孔扩张理论研究及自钻式旁压试验数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旁压试验的基本原理是利用旁压仪对钻孔壁施加横向均匀应力,使孔壁土体发生径向变形直至破坏,量测压力和径向变形的关系,或加压使孔壁膨胀至某孔径时做保持试验,观测超孔隙水压力的消散过程,然后可根据试验结果(压力-体积曲线或超孔隙水压力消散曲线)确定土体的物理力学性质、区分土类及确定地基承载力等。其中,自钻式旁压试验(SBPT)因具有扰动小、测试深度大等优点成为确定土性参数有效的原位测试手段之一。在饱和软黏土层中宜采用SBPT,但利用常用的步骤确定的黏土不排水剪切强度及渗透特性参数与其它高质量的试验结果有差别。因此,分析其在确定黏土不排水剪切强度和渗透性参数时可能产生的误差及修正研究是本论文的研究目的之一。大多数旁压试验的分析方法基于柱形孔扩张理论,其中包含材料特性、旁压仪几何特征和排水条件等重要假设。除了对旁压试验机理解释及反分析确定土体特性参数外,孔扩张理论还是许多其它岩土工程问题研究的基础理论。目前利用较符合实际地描述土体的非脆性软化及剪胀,并考虑中主应力影响的模型进行的孔扩张分析尚少。因此,发展和完善孔扩张理论是本论文研究的另一目的。具体地,论文主要研究内容及所取得的研究成果包括以下方面:
     1、回顾SBPT在确定土性参数上的应用,讨论了以孔扩张理论为基础确定的土性参数的误差来源,总结了现有的误差分析方法及误差修正。
     2、针对中主应力对孔扩张问题的影响,采用SMP破坏准则及非关联流动法则,并结合Bolton简化的应力-剪胀关系及Bolton模型,以反映砂土的剪胀和应变软化特性,运用塑性区离散分析方法,对不同初始状态下典型石英砂(Ottawa砂)中的柱形孔扩张问题进行了分析及数值计算,不仅得到了砂土中柱孔扩张的应力场、应变场、极限扩孔压力、塑性区半径,还可获得塑性区土体的内摩擦角、剪胀角和孔隙比的变化。该数值方法可同时用来分析零和非零初始孔径的柱形孔扩张问题。通过与基于Mohr-Coulomb破坏准则的计算结果比较分析,探讨了孔扩张问题中的中主应力效应,并阐述了砂土的相对密度、初始应力、临界状态摩擦角对塑性区半径比、极限扩孔压力、剪胀等的影响。比较结果表明基于Mohr-Coulomb破坏准则的解答偏于保守。绘制了一系列不同初始状态和临界状态内摩擦角时Ottawa砂的孔扩张结果图,为确定具有相似性质的砂土中柱孔扩张的极限扩孔压力和塑性区半径提供直接的参考。
     3、针对非脆性软化及剪胀的摩擦黏性岩土材料中的柱形孔扩张问题,将土体损伤后的软化特性用材料的力学性能参数下降来描述,引入损伤软化参数。考虑土体的剪胀与内摩擦角、黏聚力以及平均有效应力的相关性和结构性衰减(软化特性)对应力-剪胀关系的影响,将反映结构性衰减的黏聚力下降公式代入Rowe(1971)的应力-剪胀方程,修改了Rowe(1971)的应力-剪胀关系。在塑性区采用对数应变描述土体的大应变特性,在弹性区采用小应变理论,同时使用广义SMP准则和修改的应力-剪胀关系,结合平面应变轴对称问题的控制方程,推导并给出完全排水条件下摩擦黏性岩土材料中的柱形孔扩张问题的求解步骤,得到柱形孔扩张的孔扩张率、塑性流动参数(剪胀)、极限扩孔压力、塑性区变化规律等。进一步,通过损伤软化参数、内摩擦角和黏聚力的变参数计算,探讨了它们对土体剪胀性、塑性区应力、塑性区变化规律及极限扩孔压力的影响;并与基于Mohr-Coulomb准则的解答进行对比分析,研究了中主应力对孔扩张结果的影响。
     4、利用通用有限元分析软件ABAQUS模拟黏土中不排水条件下的自钻式旁压加载试验,针对旁压仪探头长径比及应变区间的选择对确定土体不排水剪切强度的影响进行了分析。使用修正剑桥模型模拟土体应力-应变特性,采用低渗透系数控制加载过程中的不排水条件,通过数值计算确定不同长径比、不同应力历史下的旁压加载曲线。根据Gibson等建议的方法,选择几个应变区间,用最小二乘法确定该区间曲线的斜率,该斜率为不排水剪切强度值。当只考虑长径比对确定不排水剪切强度的影响时,以从L/D=∞的旁压曲线确定的不排水剪切强度作为真实值S_u~∞,不同应力历史(OCR)下土体的不排水剪切强度真实值与不同长径比时确定的不排水剪切强度的比值S_u~∞/S_u~(L/D)作为考虑L/D影响的修正系数。通过OCR在1~20,L/D在6~∞范围内的计算,确定了从正常固结到重超固结土体,5种长径比时不排水剪切强度修正系数。应变区间对修正系数有一定影响,对于同一旁压曲线,选择的应变区间越大,修正系数会有所减小,不排水剪切强度的高估量增加。而应变区间的选择对确定不排水剪切强度值的影响显著,随着应变区间的增大,不排水剪切强度明显增加。因此,选择合适的应变区间对测定较准确的不排水剪切强度值至关重要。通过将从有限元模拟的平面应变和不排水条件下的旁压加载曲线确定的不排水剪切强度和Cao等解析解比较,建议了不同应力历史下确定不排水剪切强度的应变区间。
     5、以Ducker-Prager理想弹塑性模型为基础,模拟了旁压应变保持试验(SHT),分析旁压仪几何尺寸、加载应变水平、渗透系数、应变加载率对孔扩张过程中排水情况、超孔隙水压力分布及土体固结行为的影响,建议了应变加载率,给出了Randolph解的适用条件,并考虑不同渗透系数、不同应变加载率引起的部分排水的影响,对Randolph解进行修正,建议了误差曲线。为分析土体流变性对SHT过程中超孔隙水压力消散及推求土体固结系数的影响,采用Drucker-Prager理想弹塑性与土体流变的耦合模型描述土体的应力应变强度关系及其对时间的依赖性,利用有限元法模拟SHT过程,分析土体流变性对超孔隙水压力消散的影响。其中,流变时间硬化模型参数由土体流变试验确定。分析发现,土体的流变对超孔隙水压力消散的影响,除了通过应力松弛改变应力水平而使超孔隙水压力下降,还通过改变超孔隙水压力的分布而改变固结速度。考虑流变使不同渗透系数时超孔隙水压力消散过程差异变大。渗透系数越小,土体流变性对超孔隙水压力的消散速度影响越明显。以s_u=48kPa,I_r=156为例,在流变试验确定的参数变化范围内进行变参数计算,分析流变参数变化对超孔隙水压力消散的影响。
Self-boring pressuremeter(SBPT) has been effectively utilized to determine in-situ properties of soils in terms of overcoming soil disturbance to a large extent,especially in saturated soft soil for determination of permeability characteristics and undrained shear strength.However,it is recognized that the undrained strength value and horizontal coefficient of consolidation derived from SBPT are different from those obtained by good laboratory tests and other in situ tests.In order to find the reasons of inaccuracy,the possible factors are analyzed by using finite element methods and quantified by comparing with analytical solutions of cylindrical cavity expansion that are useful interpretation methods which involves important assumptions about material behavior,pressuremeter geometry and drained conditions.Many other geotechnical engineering problems also rely on cavity expansion theory for analyzing,such as pile driving,CPT and anchor working mechanics. And the theory has been progressively refined over the past years.Many research results indicate that it is important for study on cavity expansion theory to choose the reasonable yield criterion and to consider the strain-softening and shear dilatation behavior of geomaterials.Though achievements have been made on the theoretical study,the cavity expansion in non-brittle softening and dilatant soil is in the stage of development.Thus the other purpose of this paper is to present cylindrical cavity expansion analysis in dilatant and elastic-plastic soil,taking non-brittle softening and dilatancy behavior of geomaterials,and the effect of intermediate principle stress on soil strength into account.The main investigations consist of the following portions:
     1,The current use of fundamental mechanics in developing rational interpretation methods for deriving soil properties from SBPT is reviewed,and the sources of inaccuracy and modified methods are analyzed and summarized.
     2,Considering the effects of intermediate principal stress on material yielding strength, SMP yielding criterion is selected in analysis of cylindrical cavity expansion.Meanwhile, combining Bolton's simplification on the stress-dilatancy relationship and Bolton model to reflect soil shear dilatancy and strain softening behavior this paper analyzes the problem of cylindrical cavity expansion in typical quartz sand(Ottawa sand) by discretizing the plastic zone to determine stress field,strain field,limit cavity pressure,and variation of friction angle, dilatancy angle and void ratio.It is noted that this analysis is applicable to cavity expansions from zero initial radius and finite initial radius simultaneously.The impacts of intermediate principal stress on cavity expansion are examined by comparing the present solutions with results based on Mohr-Coulomb criterion.And the effects of initial state and critical friction angle on ratio of plastic radius,limit pressure,dilatancy etc.are explored.A set of charts have been provided for use in direct estimate of limit pressure and ratio of plastic to cavity radius as a function of soil state(relative density and initial stress state) for soils with the similar properties to Ottawa sands.
     3、The extended spatial mobilization plane theory(SMP) is adopted in consideration of the effect of intermediate principal stress on soil shear strength.Damage softening parameter, taken as degradation grads of material mechanics capacity,is introduced to depict the soils softening behavior after yielding.Rowe's Stress-dilatancy equation in combination with cohesion degradation expression by damage softening parameter is rewritten.It can simultaneously consider the bonding component in dilatant response of elastic-plastic soils and softening behavior due to structure degradation for cemented soils during cavity expansion.The cavity expansion problem is formulated in small strain in the elastic zone and large strain in the plastic zone.Based on the extended SMP criterion and stress-dilatancy relation,the governing equations of axisymmetric problem in the plane strain condition and the partial differential equations for the boundary-value problem of cavity expansion in frictional cohesive soils are established.Solutions of radial and hoop stresses and strains around an expanding cavity are obtained by recursive computations.The significance of consideration of the effect of intermediate principal stress is demonstrated by a comparative study between the present solution and current solution based on Mohr-Coulomb criterion. Also the influence of damage softening parameter,cohesion and friction angle is examined by a parametric study.The proposed solution presented here can be of interest for the interpretation of pressuremeter tests or pushing-in piles carried out in cohesive-frictional materials under drained condition.
     4,Numerical simulations of self-boring pressuremeter loading tests using ABAQUS are performed to assess the influence of limit length of SBP and strain range on undrained shear strength derived from pressuremeter curves.The numerical models are built where soils behavior is depicted by modified Cam model,and low coefficients of permeability are chosen to control undrained conditions during expansion.The pressuremeter curves are obtained from numerical simulation of SBPTs for ratio of length to diameter L/D values of 6,10,15, 20 and various overconsolidation OCR range from 1 to 20.According to Gibson's analysis, the undrained shear strength using the least squares method is determined from the several chosen strain ranges.The ratio between the undrained shear strength obtained with infinite L/D and the value with various L/D is defined as correction factor,which are obtained from several strain ranges.It is observed that strain range over which the pressuremeter curve is fitted has little influence on derivation of the correction factors,while it has significant influence on undrained shear strength.And further,strain ranges of deriving undrained shear strength are proposed for different overconsolidation ratio by comparing finite element results for L/D=∞with analytical solution(Cao et al.) based on modified Cam clay model.
     5,Based on elastic-perfectly plastic Drucker-Prager model,analysis of holding tests using FEM is carried out to illuminate the applied conditions of commonly used a closed-form solution proposed by Randolph and Wroth through investigating the effects of pressuremeter geometry,the strain rate,permeability coefficient and the cavity strain level on partial drainage during cavity expansion,distribution of excess pore pressure,dissipation of excess pressure during SHT.Moreover,based on the results of numerical analyses,strain rate is proposed and the values of time factor T_(50) provided by Randolph el al.to estimate horizontal consolidation coefficient are modified in view of the effects of soil permeability and strain rate on partial undrained.Since stress relaxation during SHTs exists and significantly influences the decay of excess pore pressure,the value of T_(50) deduced by current solutions that ignore the soil theology can be inaccurate.The numerical analysis is performed considering stress relaxation during SHT based on coupling Drucker-Prager and time hardening theology model,where theology parameters are determined by clay rheological test. It is concluded that consideration of soil theology during SHT can speed the decay of excess pore pressure which is the combined results of the emergence of stress relaxation and changing distribution of excess pore pressure that tends to slow down dissipation.For lower coefficient of permeability,soil theology has more significant impact on decay of excess pore pressure.The influence of soil theology is assessed by computation of theology parameters variation within the range by the clay rheological tests for the case that s_u=48kPa,I_r=156.
引文
[1]Robertson P K.In situ testing and its application to foundation engineering[J].Canadian Geotechnical Journal,1986,23(4):573-594.
    [2]Yu Wenbing,Lai Yuanming,Zhu Yuanlin.In-situ determination of mechanical properties of frozen soils with the pressuremeter[J].Cold Regions Science and Technology,2002,34:179-189.
    [3]汪稔,胡建华.旁压试验在苏通大桥地质勘察工程中的应用[J].岩土力学,2003,24(6):887-891.
    [4]Ladanyi B.Borehole creep and relaxation tests in ice - rich permafrost[A].4th Canadian Permafrost Conference[C],Calgary,1982:406-415.
    [5]Ladanyi B,Johnston G H.Evaluation of in situ creep properties of frozen soils with the pressuremeter[A].2nd International Permafrost Conference[C],Yakutsk,1973:310-318.
    [6]马大杰,任君妃,袁斌波.旁压蠕变试验参数反演研究[J].路基工程,2007,134(5):11-13.
    [7]Yu H S.In situ soil testing:from mechanics to interpretation[A].Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization[C],Rotterdam,2004:3-38.
    [8]Wroth C P.The interpretation of in situ soil tests[J].Geotechnique,1984,34:449-489.
    [9]Jamiolkowski M.Research applied to geotechnical engineering[A].James Forrest Lecture.Proceedings of Institution of Civil Engineers[C],1988,Part 1,84:571-604.
    [10]Bishop R F,Hill R,Mott N F.The theory of indentation and hardness tests[A].Proceeding of Physics Society[C],1945,57:147-159.
    [11]Gibson R E,Anderson W F.In situ measurement of soil properties with the pressuremeter[J].Civil Engineering Public Works Review,1961,56:615-618.
    [12]Palmer A C.Undrained plane strain expansion of a cylindrical cavity in clay:a simple interpretation of the pressuremeter test[J].Geotechnique,1972,22(3):451-457.
    [13]Hughes J M O,Wroth C P,Windle D.Pressuremeter tests in sands[J].Geotechnique,1977,27(4):455-477.
    [14]Houlsby G T,Clarke B G,Wroth C P.Analysis of unloading of a pressuremeter in sand[A].Proc.2nd Int.Symp.Pressuremeter Marine Appl.[C],1986,ASTM SPT 950:245-264.
    [15]Houlsby G T,Carter J P.The effect of pressuremeter geometry on the results of tests in clays[J].Geotechnique,1993,43(4):567-576.
    [16]Ferreira R S,Robertson P K.Interpretation of undrained self-boring pressuremeter test results incorporating unloading[J].Canadian Geotechnical Journal,1992,29:918-928.
    [17]Randolph M F,Wroth C P.An analytical solution for the consolidation around a driven pile[J].International Journal for Numerical and Analytical Methods in Geomechanics,1979,3:217-229.
    [18]Sagaseta C,Houlsby G T,Norbury J,Wheeler A A.Quasi-static undrained expansion of a cylindrical cavity in clay in the presence of shaft frictionand anisotropic initical stresses[R].University of Oxford,1984.
    [19]Carter J P,Yeung S K.Analysis of cylindrical cavity expansion in a strain weakening material[J].Computers and Geotechnics,1985.1:161-180.
    [20]Yu H S.Cavity Expansion Theory and its Application to the Analysis of Pressuremeters[D](PhD Thesis).Oxford University,1990.
    [21] Yu H S, Houlsby G T. Finite cavity expansion in dilatant soil: loading analysis[J]. Geotechnique, 1991,41(2): 173-183.
    [22] Hill R. The Mathematical Theory of Plasticity[M]. Oxford University Press, 1950.
    [23] Chadwick P. The quasi-static expansion of spherical cavity in metals and ideal soils[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1959,12: 57-71.
    [24] Ladanyi B. Expansion of a cavity in a saturated clay medium[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1963,90(SM4): 127-161.
    [25] Vesic A S. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division ASCE, 1972, 98(SM3): 265-290.
    [26] Cater J P, Booker J P, Yeung S K. Cavity expansion in cohesive frictional soils[J]. Geotechnique, 1986, 41(4): 173-183.
    [27] Bigoni D, Laudiero F. The quasi-static finite cavity expansion in a non-standard elasto-plastic medium[J]. International Journal of the Mechanical Sciences, 1989, 31(11/12): 825-837.
    [28] Collins I F, Stimpson J R. Similarity solutions for drained and undrained cavity expansions in soils[J]. Geotechnique, 1994,44 (1): 21-44.
    [29] Collins I F, Yu H S. Undrained cavity expansion in critical state soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(7): 489-516.
    [30] Yu H S, Carter J P. Rigorous similarity solutions for cavity expansion in cohesive-frictional soils[J]. International Journal of Geomechanics, 2002, 2(2): 233-258.
    [31] Collins I F, Wang Yan. Similarity solutions for quasistatic expansion of cavities in frictional materials[R]. Research Report, The University of Auckland, 1990, No.489.
    [32] Cao L F, Teh C I, Chang M F. Undrained cavity expansion in modified Cam clay I : Theoretical analysis[J]. Geotechnique, 2001, 51(4): 323-334.
    [33] Salgado R, Randolph M F. Analysis of cavity expansion in sand[J]. The International Journal of Geomechanics, 2001, 1(2): 175-192.
    [34] Cao L F, Teh C I, Chang M F. Analysis of undrained cavity expansion in elasto-plastic soils with non-linear elasticity[J]. Int J Numer Anal Meth Geomech, 2002, 26: 25-52.
    [35] Mantaras F M, Schnaid F. Cylindrical cavity expansion in dilatant cohensive-frictional materials [J]. Geotechnique, 2002, 52(5): 337-348.
    [36] Schnaid F, Mantaras F M. Cavity expansion in cemented materials: structure degradation effects[J]. Geotechnique, 2003, 53(9): 797-807.
    [37] Russell A R, Khalili N. Drained cavity expansion in sands exhibiting particle crushing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 323-340.
    [38] Durban D, Baruch M. On the problem of a spherical cavity in an infinite elasto-plastic medium[J]. Journal of Applied Mechanics ASME, 1976, 43(4): 633-638.
    
    [39] Yu H S. Expansion of a thick cylinder of soils[J]. Computers and Geotechnics, 1992,14: 21-41.
    [40] Yu H S, Houlsby G T. Finite cavity expansion in dilatant soils: loading analysis[J]. Geotechnique, 1991,41(2): 173-183.
    
    [41] Yu H S, Herrmann L R, Boulanger R W. Analysis of steady cone penetration in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(7): 594-605.
    [42]Baligh M M.Cavity expansion in sands with curved envelopes[J].Journal of Geotechnical Engineering Division ASCE,1976,102(GT11):1131-1146.
    [43]Yu H S.State parameter from self-boring presuremeter tests in sand[J].Journal of Geotechnical Engineering,ASCE,1994,120(12):2118-2135.
    [44]Collins I F,Pender M J,Wang Y.Cavity expansion in sands under drained loading conditions[J].International Journal for Numerical and Analytical Methods in Geomechanics,1992,16(1):3-23.
    [45]Russell A R,Khalili N.Cavity expansion in unsaturated sands[A].Proceedings of the 4th European Congress on Computational Methods in Applied Science and Engineering[C],Jyvaskyla,2004a.
    [46]Russell A R,Khalili N.A bounding surface plasticity model for sands exhibiting particle crushing[J].Canadian Geotechnical Journal,2004b,41:1179-1192.
    [47]Russell A R,Khalili N.On the problem of cavity expansion in unsaturated soils[J].Comput Mech,2006,37:311-330.
    [48]张季如.砂性土内球形孔扩张的能量平衡分析及其应用[J].土木工程学报,1994,27(4):37-44.
    [49]张季如.饱和紧密砂土在扩张压力下的超孔隙水压力估算[J].武汉工业大学学报,1995,17(2):94-96.
    [50]张季如.高应力粒状土中球形孔的扩张问题[J].岩石力学与工程学报,2002,21(8):1209-1214.
    [51]蒋明镜,沈珠江.考虑材料应变软化的柱孔扩张问题[J].岩土工程学报,1995,17(4):10-19.
    [52]蒋明镜,沈珠江.岩土类软化材料的柱形孔扩张统一解问题[J].岩土力学,1996,17(1):1-8.
    153]蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    [54]王家来,熊巨华.应变软化土体中柱形扩孔解析[J].应用力学学报,1999,16(4):58-62.
    [55]王延斌,范文,徐柱强.基于统一强度理论的柱形孔扩张问题研究[J].岩土力学,2003,24(增):125-132.
    [56]温世游,陈云敏,凌道盛等.考虑材料剪胀性的球形空腔扩张问题的弹塑性分析[J].中国有色金属学报,2002,12(2):382-387.
    [57]杜明芳,肖昭然,张昭.饱和土体圆孔扩张的弹塑性解析解[J].土工基础,2004,18(3):34-38.
    [58]汪鹏程,朱向荣.考虑中间主应力影响的土中孔扩张问题精确相似解[J].水利学报,2004,(11):68-73.
    [59]朱小林,唐世栋.利用孔隙水压力-静力触探探头估算软黏土固结系数的理论分析[J].工程勘察,1986,6:8-12.
    [60]杜文山.用孔压锥探(CPTU)消散试验推求饱和黏土性参数的研究报告[A].全国第三届原位测试学术讨论会[C],北京,1988:32-50.
    [61]张诚厚,Gert G.用孔压圆锥消散试验测定固结系数的方法[J].岩土工程学报,1991,13(2):51-62.
    [62]龚晓南,王启铜,罗晓.拉压模量不同材料的圆孔扩张问题[J].应用力学学报,1994,11(4):127-133.
    [63]罗战友,杨晓军,龚晓南.考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题[J].工程力学,2004,21(2):40-45.
    [64]罗嗣海,侯龙清,胡中雄等.预钻孔孔径对部分挤土桩挤土效应得影响研究[J].岩土力学,2002,23(2):222-224.
    [65]徐书平,刘祖德,凡红等.考虑扰动的饱和软黏土圆柱孔扩张弹塑性解[J].岩土力学,2007,28(7):1505-1510.
    [66]胡伟,刘明振.非饱和土中球形孔扩张的弹塑性分析[J].岩土工程学报,2006,28(10):1292-1297.
    [67]徐芝纶.弹性力学[M].北京:人民教育出版社,1979.
    [68]Baguelin F,Jezequel J F,Shields D H.The pressuremeter and foundation engineering(Series on Rock and Soil Mechanics)[M].Trans Tech Pubn,1978.
    [69]Manassero M.Stress-strain relationships from drained self-boring pressuremeter tests in sand[J].Geotechnique,1989,39(2):293-308.
    [70]Yu H.S.State parameter from self-boring pressuremeter tests in sands[J].Journal of Geotechnical Engineering ASCE,1994,120(12):2118-2135.
    [71]Yu H S.Cavity Expansion Methods in Geomechanics[M].The Netherland:Kluwer Academic Publishers,2000.
    [72]唐贤强,谢瑛,谢树彬等.地基工程原位测试技术[M].北京:中国铁道出版社,1993.
    [73]黄熙龄等.旁压试验及粘性土变形模量的测定[A].中国土木工程学会第一届土力学及基础工程学术会议[C],1964.
    [74]孙勇.旁压机理的实验分析[D](硕士学位论文).长沙:长沙铁道学院,1986.
    [75]姜前,陈映南,蒋崇伦.旁压试验的临界深度[J].勘察科学技术,1989,(3):10-13.
    [76]姜前,陈映南,蒋崇伦.旁压土体应力路径及非线性分析[J].长沙铁道学院学报,1988,6(2):1-8.
    [77]张喜珠.旁压试验换算曲线法在工程勘察中应用[J].勘察科学技术,2004,(3):42-46.
    [78]陈泰昌.旁压试验规程背景概述[J].勘查科学技术,1987,(3):11-13.
    [79]陈追田,周国金.旁压试验V0问题讨论[J].岩土工程界,2007,10(11):57-58.
    [80]沈国荣.旁压结果预估基础的沉降和承载力[D](硕士学位论文).成都:西南交通大学,1986.
    [81]赵善锐.旁压试验及其工程应用[M].成都:西南交通大学出版社,1987.
    [82]朱小林,陈文才,张剑锋.利用旁压试验分析设计横向受荷桩[J].岩土工程学报,1991,13:1-10.
    [83]中华人民共和国国家标准.岩土工程勘察规范(GBJ50021-1994)[S].北京:中国建筑工业出版社,1995.
    [84]中华人民共和国电力行业标准.水电水利工程钻孔土工试验规程(DL/T 5354-2006)[S].北京:中国电力出版社.2006.
    [85]唐世栋,林华国.上海地区偏铲侧胀试验与其他原位试验结果的相关性分析[J].岩土力学,2005,26(3):392-396.
    [86]杜学玲,杨俊彪,张喜发.沙漠砂抗剪强度指标与原位测试指标关系研究[J].岩土力学,2005,26(5):837-839.
    [87] Yeung S K, Carter J P. Interpretation of the pressuremeter test in clay allowing for membrane end effects and material non-homogeneity[A]. Proceedings of 3rd International Symposium on Pressuremeters[C], Oxford, 1990: 199-208.
    [88] Jewell R J, Fahey M, Wroth C P. Laboratory studies of the pressuremeter test in sand[J]. Geotechnique, 1980, 30(4): 507-531.
    [89] Laier J E. Effects of pressuremeter probe length/diameter ratio and borehole disturbance on pressuremeter test results in dry sand[D] (Ph.D Thesis). Florida: University of Florida, 1973.
    [90] Fahey M A. Study of the pressuremeter test in dense sand[D] (PhD Thesis). University of Cambridge, 1980.
    [91] Ajalloeian R, Yu H S. Chamber studies of the effects of pressuremeter geometry on test results in sand[J]. Geotechnique, 1998, 48(5): 621-636.
    [92] Shuttle D. Cylindrical cavity expanion and contraction in Tresca soil[J]. Geotechnique, 2007, 57(3): 305-308.
    [93] Prevost J H, Hoeg K. Analysis of pressuremeter in strain softening soil. Journal of Geotechnical Engineering, ASCE[J]. 1975, 101(GT8): 717-732.
    [94] Denby G M, Clough G W. Self-boring pressuremeter tests in clay [J]. Journal of Geotechnical Engineering, ASCE, 1980,106(12): 1369-1387.
    [95] McDowell G R, Bolton M D. On the micromechanics of crushable aggregates[J]. Geotechnique, 1998, 48(5): 667-679.
    [96] Konrad J M. Sand state from cone penetrometer tests: a framework considering grain crushing stress[J]. Geotechnique, 1998, 48(2): 201-215.
    [97] Pyrah I C, Anderson W F. Numerical assessment of self-boring pressuremeter tests in a clay calibration chamber[A]. Proceedings of ISP3[C], 1990:179-188.
    [98] Prapaharan S, Chameau J L, Holtz R D. Effect of strain rate on undrained strength derived from pressuremeter tests[J]. Geotechnique, 1989, 39(4): 615-624.
    [99] Jefferies M G. Determination of horizontal geostatic stress in clay with self-bored pressuremeter[J]. Canadian Geotechnical Journal, 1988, 25: 559-573.
    [100] Houlsby G T, Withers N J. Analysis of the cone pressuremeter test in clay[J]. Geotechnique, 1988, 38: 575-587.
    [101] Clarke B G. The interpretation of self-boring pressuremeter tests to produce design parameters [M]. London: Thomas Telford, 1993: 156-172.
    [102] Yu H S, Collins I F. Analysis of self-boring pressuremeter tests in overconsolidated clays[J]. Geotechnique, 1998,48(5): 689-693.
    [103] Borsetto M, Imperato L, Nova R et al. Effects of pressuremeters of finite length in soft clay[A]. Proc. Int. Symp. In Situ Testing[C], Paris, 1983, 2: 211-215.
    [104] Yeung S K. Application of cavity expansion model in geotechnical engineering[D] (PhD Thesis). University of Sydney, 1988.
    [105] Yu H S. A new procedure for obtaining design parameters from pressuremeter tests[J]. Australian Civil Engineering Transactions, 1993a, CE35(4): 353-359.
    [106] Yu H S. Interpretation of pressuremeter unloading tests in sands[J]. Geotechnique, 1996, 46(1): 17-31.
    [107]Shuttle D A,Jefferies M G.A practical geometry correction for interpreting pressuremeter tests in clay[J].Geotechnique,1995,45(3):549-553.
    [108]Yu H S,Charles M T,Khong C D.Analysis of pressuremeter geometry effects in clay using critical state models[J].International Journal for Numerical and Analytical Methods in Geomechanics,2005,29:845-859.
    [109]Fioravante V,Jamiolkowski M,Lancellotta R.An analysis of pressuremeter holding tests[J].Geotechnique,1994,44(2):227-238.
    [110]Jang I S,Chung C K,Kim M M,Cho S M.Numerical assessment on the consolidation characteristics of clays from strain holding,self-boring pressuremeter test[J].Computers and Geotechnics,2003,30:121-140.
    [111]张新兵,陈映南,姜前.成层土的旁压特性[J].长沙铁道学院学报,1994,12(3):8-12.
    [112]周明星,姜前.旁压试验的有限元分析[J].岩土工程学报,1993,15(4):66-71.
    [113]Jamiolkowski M,Ladd C C,Germaine J T,et al.New developments in field and laboratory testing of soils[A].Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering[C],1985,1:57-154.
    [114]Mair R J,Wood D M.Pressuremeter Testing,Methods and Interpretation[R].CIRIA Report,London,1987.
    [115]Jardine R J.Nonlinear stiffness parameters from undrained pressuremeter tests[J].Canadian Geotechnical Journal,1992,29(3):436-447.
    [116]Bolton M D,Whittle R.W.A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests[J].Geotechnique,1999,49(1):133-141.
    [117]Ladanyi B,Johnston G H.Behaviour of circular footings and plate anchors embedded in permafrost[J].Canadian Geotechnical Journal,1974,11:531-553.
    [118]Baguelin F,Jezequel J F,Lemee E,et al.Expansion of cylindrical probe in cohesive soils[J].Journal of the Soil Mechanics and Foundations Division,ASCE,1972,98(11):1129-1142.
    [119]Ladanyi B.In situ determination of undrained stressstrain behaviour of sensitive clays with the pressuremeter[J].Canadian Geotechnical Journal,1972,9(3):313-319.
    [120]Morrison J L M.The criterion of yield of Gun steel[A].Proceedings of the Institution of Mechanical Engineers[C],1948,159:81-94.
    [121]Clarke B G,Carter J P,Wroth C P.In situ determination of the consolidation characteristics of saturated clays[A].Proceedings of 7th European Conference on Soil Mechanics[C],1979,2:207-213.
    [122]Carter J P,Randolph M F,Wroth C P.Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity[J].International Journal for Numerical and Analytical Methods in Geomechanics,1979,3:305-323.
    [123]Fahey M,Carter J P.Some effects of rate of loading and drainage on pressuremeter tests in clays[A].Proceedings of Speciality Geomechanics Symposium[C],Adelaide,1986:50-55.
    [124]Rangeard D,Hicher P Y,Zentar R.Determining soil permeability from pressuremeter tests[J].International Journal for Numerical Analytical Methods in Geomechanics,2003,27:1-24.
    [125]王长科.饱和黏性土旁压固结试验[J].工程勘察,1994,(1):20-22.
    [126]Clarke B G.In Situ Testing of Clay Using Cambridge Self-Boring Pressuremeter[D](PhD Thesis).Cambridge University,1981.
    [127]Benoit J.Analysis of Self-Boring Pressuremeter Tests in Soft Clay[D](PhD Thesis).Stanford University,1983.
    [128]Wroth C P.British experience with the self-boring pressuremeter[A].Proceedings of the Symposium of Pressuremeter and its Marine Applications[C],Paris:Editions Technip,1982:143-164.
    [129]Wroth C P,Randolph M F,Houlsby G T,et al.A review of the engineering properties of soils with particular reference to the shear modulus[R].Cambridge University Report CUED/D Soils TR75,1979.
    [130]Hardin B O.The nature of stress-strain behaviour of soils[A].Proceedings of ASCE Geotechnical Engineering Specialty Conference[C],California,1978:3-90.
    [131]Yu P,Richart F E.Stress ratio effects on shear moduli of dry sands[J].Journal of Geotechnical Engineering,ASCE,1984,110(3):331-345.
    [132]Byrne P M,Salgado F M,Howie J A.Relationship between the unload shear modulus from pressuremeter tests and the maximum shear modulus for sand[A].Proceedings of ISP3[C],Oxford,1990:231-241.
    [133]Clarke B G.Pressuremeter in geotechnical design[M].London:Chapman & Hall,1995.
    [134]Sousa Coutinho A G F.Radial expansion of cylindrical cavities in sandy soils:application to pressuremeter tests[J].Canadian Geotechnical Journal,1990,27:737-748.
    [135]Withers N J,Howie J,Hughes J M O,et al.Performance and analysis of cone pressuremeter tests in sands[J].Geotechnique,1989,39(3):433-454.
    [136]Houlsby G T,Yu H S.Finite element analysis of the cone pressuremeter test[A].Proceedings of the 3rd International Symposium on Pressuremeters[C],Oxford,1990:201-208.
    [137]Yu H S,Houlsby G T.A large strain analytical solution for cavity constraction in dilatant soils[J].International Journal for Numerical Analytical Methods in Geomechanics,1995,19(11):793-811.
    [138]Wroth C P,Bassett N.A stress-strain relationship for the shearing behaviour of sand[J].Geotechnique,1965,15(1):32-56.
    [139]Been K,Jefferies M G.A state parameter for sands[J].Geotechnique,1985,35(2):99-112.
    [140]Hsieh Y.M,Whittle A J,Yu H S.Interpretation of pressuremeter tests in sand using advanced soil model[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(3):274-278.
    [141]Been K,Crooks J H A,Becker D E,et al.The cone penetration test in sand:Ⅱ general inference of state[J].Geotechnique,1987,37(3):285-299.
    [142]李广信.用旁压试验求Duncan双曲线模型的参数[J].勘测科学技术,1986,5:25-29.
    [143]刘小生,汪小刚,马怀发等.旁压试验反演邓肯-张模型参数方法研究[J].岩土工程学报,2004,26(5):601-606.
    [144]刘小生,刘启旺,王钟宁等.联合室内和现场试验确定土体本构模型参数方法研究[J].中国水利水电科学研究院学报,2006,4(3):220-224.
    [145]Briand J L,Lytton R L,Hung J T.Obtaining moduli from cyclic pressuremeter tests[J].J.Geotech.Eng.,Proc.ASCE,1983,109:657-665.
    [146]汪鹏程.软化剪胀土中孔扩张理论及沉桩挤土性状研究[D](博士学位).杭州:浙江大学,2005.
    [147]Rowe P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[A].Proceedings of the Royal Society[C],1962,269:500-527.
    [148]Rowe P W.Stress-dilatancy,earth pressure and slopes[J].Journal of Soil Mech.Found.Div.,ASCE,1963,89(SM3):37-61.
    [149]Matsuoka H,Nakai T.Stress-deformation and strength characteristics of soil under three difference principal stresses[J].Proc.of Japan Society of Civil Engineers,1974,232:59-70.
    [150]Matsuoka H,Sun D A.Extension of spatially mobilized plane(SMP) to friction and cohesive materials and its application to cemented sands[J].Soils and foundations,1995,35(4):63-72.
    [151]Nakai T,Matsuoka H.A generalized elastoplastic constitutive model for clay in three dimensional stresses[J].Soil and foundation,1986,26(3):81-98.
    [152]Matsuoka H.Prediction of plane strain strength for soils from triaxial compression[A].Proc.of 10th International Conference on Soil Mechanics and Foundation Engineering[C],Stockholm,1981,5:672-683.
    [153]Matsuoka H,Yao Y P,Sun D A.The Cam-clay models by the SMP criterion[J].Soils and Foundations,1999,39(1):81-95.
    [154]连镇营,韩国城,姚仰平.基于SMP准则的改进剑桥模型及其在基坑工程中应用[J].大连理工大学学报,2002,42(1):93-97.
    [155]姚仰平,罗汀.新的变换应力空间及其应用[A].第七届全国岩土力学数值分析与解析方法讨论会论文集[C],大连:大连理工大学出版社,2001:16-21.
    [156]罗汀,姚仰平,松岗元.基于SMP准则的土的平面应变强度公式[J].岩土力学,2000,21(4):390-393.
    [157]栾茂田,许成顺,刘占阁等.一般应力条件下土的抗剪强度参数探讨[J].大连理工大学学报,2004,44(2):271-276.
    [158]李亮,赵成刚.基于SMP破坏准则的土体弹塑性动力本构模型[[J].工程力学,2005,22(3):139-143.
    [159]师子刚,罗汀.土的三重屈服面应力-应变模型与SMP准则的结合[J].岩土力学,2006,27(1):127-131.
    [160]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997.
    [161]Stake M.Stress-deformation and strength characteristics of soils under three difference principal stresses(Discussion)[J].Proc of Japan Soc of Civil Eng,1976,246:137-138.
    [162]Taylor D W.Fundamentals of soil mechanics[M].New York:John Wiley & Sons,1948
    [163]Josselin de Jong G.Rowe's stress-dilatancy relation based on friction[J].Geotechnique,1976,26(3):527-534.
    [164]Bolton M D.The strength and dilatancy of sands[J].Geotechnique,1986,36(1):65-78.
    [165]Cole E R L.Soils in the S.S.A[D](Ph.D Thesis).Cambridge University,1967.
    [166]Roscoe K H.Discussion on shear strength of soil other than clay[A].Proc.geotechnical Conf.[C],1967,2:188-192.
    [167]迟世春,贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正[J].岩土工程学报,2005,27(11):1266-1269.
    [168]Rowe P W.The relation between the shear strength of sands in triaxial compression,plane strain and direct shear[J].Geotechnique,1969,19(1):75-86.
    [169]Rowe P W.Theoretical meaning and observed values of deformation parameters for soil:stress-strain behavior of soils[A].Proceedings Roscoe Memorial Symposium[C],1971:143-195.
    [170]Cater J P,Booker J P,Yeung S K.Cavity expansion in cohensive frictional soils[J].Geotechnique,1986,36(3):349-358.
    [171]Russell A R,Khalili N.Drained cavity expansion in sands exhibiting particle crushing[J].International Journal for Numerical Analytical Methods in Geomechanics,2002,26:323-340.
    [172]李波,栾茂田.基于SMP破坏准则的柱形孔扩张问题理论分析[J].大连理工大学学报,2006,46(2):246-251.
    [173]汪鹏程,朱向荣,方鹏飞.考虑土应变软化及剪胀特性的大应变球孔扩张问题[J].水利学报,2004,(9):78-82.
    [174]王晓鸿,王家来,梁发云.应变软化岩土材料内扩孔问题解析解[J].工程力学,1999,16(5):71-76.
    [175]范文,俞茂宏,陈立伟.考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J].工程力学,2004,21(5):16-24.
    [176]Salgado R,Mitchell J K,Jamiolkowski M.Cavity expansion and penetration resistance in sand[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(4):344-354.
    [177]Salgado R.,Randolph M.F.Analysis of cavity expansion in sand[J].The International Journal of Geomechanics,2001,1(2):175-192.
    [178]Salgado R.,Mitchel J.K.,Jamiolkowski M.Cavity expansion and penetration resistance in sand[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(8):726-735.
    [179]Frantziskonis G,Desai C S.Constitutive model with strain softening[J].International Journal of Solid Structure,1987,23(6):733-750.
    [180]姜珂.考虑软黏土结构性损伤的静压桩沉桩规律分析[D](博士学位论文).杭州:浙江大学,2003.
    [181]徐秉业,刘信声.应用弹塑性力学[M].清华大学出版社,1995:530-533.
    [182]Schnaid F.A Study of the Cone Pressuremeter Test in Sand[D](PhD Thesis).Oxford University,1990.
    [183]Cuccovillo T,Coop M.The influence of bond strength in the mechanics carbonate soft rocks[A].Proceedings international symposium on geotechnical engineering of hard soils-soft rocks[C],Balkema,Rotterdam,1993,1:447-455.
    [184]Coop M,Atkinson J.The mechanics of cemented carbonate sands[J].Geotechnique,1993,43(1):53-67.
    [185]Cuccovillo T,Coop M.On the mechanics of structured sands[J].Geotechnique,1999,49(4):349-358.
    [186]Schnaid F,Prietto P D M,Consoli N C.Characterization of cemented sand in triaxial compression[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(10):857-868.
    [187]Ladanyi B.In situ determination of undrained stress strain behaviour of sensitive clays with the pressuremeter[J].Canadian Geotechnical Journal,1972,9(3):313-319.
    [188]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111.
    [189]Teh C I,Houlsby G T.An analytical study of the cone penetration test in clay[J].Geotechnique,1991,41(1):17-34.
    [190]Torstensson B A.The pore pressure probe[A].Proc.Geot-eknikkedagen[C],Norway,1977,34:1-15.
    [191]Van den Berg P.Analysis of Soil Penetration[D](PhD Thesis).Delft University,1994.
    [192]Roy M.Development of pore pressure in quasi-static penetration test in sensitive clay[J].Canadian Geotechnical Journal,1982,19(2):150-155.
    [193]Torstensson B A,The pore pressure sounding instrument[A].ASCE Specialty Conference on In-situ Measurement of Soil Properties[C],Raleigh,NC,1975:48-55.
    [194]Gupta R C,Davidson J L.Piezoprobe determined coefficient of consolidation[J].Soils and Foundations,1986,26(3):12-22.
    [195]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [196]中国中铁四局集团有限公司,安徽建筑工业学院.地铁区间隧道和车站安全快速施工关键技术研究-土体流变试验研究报告[R].2007,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700