扩散火焰形态及气化炉内熔渣沉积与传热规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水冷壁气流床气化炉是大型煤气化技术发展的主要方向之一。水冷壁采用“以渣抗渣”原理,利用渣层保护水冷壁不受高温侵蚀,气化炉内的熔渣沉积和传热与气化炉操作温度、煤灰理化性质等密切相关。本文以水冷壁气流床气化技术为背景,研究了扩散火焰形态及气化炉内熔渣沉积与传热规律。
     (1)气化火焰是气流床气化炉的主要特征之一,气化火焰形态和特征影响炉内温度分布,火焰形态学是火焰研究的一个重要方向,本文通过研究发现,敞开空间下空气中氧气对扩散火焰形态有一定影响,但随着喷嘴自身携带氧气流量增大,扩散火焰整体形态转为受喷嘴氧气控制;采用多股射流组合的集束喷嘴有效强化了燃料与氧气的混合,扩散火焰绝对长度较两通道喷嘴火焰长度短;气流速度较低时,两通道气流式雾化喷嘴火焰形态与燃料初次雾化有关,热态与冷态下液体初次雾化规律相似,但燃烧过程中的初次雾化临界速度较冷态时高;撞击火焰在撞击前仍较好地保持着火焰湍流结构,撞击后火焰湍流结构迅速消失,随着撞击速度的增大,火焰撞击区域变大且不稳定,但单股火焰的分布更为均匀和连续;撞击火焰边缘具有分形特征,撞击火焰的分形维数在点火阶段逐渐降低,从两喷嘴向四喷嘴撞击过渡时火焰边缘曲线分形维数逐渐增大,随着操作负荷增大,分形维数增大,两喷嘴和四喷嘴撞击火焰分形维数相差逐渐减小
     (2)通过水冷壁气化炉小试和中试研究发现,熔渣沉积形态与气化炉流场结构、操作温度和煤灰理化性质等因素相关,水冷壁表面均能覆盖渣层,能有效保护水冷壁不受高温烧蚀,随着气化炉处理负荷的增大,气化炉内温度梯度减小,熔渣分布更为均匀;随着水冷壁单位面积处理负荷增大,水冷壁带走热量比例显著降低,煤粉流量、氧煤比和汽包压力等参数对水冷壁传热的影响程度各不相同。
     (3)建立水冷壁传热和应力模型,基于该模型分析了水冷壁结构温度和应力分布,计算结果与试验吻合良好,为进一步掌握气化炉水冷壁传热规律与渣层裂缝生成提供指导。计算结果表明,渣层内温度梯度大,可有效降低水冷壁结构内部温度;操作温度变化将导致水冷壁内部产生热应力,不同材料热应力差异显著,越接近渣层表面,热应力越大,靠近水冷管和渣钉处热应力相对较小;熔渣孔隙率越大,愈容易发生形变造成开裂;渣层表面存在裂纹时,与施加的拉力载荷相比,裂纹尖端附近的等效应力较高,最大值出现在裂尖,离开裂纹尖端稍远处,应力分布又趋于正常。
The entrained flow gasification technology with water wall is a better choice in large coal gasification field. According to "principle of slag resistence", slag deposited on water wall can protect water wall from high temperature ablation. The slag deposit and heat transfer of water wall nearly have relations with flow field of gasifier, operating temperature and ash physicochemical property etc. Base on the background of water wall entrained flow gasification technology, the study on characteristic of diffusion flame and slag deposit and heat transfer was carried out.
     (1) The gasification diffusion flame is primary character in entrained flow gasifier and effect total temperature distribution of gasifier. The morphological analysis is mainly direction on flame investigation. The results indicate that in open space the effect of oxygen in air on flame configuration is finite, flame shape is gradually determined by oxygen from burner with increasing oxygen flux from burner. The burner structure of multi-jet can effectively improve mixture of fuel and oxygen, flame length of multi-jet burner is shorter than that of coaxial two-channel burner. In low oxygen velocity, the flame of two-channel burner is related to fuel primary atomization. The rule of primary atomization in combustion is similar with that in cold condition, but the critical velocity in combustion is higher. The structure of single flame is maintained before arriving to impinging region, but rapidly disappear in impinging region. With the increase of impinging velocity, impinging region become larger and unstable, the distribution of single flame is more continuous and homogeneous.There is a fractal characteristic in impinging gasification flame boundary. The fractal dimension decreases in ignition stage and increases from two-burners to four-burners. During the increase of load, the fractal dimension increases, however, the difference-value of the fractal dimension in two burner pattern reduces.
     (2) The results of study on bench-scale and pilot-scale water wall gasifier indicate that the slag deposit is related to flow filed, operating temperature and slag physicochemical property etc. Slag can deposit on all water wall surface and protect water wall from ablation. Compared with bench-scale study, slag deposit is more homogeneous in pilot-scale gasifier. With consumption scale per water wall surface increasing heat loss of water wall can play down. The dry feed flow, the ratio of oxygen and coal and drum pressure respectively can effect the heat transfer of water wall, but the level of effect is different.
     (3) The results of simulation based on water wall heat transfer and stress model is approximately consistent with experimental measure. According to simulation, the distribution of temperature and stress is achieved and further understand water wall heat transfer and slag cracking. The results show that the temperature gradient of slag layer is maximal, slag layer can effectively reduce bulk temperature of water wall. Temperature fluctuation in gasifier will result in thermal stress, the thermal stress is distinct for different material. The maximal thermal stress is located in slag layer, thermal stress of tube and pin is minimal. The possibility of slag crack increase with slag porosity increasing. When a load is applied in slag surface that there is a crack, stress distribution is very concentrative near crack tip and stress located in crack tip is several times than applied load. Once away from crack tip, stress distribution return to normal.
引文
[1]于广锁,牛苗任,梁钦锋等.气流床水煤浆气化技术的应用现状及开发进展[J].煤化工.2004,3:1-5
    [2]盛新Shell煤气化技术及其在大化肥装置的应用[J].大氮肥.2007,30(6):415-419
    [3]Hottel H C, Hawthorne W R. Third Symposium (International) on Combustion, Diffusion in laminar flame jets[J]. Williams and Wilkins, Baltimore,1945,254-266.
    [4]Choudhuria A R., Gollahallib S R. Characteristics of hydrogen-hydrocarbon composite fuel turbulent jet flames[J]. International Journal of Hydrogen Energy.2003,28:445-454.
    [5]Choudhuri A R, Gollahalli S R. Combustion characteristics of hydrogen-hydrocarbon hybrid fuels[J]. International Journal of Hydrogen Energy.2000,25:451-462.
    [6]Choudhuri A R, Gollahalli S R. Laser induced fluorescence measurements of radical concentration in hybrid gas fuel fames[J]. International Journal of Hydrogen Energy.2000,25: 1119-1127.
    [7]Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent diffusion jet flames and flame height relationship[J]. Combustion and Flame.1993,92:349-364.
    [8]Mark A M, Timothy C W. Flame height measurement of laminar inverse diffusion flames[J]. Combustion and Flame.2006,146:63-72.
    [9]Remie M J, Cremers M F G. Flame jet properties of Bunsen-type flames [J]. Combustion and Flame.2006,147:163-170.
    [10]Bougie B, Tuleji M. Optical diagnostics of diesel spray injections and combustion in a high-pressure high-temperature cell[J]. Applied Physics. B.2005,80:1039-1045.
    [11]Sze L K, Cheung C S. Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design[J]. Combustion and Flame.2006,144:237-248.
    [12]Ganguly R, Puri I K. Nonpremixed flame control with microjets[J]. Experiment in Fluids. 2006,36:635-641.
    [13]Baker J, Calvert M E. Structure and dynamics of laminar jet micro-slot diffusion flames[J]. Journal of Heat Transfer.2002,124:783-790.
    [14]Heskestad G. Turbulent jet diffusion flames:consolidation of flame height data[J]. Combustion and Flame.1999,118:51-60.
    [15]Leite A O P, Ferreira M A. An investigation of multiple jet acetylene flame[J]. International Comm. Heat Mass Transfer.1996,23(7):959-970.
    [16]Lenze, B., Milano, M.E. et al. The mutual influence of jet diffusion flames[J]. Combustion Science and Technology.1975,11:1-8.
    [17]Gollahalli M. R. Multiple jet gas flames in still air[J]. Heat Transfer in Fire and Combustion Systems.1985,45:127-132.
    [18]Foat T, Yap K P. The visualization and mapping of turbulent Premixed impinging flames[J]. Combustion and Flame.2001,125:839-851.
    [19]Zhang Y. Characterization impinging jet flames[J]. Combustion and Flame.1999,116: 671-674.
    [20]Zhang Y. Experimental studies of the turbulence structures of impinging reacting jet using time-resolved particle image velocimetry visualization, hot wire anemometry and acoustic signal processing[J]. Experimental in fluids [suppl.].2000, s282-s290.
    [21]Hou S S, Ko Y C. Effects of heating height on flame appearance, temperature field and efficiency of an impinging laminar jet flame used in domestic gas stoves[J]. Energy Conversion and Management.2004,45,1583-1595.
    [22]Hou S S, Ko Y C. Influence of oblique angle and heating height on flame structure,temperature field and efficiency of an impinging laminar jet flame [J]. Energy Conversion and Management.2005,46:941-958.
    [23]Lin J C, Lin T H. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame[J]. Energy Conversion and Management.2005,46:2892-2906.
    [24]Chen Z H, Lin T H. Combustion of liquid fuel sprays in stagnation-point flow[J]. Combustion Science and Technology.1988,60:63-77.
    [25]Kitajima A, Ueda T. A comprehensive examination of the structure and extinction of turbulent nonpremixed flame formed in a counterflow[J]. Combustion and Flame.2000,121: 301-311.
    [26]Li S C. Spray stagnation falmes[J]. Progress in Energy and Combustion Science.1997, 23:303-347.
    [27]Su A, Liu Yi C. Investigation of impinging diffusion flames with inert gas[J]. International Journal of Heat and Mass Transfer.2002,3251-3257.
    [28]Steven A B, Everett A S, John P H. Status of coal ash behavior research[J]. Fuel Processing Technology.1995,44:1-12.
    [29]Laursen K, Frandsen F, Larsen O H. Ash deposition trials at three power stations in Denmark[J]. Energy & Fuels.1998,12:429-442.
    [30]Frandsen F J. Utilizing biomass and waste for power production-a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products[J]. Fuel.2005,84:1277-1294.
    [31]Wall T F, Juniper L, Lowe A. ACARP Project C9055-State-of-theartreview of ash behavior in coal fired furnaces [J]. Newcastle:University of Newcastle,2001.
    [32]Stickler D B, Gannon R E. Slag-coated wall structure technology for entrained flow gasifiers[J]. Fuel Processing Technology.1983, (7):225-238
    [33]瞿海根.气流床气化炉内熔渣沉积过程模拟研究[D].上海:华东理工大学,2003
    [34]屈强.气流床气化炉内熔渣流动及炉体导热过程研究[D].上海:华东理工大学,2003
    [35]段合龙.气流床水冷壁气化炉熔渣沉积试验研究及炉壁温度分布和热应力数值计算[D].上海:华东理工大学,2007
    [36]贡文政.水冷壁气化炉热态模式研究及传热特性分析[D].上海:华东理工大学,2007.
    [37]Givi P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Sciences.1999,15(1):1-107
    [38]Pope S B. Computations of turbulent combustion:progress and challenges. In:23rd Symposium (international) on Combustion, Orleans,1990-07.Pittsburgh, PA:The Combustion Institute,1990,591-612
    [39]Bilger R W. Conditional moment closure for turbulent reaction flow[J]. Physics of Fluids. 1993,5(2):436-473
    [40]DoPazo C. Recent developments in PDF methods. In:Libby P A, eds, Turbulent Reciting Flows[M]. London:Academic Press,1993
    [41]SPalding D B. Mathematical models of turbulent flames:a review[J]. Combustion Science and Technology.1976,13(1):3-25
    [42]Fan J R, Zha X D, Sun P. Simulation of ash deposit in a pulverized coal-fired boiler[J]. Fuel.2001,80(5):645-654
    [43]徐明厚,郑楚光.煤灰沉积的传热过程模型及其数值研究[J].工程热物理学报.2002,23(1):115-118.
    [44]Seggiani M. Modeling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier[J].Fuel.1998,77(14):1611-1621.
    [45]Reid. W T, Cohen.P. Factors affecting the thickness of coal-ash slag on furnace-wall tubes[J]. Transfer ASME.1944,66:685-690.
    [46]韩志明,李政,倪维斗Shell气化炉的建模和动态仿真[J].清华大学学报.1999,39(3):111-114.
    [47]Murray F A, Richerd E C, Leonard G. A. Studies on slag deposit formation in pulverized-coal combustors[J]. Fuel.1985,64(6):827-830.
    [48]Heikkinen R. Slagging behavior of peat ash[J]. Fuel and Energy Abstracts.1996,37(6): 450-451
    [49]Noda N, Tsuji T. Steady thermal stress in a plate of functionally gradient material with temperature dependent properties [J]. Transactions of JSME.1991,57(535):625-632
    [50]Obata Y, Noda N, Tsuji T. Steady thermal stresses in a hollow circular cylindes and hollow sphere of a functionally gradient material [J]. Journal of Thermal Stresses.1994,17(3): 471-480.
    [51]Tanigawa Y, Akai T, Kawamura R, et al. Transient heat conduction and thermal stress problem of a non-homogeneous plate with temperature dependent material properties [J]. Journal of Thermal Stress.1996,19(6):77-102.
    [52]Ooata Y, Akai T, Tanigawa Y. Three dimension transient thermal stress analysis of non homogeneous hollow circular cylinder [J]. Transactions of JSME.1993,59(563):1684-1691.
    [53]Ravichandran K S. Thermal residual stresses in a functionally gradient system [J]. Materials Science and Engineering.1995, A201:269-276.
    [54]林伟宁.水冷壁气流床气化炉熔渣沉积试验及水冷壁温度场与应力场分析[D].上海:华东理工大学,2008
    [55]徐赢.水冷壁气化炉内熔渣表面形态及扩散气体火焰长度的研究[D].上海:华东理工大学,2008
    [56]Eickhoff H, Lenze B. Basic forms of jet flames[J]. Chemical Engineering and Technology. 1969,41:1095-1103.
    [57]Evans D D, Madrzykowski D. Haynes GA. Flame heights and heat release rates of 1991 Kuwait oil field fires. Fire safety science-proceedings of the fourth international symposium, Ottawa, Canada,1994.
    [58]Beer J M, Chigier N A. Combustion aerodynamics[M]. England:Applied Science Publishers LTD; 1972.
    [59]Boushaki T, Sautet J C, Salentey L, et al. The behaviour of lifted oxy-fuel flames in burners with separated jets [J], International Communications in Heat and Mass Transfer.2007, 34:8-18.
    [60]Boushaki T, Mergheni M A, Sautet J C, Labegorre B. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner[J]. Experimental Thermal and Fluid Science. 2008,32:1363-1370.
    [61]Chigier N.A, Apak G. Interaction of Multiple Turbulent Diffusion Flames[J]. Combustion Science and Technology.1975,10:219-231.
    [62]Mayer W O H, Branam R. Atomization characteristics on the surface of a round liquid jet[J]. Experiments in Fluids.2004,36:528-539.
    [63]Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J]. Physics of Fluids. 1982,25(2):1730-1741.
    [64]Taylor J J, Hoyt J W. Water jet photography-techniques and methods[J]. Experiments in Fluids.1983,1:113-120.
    [65]Varga C M, Lasheras J C, Hopfinger E J. Initial breakup of a small-diameter liquid jet by a high-speed gas stream[J]. The Journal of Fluid Mechanics.2003,497:405-434.
    [66]Lasheras J C, Villermaux F, Hopfinger E J. Breakup and atomization of a round water jet by a high-speed annular air jet[J]. The Journal of Fluid Mechanics.1998,357:351-379.
    [67]Eroglu H, Chigier N, Farago Z. Coaxial atomizer liquid intact lengths[J]. Physics of Fluids A.1991,3(2):303-308.
    [68]曹显奎,许建良,李伟锋等.同轴双通道气流式雾化喷嘴初次雾化过程[J].化工学 报.2006,57(11):2591-2596.
    [69]Marmottant P, Villermaux E. On spray formation[J]. Journal of Fluid Mechanics.2004, 498:73-111.
    [70]高翔,骆仲泱,陈亚非等.燃烧过程压力脉动信号的自相关性分析[J].燃烧科学与技术.1998,4(3):253-257.
    [71]赵贵兵,陈纪忠,阳永荣.流化床压力脉动信号时间延迟相关性[J].化工学报.2002,53(12):1281-1287.
    [72]张晓东,高波,宋之平.互相关函数法在声学测温技术中的应用研究[J].中国电机工程学报.2003,23(4):185-188.
    [73]侯新国,吴正国,夏立等.基于相关分析的感应电机定子故障诊断方法研究[J].中国电机工程学报.2005,25(4):83-86.
    [74]林湘宁,刘沛,杨春明等.基于相关分析的故障序分量选相元件[J].中国电机工程学报.2002,22(5):16-21.
    [75]周洁,袁镇福,浦兴国等.过零穿越极性相关法测量高温烟气流速技术的研究[J].中国电机工程学报.1999,19(3):11-13,45.
    [76]周洁,袁镇福,浦兴国等.基于压力信号互相关方法的烟气三维流速测量[J].中国电机工程学报.2000,20(7):48-51.
    [77]Mayer S. A generalized processing technique in digital particle image veloci-metry with direct estimation of velocity gradients[J]. Experiments in Fluids.2002,33(3):443-457.
    [78]Soldatov V P. The Use of Correlation Analysis of the Image in Phase Optoelectr-onic Devices[J]. Measurement Techniques.2005,48(5),471-475.
    [79]任杰,郑荣琴,谢仕斌等.门静脉血流动力学改变与肝组织纤维化图像定量分析的相关性研究[J].影像诊断与介入放射学.2004,13(1):35-37.
    [80]王国钧,韩丽萍,陈礼民.基于相关性的病理切片图像配准[J].中国图像图形学报.2004,9(3):275-279.
    [81]马少鹏,刘善军,赵永红.数字图像灰度相关性用以描述岩石试件损伤演化的研究[J].岩石力学与工程学报.2006,25(3):590-595.
    [82]武春风,张伟,丛明煜等.基于红外多光谱图像相关性的自动目标识别算法[J].红外与毫米波学报.2003,22(4):265-268.
    [83]王家文,曹宇M atlab 6.5图形图像处理[M].北京:国防工业出版社,2003.
    [84]杨宏旻,杨勇,刘勇等.湍流预混火焰的时间和空间分形特性[J].工程热物理学报.1998,19(2):261-264.
    [85]张清宇,严建华,倪明江等.分形理论在火焰稳定性诊断中的应用[J].中国电机工程学报.2004,24(12):248-252.
    [86]Wu J, Zhang M C, Fan H J, et al. A Study on Fractal Characteristics of Aerodynamic Field in low-NOx Coaxial Swirling Burner[J]. Chemical Engineering Sciences.2004,59: 1473-1479.
    [87]余成波.数字图像处理及MATLAB实现[M].重庆:重庆大学出版社,2003.
    [88]傅德胜,寿益禾.图形图像处理学[M].南京:东南大学出版社,2001.
    [89]杜学礼,潘子昂.扫描电子显微镜分析技术[M].北京:化学工业出版社,198.6.
    [90]Giuseppe M, Vincenzo A. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. Surface and bulk characterization[J]. Journal of Physical Chemistry B.2001,105(5):1026-1032.
    [91]Wilcox D, Dove B, McDavid D. Image tool[M]. San Antonio:The University of Texas Health Science Centre,1995.
    [92]Wlodzimierz D, Jaroslaw P, Witold S. Three-dimensional characterization of microstructures in a SEM.[J] Measurement Science and Technology.2006,17(1):28-31.
    [93]Abramoff M D, Magelhaes P J, Ram S J. Image Processing with ImageJ[J]. Biophotonics International.2004,11 (7):36-42.
    [94]Hilliard J E. Measurement of volume in volume[J]. In:DeHoff RT, Thines FN, editors. Quantitative microscopy. New York:Mc Graw Hill,1968:45-76.
    [95]汤国华,杨俊和,张琢等.一种定量分析多孔材料孔隙结构的新方法[J].煤炭转化.2004,27(1):71-75.
    [96]周嘉华,倪莉.现代分析技术—化学中的火眼金睛[M].上海:上海科技教育出版社,2001.
    [97]陆家和,陈长彦.现代分析技术[M].北京:清华大学出版社,1995.
    [98]陆煜,程林.传热原理与分析[M].北京:科学出版社,1997.
    [99]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [100]甘舜仙.有限元技术与程序[M].北京:北京理工大学出版社,1988.
    [101]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社,1998.
    [102]陈楷.陶瓷材料物理性能[M].北京:中国建筑工业出版社,1980.
    [103]周俊虎,杨卫娟,刘建忠等.锅炉变负荷引起的水冷壁渣层热应力[J].化工学报.2003,54(12):1678-1682.
    [104]Zbogar A, Frandsen F, Jensen P A, et al. Shedding of ash deposits[J].Progress in Energy and Combustion Science.2009,35:31-56.
    [105]Wang Y F, Yang Z G. Finite element analysis of residual thermal stress in ceramic-lined composite pipe preared by centrifugal-SHS[J]. Materials Science and Engineering A.2007, 130-134.
    [106]Noda, Naotake. Thermal stresses[M]. Taylor & Francis,2003.
    [107]竹内洋一朗.热应力[M].北京:科学出版社,1971.
    [108]龚俊,郎福元,王珉等.基于统一强度理论的复合型裂纹断裂准则[J].机械强度. 2003,25(3):347-351.
    [109]高庆.工程断裂力学[M].重庆:重庆大学出版社,1986.
    [110]冯俊凯,沈幼庭.锅炉原理及计算(第二版)[M].北京:科学出版社,1992
    [111]蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版).2008,44(1):9-16.
    [112]苗胜军,张云,吴豪伟等.巷道注浆加固围岩稳定参数敏感性分析[J].现代隧道技术.2008,45(1):16-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700