连续刚构桥箱梁水化热温度场及其效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于混凝土材料导热性能差,在各种温度变化作用下,预应力混凝土桥梁结构内部会产生相当大的应力、变形、甚至出现温度裂缝,而近年来交通运输业发展迅速,混凝土的强度越来越高,采用悬臂逐段现浇施工方法修建的预应力混凝土连续刚构桥梁的跨径越来越大,桥墩附近箱梁节段浇筑的体积也越来越大,此时混凝土水化热引起的温度效应非常显著。因此,在体积较大的0、1号梁段箱梁浇筑过程中,必须关注水化热引起的温度问题并采取措施加以解决,减少混凝土因水化热温升引起的开裂及后期强度损失。
     本文在参阅了大量专业书籍和学术论文的基础上,以一座主跨为185m的四跨连续刚构箱梁桥为背景,运用现场实测与有限元分析相结合的方法,研究分析了箱梁现浇体积较大的0、1号梁段浇筑时温度场和应力场的特点。具体工作和研究成果如下:
     (1)通过现场温度监测和大量数据观察,对箱梁0、1号梁段水化热温度场分布情况和随时间变化的规律进行研究分析。
     (2)参考传热学的相关知识,结合有限元分析理论,应用有限元分析软件MIDAS,建立箱梁0、1号梁段有限元实体模型,模拟混凝土浇筑后水泥水化作用,通过计算得出各个时间段箱梁温度场分布,总结了混凝土水化热影响下施工过程中0、1号梁段箱梁结构的温度发展历程以及温度场分布的规律,结合实测的温度监测数据进行对比分析,研究该分析方法的准确性与可行性,并提出相应的温度控制原则及措施,直接应用于工程实际。
     (3)采用有限元分析软件MIDAS计算箱梁温度应力,得到预应力混凝土连续刚构桥箱梁0、1号梁段应力场分布,分析、探求预应力混凝土连续刚构桥箱梁结构对温度作用的反应,提出混凝土箱梁裂缝控制措施,为同类桥型的施工提供借鉴和参考。
Because of the bad heat conduction of the concrete material, prestressed concrete bridges are subject to varied temperature actions, which can make notable influence on the transformation and stress of bridge structures, sometimes even engender cracks. With the rapid development of transportation, the strength of concrete becomes higher and higher, the span of the prestressed concrete continuous rigid frame bridges constructed by cantilever method becomes larger and larger. At the same time, the volume of the box girders near piers are much bigger than before, and the temperature actions which were aroused by heat of cement hydration are extremely notable. Thus, it is important to make attention to the temperature problem caused by heat of cement hydration and to solve the problem in order to reduce the cracks brought by temperature in cement during the placement of the large volume of box girders—the zero-block and first-block.
     After consulting lots of professional theories and academic articles, the temperature field and stress field during the placement of the zero-block and first-block is this paper. All the following analysis is on the basis of a four-span continuous rigid frame bridge whose main span is 185m. The paper’s work and research results are as follows:
     (1) Through on-site temperature monitoring and observation of large amounts of data, it researches and analyzes the hydration heat temperature field and the rule with time varying of the zero-block and first-block.
     (2) According to the thermal conduction theory and finite element method, the model of zero-block and first-block is built to simulate the cement hydration, then, sums up its temperature development process and the distribution. Then, compare with the temperature monitoring data and the result of compute, it studies the method of analysis of the accuracy and feasibility. At last, it puts forward the corresponding temperature control principles and applies to engineering practice.
     (3) Use of finite element analysis software MIDAS to calculate box girder temperature stress and get the stress distribution of zero-block and first-block. Then, it analyzes and seeks the action of the response to temperature about prestressed concrete continuous rigid frame bridges. At last, it puts forward the measures to control the cracks of concrete box-girder, and provides reference information to similar bridges.
引文
[1]郭金琼.箱形梁设计理论[M].北京:人民交通出版社,1991年
    [2]陈金州.PC连续箱梁的温度场及其效应研究[D].西安:长安大学,2006.3
    [3] P.J.Barr,J.F.Stanton、M.O.Eberhard.Effects of Temperature Variations on Precast,Prestressed Concrete Bridge Girders[J].Journal of Bridge Engineering,Vol.10,No.2,2005:186-194
    [4]柯尊礼.大跨度PC连续箱梁桥的温度场及其效应分析[D].武汉:武汉理工大学,2004
    [5]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991
    [6] F.凯尔别克著,刘兴法等译,太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981
    [7]程俊瑞,卢文良,季文玉,刘松涛.预应力混凝土箱梁水化热温度及应变的试验研究[J].公路,2004(2) : 24-27
    [8]中铁工程设计咨询集团有限公司.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB 10002.3-2005/J462-2005 ).北京:中国铁道出版社,2005
    [9]张继尧、王昌将.悬臂浇注预应力混凝土连续梁[M].北京:人民交通出版社,2004年
    [10]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003年
    [11]乔朋.预应力混凝土连续梁桥的温度效应研究[D].西安:长安大学,2006.6
    [12]巩海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [13]钟华.连续刚构悬臂箱梁的日照温度效应研究[D].西安:长安大学,2006.6
    [14] Tatre,P.R. and Schrader,E.K.Thermal Consideration for Roller Compacted Concrete[J].ACI,1985:3-4
    [15] Tohru Kawaguchi,Sunao Nakane.Investigation on Determining Thermal Stress in Massive Concrete Structures[J].ACI,1996,92(2):117-125
    [16] Kavanagh KT,Clough RW.Finite Element Application in the Characterization of Elastic Solids[J].Int J Solids Structures,1971,7(1)
    [17] Bazant,Z.P. and Santosh Prasanan.Solidification Theory for Concrete Creep Formulation[J].Journal of Engineering Mechanics,1989,115(8):1691-1703
    [18]中华人民共和国铁道部部颁标准.铁路桥涵设计规范(TBJ 2-85).北京:人民交通出版社,1986
    [19]中华人民共和国交通部部颁标准.公路桥涵设计通用规范(JTG D60- 2004) .北京:人民交通出版社,2004
    [20]中华人民共和国交通部部颁标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62- 2004) .北京:人民交通出版社,2004
    [21] K. S.Sivakumaran. Analysis of Concrete Structures Subjected toSustained Temperature Gradients[J]. Canadian Journal of CivilEngineering. Vol.ll, No.3, 1984
    [22]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003
    [23]张继尧、王昌将.悬臂浇注预应力混凝土连续梁.北京:人民交通出版社.2004
    [24]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999
    [25]阮静,叶见曙,谢发祥,王键.高强度混凝土水化热研究[J] .东南大学学报,2001,31(3): 53-56
    [26]蔡正咏.混凝土性能[M].北京:建筑工业出版社,1979
    [27]叶琳昌,沈义.大体积混凝土施工[M].北京:中国建筑工业出版社,1987
    [28]王铁梦.工程结构裂缝[M].北京:中国建筑工业出版社,2000
    [29]赵志绪.高层建筑施工手册[M].上海:同济大学出版社,1995
    [30]周筠清.传热学(第二版) [M].北京:冶金工业出版社,1999
    [31]孙德兴.高等传热学—导热与对流的数理解析[M].北京:中国建筑工业出版社,2005
    [32]范奎.大体积混凝土水化温度场仿真计算与实测技术[D].杭州:浙江大学, 2005
    [33]李传才,俞富耕.钢筋混凝土构件的非线性有限元分析[J].武汉水利电力学院学报,1983
    [34]刘来君.变分法在桥梁结构温度应力计算中的应用[J].中外公路,2004,24(1)
    [35]阮静,万水,叶见曙,程霞.混凝土箱梁温度场有限元分析[J].公路,2001(9)
    [36]贾应春,程宝辉.大体积混凝土施工温度控制基本思路[J].世界桥梁,2005
    [37]陈谭生.通过控制大体积混凝土的内外约束限制其开裂[M].北京:原子能出版社,2003
    [38]霍凯成.大体积混凝土温控与防裂技术研究[D].武汉:武汉理工大学, 2004
    [39]范立础.桥梁工程(上) [M].北京:人民交通出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700