寒区岩体低温、冻融损伤力学特性及多场耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是寒区面积分布最多的国家之一,永久性冻土和季节性冻土面积约占全国陆地总面积的75%。随着我国在寒区建设工程日益增多,出现了大量的冻岩问题,而至今人们对冻岩问题研究非常不足。本论文针对寒区日益增长的工程需要,将寒区冻岩问题作为一门新的研究方向单独提出来。围绕冻岩问题,论文以实验研究为基础,采用理论分析和数值计算相结合的方法,系统地研究岩石在低温、冻融循环条件下的力学、热学特性,并根据实验结果建立岩石的宏观冻融损伤本构关系,最终以寒区实际大型岩体工程——青藏铁路昆仑山隧道为背景,建立相应的温度-渗流、温度-渗流-应力多场耦合数学模型,采用有限元方法,进行寒区冻岩工程实例计算分析。概况来讲,本论文的主要研究内容如下:
     从工程现场取两种典型岩石(红砂岩和页岩),加工成标准试件(φ50mm×100mm),进行常温(20℃)及不同冻结温度和不同含水状态(完全饱和和干燥)下单轴压缩实验和三轴压缩试验。单轴压缩试验的冻结温度分别为0℃,-5℃,-10℃,-20℃,三轴压缩试验的冻结温度为-5℃和-10℃。分析了单轴压缩和三轴压缩试验的试件变形破坏规律,应力-应变关系,以及饱和和干燥条件下单轴抗压强度、弹性模量,三轴抗压强度、三轴剪切强度参数c,?值随温度的变化关系,并给出了相应的拟合关系表达式。最后还进行了两种岩石在不同低温、以及饱和和干燥两种状态下的超声波波速测试和热参数测试,并给出了波速、导热系数与温度的关系。
     对红砂岩和页岩进行了开放饱水状态下冻融循环试验,一次冻融循环试验包括在-20℃低温冷柜中冻结12h和在常温20℃纯水中融化12h。分析了两种岩石的冻融损伤劣化及冻融破坏行为,提出了红砂岩和页岩分别代表的两种冻融损伤劣化模式:片落模式和裂纹模式;并对经历不同冻融次数(0,5,10,20,30次)后的岩样进行单轴压缩试验,记录了岩石冻融循环后变形、强度变化规律,分析了这两种岩石的冻融耐久性,并对试验结果进行了数据拟合,得出了两种岩石在饱水状态下单轴抗压强度、弹性模量与冻融次数的拟合关系表达式。在此基础上,并结合已有的研究资料,对岩石的冻融损伤劣化机理及其影响因素进行了深入的分析,指出了各种因素的影响范围。
     以岩石冻融循环后的单轴压缩试验结果为依据,从宏观损伤力学理论出发,将岩石的损伤分为两个阶段,第一阶段为冻融引起的损伤,第二阶段为冻融和单轴压缩引起的
China is one of the biggest countries which have large area of cold regions, the area of permafrost and seasonally cold regions account approximately 75% of the total land area. With the increase of projects constructing in cold regions, many engineering problems involving frozen rock occur. However, the research work on frozen rock is very scarce since now. To deal with the engineering demands for solving problems occurred in cold regions, this paper bring forward a new research direction as to study the problems on frozen rock in cold regions. Based on experiment research, and combining theory with numerical simulation, this paper studies systematically the behaviors of mechanics and thermodynamics under conditions of low temperature and freeze-thaw firstly. Then the macro constitutive equation for damage rock due to freeze-thaw cycling is established according to the testing results. Lastly, on the background of large scale rock engineering in cold regions, e.g. the Kunlun mountain tunnel of Qinghai-Tibetan railway, the mathematical models of temperature-fluid coupling and temperature-fluid-mechanics fully coupling are set up by taking into account the macro constitutive equation for damage rock due to freeze-thaw cycling, and a number numerical simulations are proceeded on frozen rock engineering by adopting finite element method. Synoptically, the main research works are introduced in the dissertation as following:
     Two typical rocks that are red sandstone and shale were obtained from engineering sites, and they were prepared as standard specimens of 50mm in diameter and 100mm in length. The uniaxial compression tests and triaxial compression tests were conducted on the two types of rock at different frozen temperature and different moisture state(absolute saturated and dry). The test temperature of uniaxial compression test is +20℃,0℃,-5℃,-10℃,-20℃,respectively, and that of triaxial compression test is +20℃,-5℃,-10℃. The deformation and failure of rock, the relationship between stress and strain, and the depending on temperature of the uniaxial compression strength, Young’s modulus, triaxial compression strength, and the shear strength parameters(cohesion c and inner friction angle ?) under uniaxial and triaxial compressive test are analyzed, the relatively fitting expressions are formulated. Furthermore, the ultrasonic tests and thermal tests were performed at different low temperatures and different moisture states on the two types of rock as to study the P-wave velocity and thermal parameters changing with different temperatures.
     The freezing and thawing tests were conducted at opening saturating conditions on red sandstone and shale, one cycle of freeze-thaw test including 12 hours freezing at -20℃in freezer chamber and 12 hours thawing at 20℃in distilled water. Based on the freeze-thaw tests, the damage and failure due freezing and thawing are analyzed, and two deterioration modes, i.e. scaling mode for red sandstone and fracturing mode for shale, are found. The uniaxial compression tests are also conducted on the two types of rock subjected to different freeze-thaw cycles (0, 5, 10, 20, 30 cycles) at room temperature(20℃). The deformation and compression strength of rocks varied with different cycles of freeze-thaw are recorded, and the resistance to freeze-thaw of the two types of rock are analyzed. The relations of uniaxial compression strength and elastic modulus and numbers of freeze-thaw cycle are formulated according to the test results, respectively. On the basis of the test results and pre-existed research works, the mechanism and influence factors of rock deterioration due to freeze-thaw
引文
1. 徐学祖,王家澄,张立新, 冻土物理学[M]. 2001, 北京: 科学出版社.
    2. 周幼吾,郭东信,邱国庆等, 中国冻土[M]. 2000, 北京: 科学出版社.
    3. 杨位洸, 地基及基础[M]. 1998, 北京: 中国建筑工业出版社.
    4. 苏联科学院西伯利亚分院冻土研究所, 普通冻土学[M].郭东信,刘铁良,张维信等译. 1974, 北京: 科学出版社.
    5. Цытοвич, Η.Α. and М.И.Сумгин, Основания механики мерзлых грунтов[M]. 1937: Изд-во АН СССР.
    6. Цытович, Н.А., Принципы механики мерзлых грунтов[M]. 1952: Изд-во АН СССР.
    7. 陈湘生, 冻土力学之研究──21 世纪岩土力学的重要领域之一[J]. 煤炭学报, 1998. 23(1): p. 53-57.
    8. 程国栋, 冻土力学与工程的国际研究进展[J]. 地球科学进展, 2001. 16(3): p. 293-299.
    9. 赖远明, 寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[D][博士学位论文]. 1999, 中国科学院兰州冰川冻土研究所: 兰州.
    10. J.F.Nixon and E.C.McRoberts, A study of some factors affecting the thawing of frozen soils[J]. Canadian Geotechnology Journal, 1973. 10(3): p. 439-452.
    11. V.H.Sokolov, Laboratory method for determining the shearing strength of soil frozen together with its foundation. Soil Mech. Found. Engng.[J], 1973. 10(5): p. 364–367.
    12. V.V.Vrachev and V.V.Rogov, Freeze drying method of studying the strength of frozen clay soils(In Russia)[J]. Merzlot Issled, 1977. 16: p. 230–244.
    13. Johnson, T.C., D. M.Cole, and E. J.Chamberlain, Effect of freeze—thaw cycles on resilient properties of fine-grained soils[J]. Engineering Geology, 1979. 13(1-4): p. 247-276.
    14. L.I.Finborud and A. L.Berggren, Deformation properties of frozen soils[J]. Engng. Geol., 1981. 18(1-4): p.
    89–96.
    15. F.H.Sayles, Creep of frozen sands[R]. 1968, U S Army Cold Regions Research and Engineering Laboratory: Hanover.
    16. F.H.Sayles, Low temperature soil mechanics[R]. 1966, U S Army Cold Regions Research and Engineering Laboratory: Hanover.
    17. B.Ladanyi and F.H.Sayles, General report session II: Mechanical properties[J]. Engineering Geology, 1979. 13(1-4): p. 7-18.
    18. F.J.Sanger and F.H.Sayles, Thermal and rheological computations for artificially frozen ground construction: US Army Cold Regions Research and Engineering Lab report MP 1078, 1978, 14P. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1979. 16(2): p. 45.
    19. F.J.Sanger and F.H.Sayles, Thermal and rheological computations for artificially frozen ground construction [J]. Engineering Geology, 1979. 13(1-4): p. 311-337.
    20. Roman, L.T., Effect of chemical composition of soils on the strength and deformability of frozen saline soils[J]. Soil Mechanics & Foundation Engineering, 1995. 31(6): p. 205-210.
    21. 朱元林,王显旭, 应变率及温度对冻结粉土抗拉强度的影响[J]. 冰川冻土, 1995. 17((增刊)).
    22. 朱元林,张家懿, 冻土的单轴本构关系[J]. 冰川冻土, 1992. 14(4): p. 210-217.
    23. 朱元林,吴紫汪,何平等, 我国冻土力学研究新进展及展望[J]. 冰川冻土, 1995. 17(增刊): p. 6-14.
    24. 何平,张家懿, 振动频率对冻土破坏之影响[J]. 岩土工程学报, 1995. 17(3): p. 78-81.
    25. 何平,朱元林, 饱和冻结粉土的动弹模与动强度[J]. 冰川冻土, 1993. 15(1): p. 170-174.
    26. Wei Ma, Z.W., Lixin Zhang, Xiaoxiao Chang, Analyses of process on the strength decrease in frozen soils under high confining pressures[J]. Cold Regions Science and Technology, 1999. 29(1): p. 1-7.
    27. 马巍,王大雁,常小晓, 模拟 K0 固结后不同初始围压下冻土应力-应变特性研究[J]. 自然科学进展, 2004. 14(3): p. 344-348.
    28. 盛煜,吴紫汪,苗丽娜等, 冻土单轴压缩里面变的归一化模型[J]. 自然科学进展, 1996. 6(3): p. 357-360.
    29. 何平,程国栋,朱元林, 土体冻结过程中的热质迁移研究进展[J]. 冰川 冻土, 2001. 23(1): p. 92-98.
    30. R.D.Miller, Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972. 393: p. 1 - 11.
    31. Akagawa, S., Experimental study of frozen fringe characteristics[J]. Cold Regions Sciences and Technology, 1988. 15: p. 209-223.
    32. F.J.Radd and D.H.Oertle. Experimental pressure studies of frost heave mechanisms and the growth fusion behavior[A]. in 2th International Conference on Permafrost[C]. 1973. Washington D.C.: National Academy Press.
    33. R.D.Miller, Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972. 393: p. 1-11.
    34. J.P.G.Loch and R.D.Miller, Tests of the concept of secondary frost heaving[J]. Soil Sci. Soc. Am. Proc., 1975. 39(1036-1041).
    35. Watanabe, K., M. Mizoguchi, and T.Ishizaki. Experimental study on microstructure near freezing front during soil freezing[A]. in Ground Freezing 97[C]. 1997. Netherlands: Lulca University of Technology.
    36. Muto, Y., K. Watanabe, and T. Ishizaki. Microscopic observation of ice lensing and frost heaves in glass beads[J]. in The 7th International Permafrost Conference[C]. 1998. Canada: Laval University.
    37. Takeda, K. and A. Okamura. Microstructure of freezing front in freezing soils[A]. in Ground Freezing 97[C]. 1997. Netherlands: Lulea University of Technology.
    38. Konrad, J.M. and C.A. Duquennoi, A model for water transport and ice lensing in freezing soil[J]. Water Resources Research, 1993. 29: p. 3109-3123.
    39. Konrad, J.M.M., N R Can, Segregation potential of a freezing soil[J]. Geotech. Testing J., 1981. 18(4): p. 482–491.
    40. 李萍,徐学祖,蒲毅彬,等, 利用图像数字化技术分析冻结缘特征[J]. 冰川冻土, 1999. 21(2): p. 175.
    41. 徐学祖,王家澄,张立新,等, 土体冻胀和盐胀机理[M]. 1995, 北京: 科学出版社.
    42. 李宁,程国栋,徐学祖等, 冻土力学的研究进展与思考[J]. 力学进展, 2001. 31(1): p. 95-102.
    43. 李萍,徐学祖,陈峰峰, 冻结缘和冻胀模型的研究现状与进展[J]. 冰川冻土, 2000. 22(1): p. 90-95.
    44. R.L.Harlan, Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973. 9: p. 1314-1323.
    45. M.Sheppard, B.Kay, and J.Loch. Development and testing of a computer model for heat and mass flow in freezing soils [A]. in The 3rd International Conference on Permafrost[C]. 1978. Edmonton: Alberta.
    46. G.S.Taylor and J.N.Luthin, A model for coupled heat and moisture transfer during soil freezing[J]. Can. Geotech. J., 1978. 15(548-555).
    47. P.E.Jansson and S.Halldin. Model for annual water and energy flow in a layered soil[A]. in Comparasion of Frost and Energy Exchange Models[C]. 1979. Copenhagen.
    48. M.Fukuda, Experimental studies of coupled heat and moisture transfer in soils during freezing[R]. 1982, Institute of Low Temperature Science,Hokkaido University: Sapporo,Japan. p. 35-91.
    49. M.Fukuda and S.Nakagawa. Numerical analysis of frost heaving based upon the coupled heat and water flow model[A]. in 4th International Symposium on Ground Freezing[C]. 1985. Sapporo,Japan.
    50. 雷志栋,尚松浩,杨诗秀,等, 地下水浅埋条件下越冬期土壤水热迁移的数值模拟[J]. 冰川 冻土, 1998. 20(1): p. 52-54.
    51. F.Ling, Z.Zeng, and L.X.Zhang. The effect of the construction of revetment in the side of embankment [A]. in Ground Freezing 2000 [C]. 2000. Rotterdam: Balkema.
    52. D.Li, Z.Wu, and J.Fang. Calculating determination on the critical hights of embankment in the degrading permafrost regions [A]. in Ground Freezing 2000 [C]. 2000.
    53. Lai, Y.M., et al., Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J]. Science in China, Ser.D, 1999. 42(s1): p. 23-29.
    54. O'Neill, K. and R.D. Miller, Exploration a rigid-ice of frost heave[J]. Water Resources Research, 1985. 21: p. 281-296.
    55. Holden, J.T., D. Piper, and R.H. Jones. A mathematical model of frost heave in granular materials[A]. in
    4th International Conference on Permafrost[C]. 1983. Washing,D C: National Academy Press.
    56. Piper, D., J.T. Holden, and R.H. Jones. A mathematical model of frost heave in granular materials[A]. in
    5th International Conference on Permafrost[C]. 1988. Norway: Tapir Publication.
    57. Inshizaki, T. and N. Nishio. Experimental study of frost heaving of a saturated soils[J]. in 5th International Symposium on Ground Freezing[C]. 1988. UK: Balkema,Rotterdam.
    58. Gorelik, J.B., V.S. Kolunin, and A.K. Reshetnikov. Rigid-ice model and stationary growth of ice[A]. in The 7th International Permafrost Conference[C]. 1998. Canada: Laval University.
    59. Frémond, M. and M. Mikkola. Thermomechanical modelling of freezing soil[A]. in Ground Freezing 91, Proceedings of the 6th International Symposium on Ground Freezing Days[C]. 1991. Balkema: Rotterdam.
    60. Mikkola, M. and J. Hartikainen. Computational aspects of soil freezing problem[A]. in Fifth World Congress on Computational Mechanics[C]. 2002. Vienna, Austria.
    61. Mikkola, M. and J. Hartikainen, Mathematical model of soil freezing and its numerical implementation[J]. International Journal for numerical methods in engineering, 2001. 52: p. 543-557.
    62. 苗天德,郭力,牛永红,等, 正冻土中水热迁移问题的混合物理论模型[J]. 中国科学(D 辑), 1999. 29(增刊 1): p. 8-14.
    63. 牛永红, 含相变混合物理论与正冻土本构问题[博士学位论文][D]. 2001, 兰州大学: 兰州.
    64. Winkler, E.M., Frost damage to stone and concrete: geological considerations[J]. Engineering Geology, 1968. 2(5): p. 315-323.
    65. Kostromitinov, K., B. Nikolenko, and V. Nikitin, eds. Testing the strength of frozen rocks on samples of various forms(In Russian). Increasing the effectiveness of mining industry in Yakutia[M]. 1974: Novosibirsk.
    66. Inada, Y. and K. Yokota, Some studies of low temperature rock strength[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1984. 21(3): p. 145-153.
    67. Yamabe, T. and K.M. Neaupane, Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature conditions[J]. International Journal of Rock Mechanics & Mining Science, 2001. 38(7): p. 1029-1034.
    68. Park, C., J.H. Synn, and D.S. Shin, Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics & Mining Science, 2004. 41(Supp.1): p. 81-86.
    69. Nekrasov, L.B., I.M. Misnik, and S.D. Movshina, eds. Technical and economic evaluation of high-frequency electrical thermo-hammers for breaking frozen rocks(In Russian). Development of Minning Resources of the North[M]. 1972: Leningrad.
    70. Misnik, I.U. and N.D. Kiev. Basic problems of frozen rock excavation by electric thermal drills(InRussian)[A]. in Thermomechanical Methods of Rock Shattering[C]. 1972.
    71. Misnik, I.M. and L.B. Nekrasov, Strength of frozen rocks in high frequency electric fields(In Russian)[R]. 1969, New Investigations in Mining, Leningrad. p. 143-150.
    72. Goriaev, V.E., V.V. Reiner, and N.D. Kiev. Studying frozen ground excavation by thermal means(In Russian)[A]. in Thermomechanical methods of rock shattering[C]. 1972.
    73. 李宁,张平,程国动, 冻结裂隙砂岩低周循环动力特性试验研究[J]. 自然科学进展, 2001. 11(11): p. 1175-1180.
    74. 杨更社,张全胜,蒲毅彬, 冻结温度对岩石细观损伤特性的影响[J]. 西安科技学院学报, 2003. 23(2): p. 139-142.
    75. 杨更社,张全胜,蒲毅彬, 冻结温度影响下岩石细观损伤演化 CT 扫描[J]. 长安大学学报:自然科学版, 2004. 24(6): p. 40-42,46.
    76. 杨更社,张全胜,任建喜,等, 冻结速度对铜川砂岩损伤 CT 数变化规律研究[J]. 岩石力学与工程学报, 2004. 23(24): p. 4099-4104.
    77. McGreevy, J.P., Some perspective on frost shattering[J]. Prog. Phys. Geogr., 1981. 5(1): p. 56-75.
    78. Fukuda, M., Rock weathering by freeze-thaw cycles[J]. Low Temp. Sci. Series A. Phys. Sci., 1974. 32: p. 243–249.
    79. 徐光苗,刘泉声, 岩石冻融破坏机理分析及冻融力学试验研[J]. 岩石力学与工程学报, 2005. 24(17): p. 3076-3082.
    80. Prick, A., Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J]. Catena, 1995. 25: p. 7-20.
    81. Fahey, B.D., Frost action and hydration as rock weathering mechanisms on schist: a laboratory study[J]. Earth Surface Processrd and Landforms, 1983. 8(6): p. 535-545.
    82. Matsuoka, N., Mechanisms of rock breakdown by frost action: an experimental approach[J]. Cold Regions Science and Technology, 1990. 17: p. 253-270.
    83. Hall, K., A laboratory simulation of rock breakdown due to freeze-thaw in a Maritime Antarctic environment[J]. Earth Surface Processes and Landforms, 1988. 13: p. 369-382.
    84. Bellanger, M., F. Homand, and J.M. Remy, Water behaviour in limestones as a function of pores structure: Application to frost resistance of some Lorraine limestones[J]. Engineering Geology, 1993. 36(1-2): p. 99-108.
    85. Nicholson, D.T. and F.H. Nicholson, Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms, 2000. 25: p. 1295-1307.
    86. Chen, T.C., M.R. Yeung, and N. Moric, Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004. 38: p. 127– 136.
    87. 赖远明,吴紫汪, 大坂山隧道围岩冻融损伤的 CT 分析[J]. 冰川冻土, 2000. 22(3): p. 206-210.
    88. 杨更社,蒲毅彬, 寒区冻融环境条件下岩石损伤扩展研究探讨[J]. 实验力学, 2002. 17(2): p. 220-226.
    89. 张淑娟,赖远明,苏新民,等, 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J]. 岩石力学与工程学报, 2004. 32(24): p. 岩石力学与工程学报.
    90. Walder, J. and B. Hallet, A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin, 1985. 96(3): p. 336-346.
    91. Hori, M., Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998. 36(4): p. 511-522.
    92. Neaupane, K.M., T. Yamabe, and R. Yoshinaka, Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999. 36(5): p. 563-580.
    93. 何国梁,张磊,吴刚, 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004. 25(增): p. 52-56.
    94. Neaupane, K.M. and T. Yamabe, A fully coupled thermo-hydro-mechanical nolinear model for a frozen medium[J]. Computers and Geotechnics, 2001. 28(8): p. 613-637.
    95. Hétu, B. and J.T. Gray, Effects of environmental change on scree slope development throughout the postglacial period in the Chic-Choc Mountains in the northern GaspéPeninsula, Québec[J]. Geomorphology, 2000. 32: p. 335–355.
    96. Ishikawa, M., Y. Kurashige, and K. Hirakawa, Analysis of crack movements observed in an alpine bedrock cliff[J]. Earth Surface Processes and Landforms, 2004. 29: p. 883–891.
    97. Matsuoka, M., K. Hirakawa, and T.J. Watanabe, Monitoring of Periglacial Slope Processes in the Swiss Alps:the First Two Years of Frost Shattering, Heave and Creep[J]. Permafrost and Periglacial Processes, 1997(8): p. 155-177.
    98. Lai, Y.M., et al., Analytical viscoelastic solution for frost force in cold-region tunnels[J]. Cold Regions Sciences and Technology, 2000. 21: p. 227 - 234.
    99. Murton, J.B., J.P. Coutard, and J.P. Lautridou, Physical Modelling of Bedrock Brecciation by Ice Segregation in Permafrost[J]. Permafrost and periglacial progresses, 2001. 12: p. 255-266.
    100. Hoerlé, S., Rock temperatures as an indicator of weathering processes affecting rock art[J]. Earth Surface Processes and Landforms, 2006. 31: p. 383–389.
    101. 王绍令, 青藏高原冻土退化的研究[J]. 地球科学进展, 1997. 12(2): p. 164-167.
    102. 长江水利委员会长江科学院, 长江水利水电工程岩石试验规程(SL264-2001)[S]. 2001, 北京: 中国水利水电出版社.
    103. Nicholson, D.T., Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones[J]. Earth Surface Processes and Landforms, 2001. 26: p. 819-838.
    104. French, H.M., The periglacial environment[M]. 1976, London: Longman.
    105. Davidson, G.P. and J.F. Nye, A photoelastic study of ice pressure in rock cracks[J]. Cold Regions Sciences and Technology, 1985. 11(2): p. 143-153.
    106. Prick, A., Critical Degree of Saturation as a Threshold Moisture Level in Frost Weathering of Limestones[J]. Permafrost and Periglacial Processes, 1997. 8: p. 91-99.
    107. Watanabe, K. and M. Mizoguchi, Amount of unfrozen water in frozen porous media saturated with solution[J]. Cold Regions Science and Technology, 2002. 34: p. 103-110.
    108. 李金玉,曹建国,徐文雨等, 混凝土冻融破坏机理的研究[J]. 水利学报, 1999(1): p. 41-49.
    109. 葛修润,任建喜,蒲毅彬等, 岩土损伤力学宏细观试验研究[M]. 2004, 北京: 科学出版社.
    110. 王铁行, 多年冻土地区路基计算原理及临界高度研究[D][博士学位论文]. 2002, 长安大学: 西安.
    111. 张学富, 寒区隧道多场耦合问题的计算模型研究及其有限元分析[D][博士学位论文]. 2004, 中国科学院寒区与旱区环境与工程研究所: 兰州.
    112. Kaviany, M., Principles of Heat Transfer in Pourous Media(2nd Edition)[M]. 1995, New York: Springer.
    113. Konrad, J.M., Procedure for determining the segregation potential of freezing soils[J]. Geotech. Test J., 1987. 10(2): p. 51–58.
    114. D. M. Anderson, A.T., Predicting unfrozen water contents in frozen soils from surface area measurements[J]. Highway Research Record, 1972(393): p. 12–18.
    115. Konrad, J.M., Unfrozen water as a function of void ratio in a clayey silt [J]. Cold Regions Science and Technology, 1990. 18(1): p. 49-55.
    116. Da-yan Wang, Y.-l.Z., Wei Ma,Yong-hong Niu, Application of ultrasonic technology for physical–mechanical properties of frozen soils[J]. Cold Regions Science and Technology, 2006. 44(1): p. 12-19.
    117. Kozlowski, T., A comprehensive method of determining the soil unfrozen water curves: 1. Application of the term of convolution[J]. Cold Regions Science and Technology, 2003. 36(1-3): p. 71-79.
    118. Overduin, K.Y.a.P.P., Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005. 42(3): p. 250-256.
    119. Bear, J., Dynamics of Fluids in Porous Media[M]. 1972: American Elsevier Publishing Company, Inc.
    120. 金会军,喻文兵,陈友昌等, 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土, 2005. 27(3): p. 454-464.
    121. M.Smith, S.D., R. Kettle. Observations and prediction of frost heave of an experimental pipe line[A]. in Proceedings of the International Symposium on Ground Freezing and Frost Action in Soils[C]. 1985. Rotterdam.
    122. M.Smith, D.P., Detailed observations on the nature of frost heaving at a field scale. Cana. Geotech. J., 1989. 26(306-312).
    123. Frémond M, M.M. Thermomechanical modelling of freezing soil[A]. in Ground Freezing 91, Proceedings of the 6th International Symposium on Ground Freezing Days[C]. 1991. Balkema: Rotterdam.
    124. 魏国俊,张建林, 青藏铁路昆仑山隧道工程地质条件[J]. 岩土工程界, 2003. 6(9): p. 34-37.
    125. Paaswell, R.E. Temperature effects on clay soil consolidation[A]. in Jounal of Soil Mechanics and Foundation Div., Proceedings of ASCE[C]. 1967.
    126. Boit, M.A., Theory of elasticity and consolidation for porous isotropic solid[J]. J. Appl. Phy., 1941. 12: p. 155-164.
    127. Boit, M.A., Thermoelasity and irreversible thermodynamics[J]. J. Appl. Phy., 1956. 27(3): p. 240-253.
    128. Feng, X., J. Liu, and L. Jing. Research and application on coupled T-H-M-C processes of geological media in China-a review[A]. in International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modelling, Experiments & Applications[C]. 2003. Stockholm, Sweden: Royal Institute of Technology.
    129. Hart, R.D., A fully-coupled thermal-mechanical-fluid flow model for nonlinear geologic systems[Ph.D. Thesis][D]. 1981, University of Minnesota.
    130. Noorishad, J., C.F. Tsang, and W.P. A, Coupled thermal-hydro-mechanical phenomena in saturated fracture porous rocks: numerical approach[J]. Journal Geophysics Research, 1984(B12): p. 10 365-10 373.
    131. L R Jing, C.F. Tsang, and O. Stephansson, DECOVALEX-An International Co-Operative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories[J]. Int. J. Rock Mech. Sci. & Geomech. Abstr., 1995. 32(5): p. 389-398.
    132. Tsang, C.-F., et al. An overview of the DECOVALEX Project on coupled THM processes in fractured rock-bentonite systems[A]. in International Conference on Coupled T-H-M-C Processes in Geo-systems Fundamentals, Modelling, Experiments & Applications[C]. 2003. Stochholm, Sweden: Royal Institute of Technology.
    133. 仵彦卿, 岩体水力学基础(四)──岩体渗流场与应力场耦合的等效连续介质模型[J]. 水文地质与工程地质, 1993(3): p. 10-14.
    134. 仵彦卿, 岩体水力学基础(三)──岩体渗流场与应力场耦合的集中参数模型及连续介质模型[J]. 水文地质与工程地质, 1997(2): p. 54-57.
    135. 仵彦卿, 岩体水力学基础(六)──岩体渗流场与应力场耦合的双重介质模型[J]. 水文地质与工程地质, 1998(1): p. 43-46.
    136. 黄涛, 渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究[J]. 岩石力学与工程学报, 1999. 18(2): p. 237.
    137. 刘建军,耿万东, 地下水渗流的固液耦合理论及数值方法[J]. 勘察科学技术, 2000(4): p. 7-16.
    138. 刘建军, 天然气流固耦合渗流计算的有限元方法[J]. 新疆石油地质, 2000. 21(6): p. 487-490.
    139. 郑少河, 裂隙岩体渗流场-损伤场耦合理论研究及工程应用[J]. 岩石力学与工程学报, 2001. 20(3): p. 422.
    140. 吉小明, 孔隙裂隙岩体中渗流场与应力场耦合分析[J]. 岩石力学与工程学报, 2003. 22(1): p. 136.
    141. Zhang, X., et al., Nonlinear analysis for the three-dimensional temperature fields in cold region tunnels[J]. Cold Regions Science and Technology, 2002. 35: p. 207-219.
    142. 尚松浩,雷志栋,杨诗秀, 冻结条件下土壤水热耦合迁移数值模拟的改进[J]. 清华大学学报(自然科学版), 1997. 37(8): p. 62-64.
    143. 毛雪松,胡长顺,窦明健等, 正冻土中水分场和温度场耦合过程的动态观测与分析[J]. 冰川冻土, 2003. 25(1): p. 55-59.
    144. 冯振兴, 连续统力学及其数值模拟[M]. 1996, 武汉: 武汉大学出版社.
    145. 朱永红, 含相变混合物理论与正冻土本构问题[博士学位论文][D]. 2001, 兰州大学: 兰州.
    146. 徐光苗,刘泉声,张秀丽, 冻结温度下岩体 THM 完全耦合的理论初步分析[J]. 岩石力学与工程学报, 2004. 23(21): p. 3709-3713.
    147. Hart, R.D. and C.M.S. John, Formulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1986. 23(3): p. 213-224.
    148. 孔祥言, 高等渗流力学[M]. 1999, 合肥: 中国科学技术大学出版社.
    149. Hartikainen, J., Permafrost modelling in DECOVALEX III for BMT3[R]. 2004, Laboratory of Structural Mechanics, Uelsinki University of Technology: Espoo. p. 1-42.
    150. 俞昌铭, 热传导[M]. 1983, 北京: 高等教育出版社.
    151. 张先军, 青藏铁路昆仑山隧道洞内气温及低温分布特征现场试验研究[J]. 岩石力学与工程学报, 2005. 24(6): p. 1086-1089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700