troposphere Modeling and Filtering for Precise GPS Leveling [M]. Delft: NCG NCG Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission, 2004: 261.
    [66] Blewitt, G. An Automatic Editing Algorithm for GPS Data [J]. Geophysical Research Letter, 1990,17(3): 199-202.
    [67] Gao, Y. and A. Wojciechowski. High Precision Kinematic Positioning Using Single Dual-Frequency GPS Receiver [J]. Remote Sensing and Spatial Information Sciences, 2004,34.
    [68] Kouba, J. Personal Communication. Geodetic Survey Division Natural Resources Canada, Ottawa, Cananda. 2008.
    [69] Gao, Y. Personal Communication. The University of Calgary, Calgary, Alberta, Canada T2N 1N4. 2008.
    [70]中国地震局.中国地震局主页. http://www.cea.gov.cn. Date accessed: 27/02/2009.
    [71]王宝善,陈顒,王伟涛.汶川地震和地震灾害[J].科学, 2008,60(4): 56-58.
    [72]黄立人,易长荣,占惠. GPS观测得到的汶川地震远场地运动[C].大地测量年会,郑州, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700