杭州湾沉积物原位声学特性分析及浅表低速层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位声学测试技术是当前国际海底沉积物声学研究的前沿和热点。国内研究相对较少。论文依托国家“863”计划“海底声学原位测试系统”,对多频原位声学探测,数据处理,原位声学正、反演,浅表低速层形成因素及其声学特性,杭州湾中尺度地声模型及原位声学特性与沉积物物理力学参数之间的关系进行了详细研究。
     建立了互相关双向极值速度提取方法并将小波变换首次应用到了原位声学测量数据处理中。通过杭州湾原位声学测量理论模型反演分析,探讨了各种海底沉积物模型的适用性,并对声波波场进行了正演。介绍了BICSQS模型,并将该模型首次应用到杭州湾原位声学测量反演中。首次从理论模型上对近岸浅表低速层的形成因素及声学特性进行了分析。在研究区域发现了一种不同于前人研究结果的中尺度地声模型,并详细研究了杭州湾原位声学特性与沉积物土工物理力学参数之间的关系。本文研究对海底声学基础理论、海洋近岸工程、海洋地质灾害和海洋军事都具有重要意义。
Acoustic characteristics and physical characteristics of seabed sediment is one of the hot issues of the current international forefront of marine science and research. Especially in situ acoustic detection technology is the forefront of current international seabed sediment acoustic science. Domestic research also relatively less. The paper rely on national "863" plan "submarine in situ acoustics measurement system", has studyed in detail in-situ multi-frequency acoustic detection technology, data processing, acoustic inversion and numerical simulaition in the Hangzhou Bay, the new model application, low-speed inshore seabed sediments Formation factors and acoustic characteristics, the middle scale of Hangzhou Bay, the relations between acoustic properties and mechanical parameters.
     1、Deployed the sediment in-situ acoustic measurements, geological samples, deck testing such as marine data acquisition in Jintang waterways in Hangzhou Bay and Zhapu two areas and carried out in situ P-wave velocity measurements of gas-bearing sediments and obtained the original data in Xiazhu Lake.
     2、Have set up a viable new speed picking-up method: sonic speed picking-up method based on maximum and minimun correlation. The method can obtain the correct speed values throuth the phase analyses when velocity anomaly.
     3、There are sharp pulse signal and analogous valid signal two noise signal. Sharp impulse noise can be eliminated throughFourier Transform, but because of the high degree of self-similarity between analogous valid signal and valid signal, it is difficult to remove through Fourier Transform, but it can seriously affect the acoustic velocity extraction. The wavelet analysis method was first introduced to the in-situ acoustic data processing, and has been very good to eliminate the effect of signal interference.
     4、Analyzed the inversion results of a variety of theoretical models in Jintang waterways of Hangzhou Bay and discussed the effects of different models in sediment acoustic measurement, and found: Biot and BISQ model Fit very good to velocity dispersion, and from 103 to 106 Hz can be seen as the transitional zone from high-frequency velocity limit to low-frequency velocity limit, and these are consistent with other domestic and international basic research results; The Biot model better fit the sound attenuation in the low frequency, and the high-frequency attenuation inversion is slightly lower than the measured values, and and BISQ model better fit in high-frequency attenuation, and in the low frequency band, measured attenuation slightly higher than BISQ inversion; Results from the Biot inversion indicates: in this region, bulk modulus of sediment particles is small, the sediment is loose, porosity is large and moisture is high, which are just the reasons of the low velocity in the region. Results from the BISQ inversion indicates: in this region, bulk modulus of sediment particles is small, squirt flow length is large, and the coupling density is high, which is due to the larger porosity and the sediments with a lot of fluid features; Contrast Biot and BISQ inversion results, we can see that the penetration rate inversed by BISQ is smaller than results inversed by Biot. As the pore and moisture content of sediments in this area is high, so it should be smaller permeability and BISQ inversion results should be more scientific.The inner particle shear model fit acoustic attenuation more closely with the measured linear attenuation changes with frequency, but the effect of sonic speed fitting is not very satisfactory. From the above it can be seen that various acoustic model are certain flaws for the actual in-situ measurement results. This is mainly because the complex and ever-changing reality of the sediment can not be fully simulated. This is consistent with the results which show that the sonic velocity and attenuation changing with frequency is diversiform.
     5、Based on BISQ theory, simulate waves spread of the in-situ acoustic measurement using high-staggered grid finite difference numerical simulateion. Because of the only P-wave source, there are only fast and slow P-wave components in the seabed sediment. But because the velocity of slow P-wave is much slower than of fast P-wave, so usually in the in-situ measurement, within the intresting time the receiver receive only fast P-wave. In addition, by numerical simulation discuss the different performance of the received sonic pulse when source and receiver are in different locations.
     6、Introduce and enduce the BICSQS model, and for the first time, the model is applied to the inversion of in situ acoustic measurements. BICSQS model can explain the difference between different results of sediment acoustic measurement.
     7、For The first time, study the formation, impact factors and acoustic characteristics of the shallow inshore low-speed layer. And combining with the acoustic dispersion in two-phase media, has redefined the conception of low-speed layer.Through numerical simulation, found that the penetration rate is no contribution, and gas content in the porosity, sediment particles mineral composition, Biot curvature factor of the sediment structure have important implications to the formation of low-speed layer. And have discussed the effects of these parameters to sonic velocity and attenuation.The model can be explained the different manifestations of the acoustic characteristics of low-speed layer. Make in situ acoustic data inversion using the model in Hangzhou Bay and Xiazhu Lake.Hangzhou Bay inversion results show that: the Hangzhou Bay sediments are saturated water and non-free gas sediments; in the sediment particles, the main mineral composition is clay mineral and quartz mineral composition is only 25% -35%; Biot curvature factor is great, the distance between porosity is about two times of the straight line distance, that is due to the Stackable loose of shallow surface sediments; Mineral composition and sedimentary structure are important reasons led to low speed in the region. Xiazhu Lake inversion results show that: the regional sediment’s pore contains 0.3 of free gas, and mineral composition of the sediment contains little quartz content, which also contribute to low sonic speed; And found that the theory attenuation values are slightly lower than the measured values, and this should because that the model does not consider the relative movement between free gas and pore fluid and the gas bubble breakdown and overflow due to free gas pressure changes in the process of acoustic propagation.
     8、Re-processing in-situ acoustic data based on the new method, and combining physical and mechanical parameters of the sediment, then found a new shallow middle scale model: low - high speed - low - high speed model. And because of the smaller scale, apart from the sea into and the sea retrea in big regiont, local scope of the current campaign could also result in sediment varied and different acoustic model. Examine in the Hangzhou Bay the sediment acoustic properties and the mechanical properties, found that: Wet density, porosity, water content, liquid limit, plastic limit are good correlation with P-wave velocity. Particle density, internal friction angle and cohesion are poor correlation with the P-wave velocity; The non-linear regression formula is different with study area; Multiple regression correlation coefficient is about 5-10% higher than the single parameter regression equation; Density and porosity, water content and porosity, water content and liquid limit are better correlation with P-wave speed; Density, porosity and water content have played a very important role to the P-wave velocity change; And for practical applications, two or three regression has been sufficiently represent the relations between acoustic characteristics and sediment physical and mechanical parameter in experience.
     In this paper, a more systematic study of seafloor sediments in situ acoustic measurement, processing, inversion model, acoustic wave numerical simulation, analysis of the theoretical low-speed layer models and relatios between acoustic and physical and mechanical parameters of sediments in Hangzhou Bay. As fewer domestic-related research, this paper developed China's research in the field to a certain extent, and study of low-speed layer, data processing, model inversion applicability and BICSQS application have some pioneering. The study has significance to basic theory of the submarine acoustics, inshore marine engineering, marine military affairs and marine geological disasters.
引文
1. Frazer, L. N.,Fu, S. S.. Seabed sediment attenuation profiles from a movable sub-bottom acoustic vertical array [J]. Journal of the Acoustical Society of America,1999,106(1):120-130.
    2. Fu, S. S.. The Experimental Study of In Situ Acoustic Properties in Marine Sediments [E]. Ph. D. Dissertation,Department of Geology and Geophysics,University of Hawaii at Manoa,1998.
    3. 陶春辉,BAFFI, S.,WILKENS, R. H.,et al. Biot反演在夏威夷钙质沉积物原位测量声速和衰减重的应用 [J].海洋学报,2005,27(3):80-84.
    4. 陶春辉.海底沉积物声学原位测试和特性研究 [E].浙江大学,2005.
    5. 周建平,吕文正,陶春辉.海底柱状沉积物超声波测量 [J].东海海洋,2003,21(4):26-33.
    6. Fu, S. S.,Wilkens, R.H.,Frazer, L. N.. Acoustic lance:New in situ seafloor velocity profiles [J].Journal of the Acoustical Society of America,1996,99(1):234-242.
    7. Wilkens, R. H.,Richardson, R. D.. The influence of gas bubbles on sediment acoustic properties:in-situ,laboratory,and theoretical results from Eckernforde Bay,Baltic Sea [J]. Continental Shelf Research,1998,18:1859-1892.
    8. Voulgaris, G.,Wilkin, M. P.,Collins, M. B.. The in situ passive acoustic measurement of shingle movement under waves and currents:instrument(TOSCA)development and preliminary results [J]. Continental Shelf Research,15(10):1195-1211.
    9. Thorsos, E. T.,Williams, K. L.,Chotiros, N. P. et al.. An Overview of SAX99:Acoustic Measurements [J]. IEEE JOURNAL OF OCEANIC ENGINEERING,2001,26(1):4-25.
    10. Fu, S. S.,Tao, C. H. et al.. Acoustic properties of coral sands, Waikiki, Hawaii [J]. Journal of the Acoustical Society of America,2004,115(5):2013-2020.
    11. Buckingham, M J.,Richardson, M. D.. On tone-burst measurements of soundspeed and attenuation in sandy marine sediments [J]. IEEE Journal of Oceanic Engineering,2002,27(3):429-453.
    12. Barbagelata, A.,Richardson, M. D.,Miaschi, B. et al.. ISSAMS:An in situ sediment acoustic measurement system[A].Hovem, J. M,Richardson, M. Q.. Shear Waves in Marine Sediments[M].Dordrecht,the Netherlands,1991.305—312.
    13. Richardson, M. D..On the use of acoustic impedance values to determine sediment properties[A].Prle, N.G.,Langhorne D N.Acoustic Classification and Mapping of the Seabed[M].Bath,UK:Univesity of Bath,1993.15-24.
    14. 吴家仁,张卫.海洋沉积物特性的现场测量方法[J].海洋技术,1984,3(1):69-77.
    15. 张卫.沉积物声速现场测量装置[J].海洋技术,1984,3(3):25-30.
    16. 陶春辉,金肖兵,金翔龙等.多频海底声学原位测试系统研制和试用[J].海洋学报,2006,28(2):1-5.
    17. Gassmann, F.. über die elastizitat poroser medien. Vierteljahrsschr. Naturforsch [J]. Ges. Zuerich,1951,96:1–23.
    18. Biot, M.A.. General theory of three-dimensional consolidation [J]. J. Appl. Phys., 1941,12:155–164.
    19. Biot, M. A.. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range [J]. Journal of the Acoustical Society of America,1956,28:168-178.
    20. Biot, M. A.. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range [J]. Journal of the Acoustical Society of America,1956,28:179-191.
    21. Biot, M. A.. Generalized Theory of Acoustic Propagation in Porous Dissipative Media [J]. Journal of the Acoustical Society of America,1962,34:1254-1264.
    22. Biot, M. A.. Generalized Boundary Condition for Multiple Scatter in Acoustic Reflection [J]. Journal of the Acoustical Society of America,1962,42:1616-1622.
    23. 张应波. Biot理论应用于地震勘探的探索[J].石油物探,1994,33(4):29-38.
    24. 傅雪海,秦勇,姜波等.多相介质煤岩体力学试验研究[J].高校地质学报,2002,8(4):446-452.
    25. Nicholas, P.. An inversion for Biot parameters in water-saturated sand [J]. Journal of the Acoustical Society of America,2002,112(5):1853-1868.
    26. White, J. E. et a1.Low-frequency seismic waves in fluid-saturated layered rocks [J].Izvestija Academy of Sciences USSR , Phys Solid Earth,1975,11:654- 659.
    27. Plona, T. J.. Observation of a second bulk compression wave in a porous medium at ultrasonic frequencies [J]. Appl. Phys. Lett.,1980,36:259-261.
    28. McCann, C.,MeCann, D. M.. A theory of compressional wave attenuation in noncohesive sediments [J]. Geophysics,1985,50(1):1311-1317.
    29. Yamamoto, T.,Turgut, A.. Acoustic wave propagation through porous media with arbitrary pore size distributions [J]. Journal of the Acoustical Society of America,1988,88:1744-1751.
    30. Yamamoto, T.,Nye, T.,Kuru, M.. Porosity, permeability, shear strength:Crosswell tomography below an Iron foundry [J]. Geophysics,1994,59:1530-1541.
    31. Stoll, R. D.. Wave Attenuation in Saturated Sediments [J]. Journal of the Acoustical Society of America,1970,47:1440-1447.
    32. Stoll, R. D.. Bryan, G. M.. Wave attenuation in saturated sediments [J]. Journal of the Acoustical Society of America,1970,47:1440-1447.
    33. Stoll, R. D..Theoretical aspects of sound transmission in sediments [J]. Journal of the Acoustical Society of America,1980,68:1341-1350.
    34. Stoll, R. D.. Marine sediment acoustics [J]. Journal of the Acoustical Society of America,1985,77:1789-1799.
    35. Stoll, R. D.. Bryan, G. M.. Measuring lateral variability of sediment geoacoustic properties [J]. Journal of the Acoustical Society of America,1994,96:427-438.
    36. Stoll, R. D.. Comments on ‘Biot model of sound propagation in water saturated sand’ [J]. Journal of the Acoustical Society of America,1998, 103(5):2723-2725.
    37. Stoll, R. D.,Bautista, E. O.. Using the Biot theory to establish a baseline geoacoustic model for seafloor sediments [J]. Continental Shelf Research,1998,18:1839-1857.
    38. Stoll, R. D.. Velocity dispersion in water-saturated granular sediment [J]. Journal of the Acoustical Society of America,2002,111:785-793.
    39. Mavko, G. M.,Nur, A.. Wave attenuation in partially saturated rocks [J]. Geophysics,1979,44:161-178.
    40. Mavko, G. M.,Jizba, D.. Estimating grain-scale fluid effects on velocity dispersion in rocks [J]. Geophysics,1991,56:1940-1949.
    41. Wang, Z.,Nur, A.. Dispersion analysis of acoustic velocities in rocks [J]. Journal of the Acoustical Society of America,1990,87:2384-2396.
    42. Murphy III.,Winkler, K. W.,Kleinberg, R. B.. Acoustic relaxation in sedimentary rocks:Dependence on grain contacts and fluid saturation [J]. Geophysics,1986,51:757-766.
    43. Akbar, N.,Dvorkin, J.,Nur, A.. Relating P-wave and attenuation to permeability [J]. Geophysics,1993,58:20-29.
    44. Akbar, N.,Dvorkin, J.. Dynamic Gassmann’s Equation: Effects of Permeability and Partial Saturation [J].SEG,1993,12:801-804.
    45. Dvorkin, J.,Nur, A.. Dynamic poroelasticity:A unified model with he squirt and the Biot mechanisms [J]. Geophysics,1993,58:524-533.
    46. Dvorkin, J.,Akbar, N.,Mavko, G.. Dynamic Squirt Flow in Fully Saturated Rocks [J].SEG,1993,12:805-808.
    47. Dvorkin, J.,Mavko, G.,Nur, A.. Squirt flow ill fully saturated rocks [J]. Geophysics,1995,60:97-107.
    48. Dvorkin, J.,Nolen, H. R..,Nur, A.. The Squirt flow mechanism:Macroscopic description [J]. Geophysics,1995,59:428-438.
    49. Nicholas, P.,Chotiros, A.. A broadband model of sandy ocean sediments:Biot-Stoll with contact squirt flow and shear drag [J]. Journal of the Acoustical Society of America,2004,116(4):2011-2022.
    50. 门福禄. 波在饱和水孔隙介质中的传播[J].地球物理学报,1965,14(3):2-6.
    51. 门福录. 波在饱水孔隙粘弹介质中的传播[J].科学通报,1966,11(3):56-61.
    52. 门福录. 波在饱含流体的孔隙介质中的传播问题[J].地球物理学报,1981,24(1):65-76.
    53. 唐应吾. 弹性波在沉积物中的传播[J].地球物理学报,1975,18(4):269-278.
    54. 刘银斌,李幼铭,吴如山. 横向各向同性多孔介质中的地震波传播[J].地球物理学报,1994,37(4): 499-514.
    55. 牟永光.储层地球物理学[M].北京:石油工业出版社,1996.
    56. 郭建.双相介质中P波波场的有限差分声波模拟[J].石油地球物理勘探,1992,27(2):31-48.
    57. 刘洋,牟永光.双相各向异性介质中弹性波的传播特征[C].中国地球物理年会会刊,西安:西安地图出版社,1998.
    58. 刘洋, 李承楚.双相各向异性介质中弹性波传播特征研究[J].地震学报,1999,21(4): 367-373.
    59. 杨顶辉.孔隙各向异性介质中基于BISQ模型的弹性波传播理论及有限元方法[E].石油大学博士后研究报告,1998.
    60. 杨顶辉.基于固-流耦合作用各向异性的弹性波方程[J].中国学术期刊文摘(科技快报),2000,6(6):733-735.
    61. 杨顶辉、陈小宏.双相介质中基于固-流质量耦合密度各向异性的应力波方程[J].中国学术期刊文摘(科技快报),2000,6(1):75-77.
    62. 杨顶辉,陈小宏.含流体多孔介质的BISQ模型[J].石油地球物理勘探,2001,36(2):146-159.
    63. 朱建伟.含流体孔隙介质基于BISQ机制的弹性波波动方程及传播特性[E].长春科技大学,2000.
    64. 杨宽德,杨顶辉,王书强. 基于Biot-Squirt方程的波场模拟[J].地球物理学报,2002,45(6):853-861.
    65. 杨宽德,杨顶辉,王书强. 基于BISQ高频极限方程的交错网格法数值模拟[J].石油地球物理勘探,2002,37(5):463-468.
    66. 裴正林. 任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
    67. 裴正林. 双相各向异性介质弹性波传播交错网格高阶有限差分法模拟[J].石油地球物理勘探,2006,41(2):137-143.
    68. 李红星,刘 财,陶春辉. 基于BISQ模型地震波高阶交错网格有限差分数值模拟[J].石油地球物理勘探,2007,42(6):686-693.
    69. 李红星,刘 财,陶春辉. 基于BISQ模型的各向同性介质弹性波三维交错网格高阶有限差分数值模拟[J].世界地质, 2007,26(4):501-508.
    70. Hamilton, E.L.,Georoge, S.,Menard, H. W.,Shipex, C.J.. Acoustic and Other Physical Properties of Shallow-Water Sediments off San Diego [J]. Journal of the Acoustical Society of America,1956,28(1):1-15.
    71. Hamilton, E. L.. Low Sound Velocities in High-Porosity Sediments [J]. Journal of the Acoustical Society of America,1956,28(1):16-19.
    72. Hamilton, E. L.. Reflection coefficients and bottom losses an normal incidence computed from pacific sediment properties [J]. Geophysics,1970,35(6):995-1004.
    73. Hamilton, E. L.. Prediction of in-situ acoustic and elastic properties of marine sediments [J]. Geophysics,1971,36(2):266-284.
    74. Hamilton, E. L.. Compressional-wave attenuation in marine sediments [J]. Geophysics,1972,37(4):620-645.
    75. Hamilton, E. L.. Sound attenuation as a function of depth in the sea floor [J]. Journal of the Acoustical Society of America,1975,59(3):528-535.
    76. Hamilton, E. L.. Attenuation of shear waves in marine sediments [J]. Journal of the Acoustical Society of America,1976,60(2):334-338.
    77. Hamilton, E. L.. Shear-wave velocity versus depth in marine sediments:A Review [J]. Geophysics,1976,41(5):985-996.
    78. Hamilton, E. L.. Geoacoustic modeling of the sea floor [J]. Journal of the Acoustical Society of America,1980,68(5):1313-1340.
    79. Hamilton, E. L.,Bachman, R. T.. Sound velocity and related properties of marine sediments [J]. Journal of the Acoustical Society of America,1982,72(6):1981-1994.
    80. Anderson, R. S.. Attenuation of Low-Frequency Sound Waves in Sediments [J]. Journal of the Acoustical Society of America,1971,49(3):786-791.
    81. Anderson, R. S..Statistical correlation of physical properties and sound velocityin sediments[A].Physical of Sound in Marine Sediment [C].NY:Plenum Press,1974,481-518.
    82. 卢博,梁元博.浙江北仑港陆相沉积物物理力学与声学参数的对比研究[J].海洋通报,1991,10(5):37-44.
    83. 梁元博,卢博.海洋沉积物声学物理和土力学[J].地球科学进展,1991,6(6):42-43.
    84. 卢博,梁元博.海洋沉积物声速与其物理-力学参数的相关性[J].热带海洋,1991,10(3):96-100.
    85. 卢博.海底沉积物声速与物理性质[J].科学通报,1994,39:435-437.
    86. 卢博.海水-沉积物声速结构模式[J].海洋通报,1995,14:42-47.
    87. 卢博,黄绍健.声波在不同沉积物类型中传播的试验研究[J].南海研究与开发,1998,2:1-9.
    88. 卢博,黄韶健,李赶先等.在不同沉积物类型中的声速测量试验研究[J].海洋技术,2004,23(1):66-70.
    89. 卢博,李赶先,黄韶健等.中国黄海、东海、和南海北部海底浅层沉积物声学物理性质之比较[J].海洋技术,2005,24(2):28-33.
    90. 唐永禄.海底沉积物孔隙度与声速的关系[J].海洋学报,1998,20:39-43.
    91. 唐永禄.南海三海区海底沉积物物理性质及声学特性[J].海洋技术,1991,10:81-91.
    92. Hovem, J. M.,Ingram, G. D.. Viscous attenuation of sound in saturated sand [J]. Journal of the Acoustical Society of America,1979,66:1807-1812.
    93. Geli, L.,Pierre-Yves B.,Schmitt, D. P..Seismic propagation in permeable water-saturated layer [J]. J. Geophys. Res.,1987,92:7931-7944.
    94. Turgut, A.,Yamamoto, T.. Synthetic seismograms for marine sediments and determination of porosity and permeability [J]. Geophysics,1988,53:1056-1067.
    95. Ogushwitz, P. R.. Applicability of the Biot theory:II. Suspensions [J]. Journal of the Acoustical Society of America,1985,77:440-452.
    96. Ogushwitz, P. R.. Applicability of the Biot theory:III. Wave speeds versus depth in marine sediments [J]. Journal of the Acoustical Society of America,1985,77:443-464.
    97. Fu, S. S.,Wilkens, R. H.,Frazer, L. N.. A In Situ Velocity Profiles in Gassy Sediments:Kiel Bay [J]. Geo-Marine Letters,1996,16:294-253.
    98. Richardson, M. D.,Briggs, K. B.. In-situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments:Implications for high-frequency acoustic propagation and scattering [J]. Geo-Mar. Lett.,16:16-203.
    99. Thomas, J.,Gorgas,Wilkens, R. H. et al.. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments:Eel River shelf, California [J]. Marine Geology,2002,182:103-119.
    100. Gorgas, T. J.,Wilkens, R. H.,Fu, S. S.. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments [J]. Marine Geology,2002,82:103-119.
    101. 邓显明. 杭州湾浅层沉积物声学和物理特性研究[E].中国地质大学,2007.
    102. 中国海湾志编纂委员会.中国海湾志第五分册[M].北京:海洋出版社,1992.
    103. 李红星,陶春辉,刘 财等.海底声学原位测试声速提取技术研究[J].海洋科学进展,2007,25(4):474-479.
    104. 李红星,陶春辉,刘 财等. 多频海底声学原位测试信号消除干扰研究[J].吉林大学学报-地球科学版,2007,37(5):1034-1037.
    105. Gist, G. A.. Fluid effects on velocity and attenuation in sandstones [J]. Journal of the Acoustical Society of America,1994,96:1158-1173.
    106. Jones, M. S.. Pore fluids and frequency-dependent wave propagation in rocks [J]. Geophysics,1998,63:928-934.
    107. Wulff, A. M.,Burkhardt, H.. Mechanisms affecting ultrasonic wave propagation in fluid-containing sandstones under high hydrostatic pressure [J]. J. Geophy. Res.,1997,102(2):3043-3050.
    108. WILLIAMS, K. L.,JACKSON, D. R.,THORSOS, E. I. et al.. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on t he Biot theory of porous media [J]. IEEE Journal of Oceanic Engineering, 2002 ,27 (3) :413-428.
    109. WILLIAMS, K. L.,JACKSON, D. R.,THORSOS, E. I. et al. Acoustic backscattering experiment s in a well characterized sand sediment:data/ model comparisons using sediment fluid and Biot models [J]. IEEE Journal of Oceanic Engineering,2002,27 (3):376-387.
    110. Buckingham, M. J.. Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments [J]. Journal of the Acoustical Society of America,2000,108(6):2796-2815.
    111. Buckingham, M. J.. A three-parameter dispersion relationship for Biot’s fast compressional wave in marine sediment [J]. Journal of the Acoustical Society of America,2004,116(2):769-776.
    112. 董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探,1999,34(1):45-56.
    113. 董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报,2000,43(6):856-864.
    114. 刘 洋,李承楚,牟永光.任意偶数阶精度有限差分法数值模拟[J].石油地球物理勘探,1998,33(1):1-10.
    115. Dvorkin, J.,Prasad, M., Sakai, A. et al.. Elasticity of marine sediments [J]. Geophysical Research Letter,1999,26 (12):1781-1784.
    116. Prasad, M.,Dvorkin, J.. Velocity to porosity transforms in marine sediments [J]. Petrophysics,2001,42:429-437.
    117. Vanorio, T.,Prasad, M.,Nur, A.. Elastic properties of dry clay mineral aggregates,suspensions and sandstones [J].Geophysical Journal International,2003,155(1):319-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700