山区河流港口岩质边坡稳定性及支护仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区港口岩质边坡由于河水的大幅度升降而导致边坡地下水产生流动,并形成了一定的落差。在渗流场的影响下,岩质边坡的应力场也随之发生变化。使得岩质边坡不断的受到流固耦合作用的影响。因此,分析流固耦合对岩质边坡的影响,对于完善岩质边坡的稳定性理论具有重要意义,并可以在实际工程中提供一定的理论指导。岩质边坡在开挖过程中,开挖产生的卸荷效应造成岩质边坡的应力重分布,会对岩质边坡的稳定性产生一定的影响。因此在开挖过程中有必要对边坡的稳定性进行分析,并对稳定性较差的边坡采取一定的措施进行支护。
     本文的主要内容如下:
     1、对目前渗流分析的两种主要数值模拟方法(极限平衡法和有限元法)进行了详细的分析。根据港区边坡稳定性分析的特点,对分析模型进行了理论推导,建立了适合的数学模型;对现行的边坡稳定分析的极限强度法和有限元强度折减法进行了比较分析,推导出了应用于耦合分析的计算方法,并且给出了计算过程中的参数选取准则。
     2、结合重庆市长寿大件运输码头的具体水文地质条件,进行了数值模拟计算分析。计算模型根据现场地质勘探得到的数据建立,通过分析得出随着水位变动幅度的增加,岸坡滑体逐渐向纵深发展,并且产生的位移也越来越大。
     3、回水变动区内外的边坡滑体的滑动趋势不同,在回水变动区内,边坡滑动区内的滑体产生的位移都是从峰值逐渐减小到0。而回水变动区外,边坡滑体会从峰值突变为0。
     4、对岩质边坡进行分级开挖,并在开挖过程中采取开挖一级、支护一级的方式进行支护。运用强度折减法对开挖过程进行全面的仿真模拟,全面地反映了岩质边坡在边开挖边支护的过程中的位移变化规律,安全系数变化规律。为以后的工程实际提供指导。
The rock slope of mountain river port marked by the seepage . the sharp movements of river level can cause the groundwater flow slope ,which formed a certain gap. Under the influence of the seepage field, stress field of rock slope also will change. Those factors makes the rock slope under continuous fluid-solid coupling effects. Therefore, the analysis of fluid-structure interaction effects on the rock slope is important to improve the stability of rock slope theory, and can in practical engineering to provide a theoretical guide. During the excavationof rock slope, excavation unloading produced rock slope caused by stress redistribution, the stability of rock slope will be some impact. Therefore, during the excavation it is necessary to analyze slope stability, and poor slope stability measures should be taken by some support.
     The main contents are as follows:
     1, The paper give a detailed analysis about the current flow of the two main simulation methods (limit equilibrium method and the finite element method) . According to the characteristics of slope stability analysis port on the analysis model were derived, the suitable mathematical model was established; on the existing slope stability analysis and finite element ultimate strength strength reduction was compared, the calculation of coupling analysis was deduced, and the calculation of the parameters of the process of selection criteria was given .
     2, The paper combined with large transport terminal in Changshou the specific hydrogeological conditions, the numerical simulation was analysed. Computing model was based on data obtained from field geological exploration, the conclusion was obtained by analyzing the rate of change with the increase of water level, which slope sliding body gradually developing in depth, and resulting displacement is also growing.
     3,The sliding trend of landslide slope was different changes in within and outside backwater areas, slippery slope slip region can produce a displacement is gradually decreased from the peak to 0. The backwater areas of change, the slope slide from the peak experience of mutation to 0.
     4, Describes the slope engineering involved in the anchor bolt of the classification and supporting design methods. Excavate the rock slope step by step, and excavate one step then support this step, Use strength reduction of the excavation process of a comprehensive simulation and fully reflects the rock slope at the edge of the excavation process while retaining the displacement variation of safety factor variation
引文
[1]张绪进,母德伟,赵世强.三峡库区回水变动区重庆河段泥沙淤积问题研究[J].重庆建筑大学学报,2006,7(10): P11~14.
    [2]谭文辉.岩体边坡渐进破坏随机研究及应用[M].中国矿业大学硕士学位论文,1999.
    [3]朱大勇,姜弘道,周早生.基于余推力法的边坡临界滑动场[J].岩石力学与工程学报, 1999,1(22): P189~192.
    [4] S K Sarma. Stability analysis of embanlanent and slopes [J]. Geotech Eng. Div. ASCE, 1979,101(20): P 11~15.
    [5]陈祖煜.岩质边坡稳定分析—原理、方法、程序[M].北京:中国水利水电出版社,2004.
    [6] P A Cundall. A Computer Movements for Simulating Progressive Large Scale Movements in Blocky Systems. Pros. Of the Symp. Of the 1nt. Soc. Rock Mech., France. 1971,2(8): P55~58.
    [7]陈世民.有限元讲义[M].重庆交通大学研究生用,2002.
    [8]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[M].岩石力学与工程学报,2004,23(19): P1011~1015.
    [9]徐艳华.非连续变形分析(DDA)在膨胀土边坡稳定性分析中的应用—南友高速公路宁明段[M].广西大学硕士学位论文,2004.
    [10]梁海波,张明等.快速拉格朗日差分法(FLAC)及其应用[J].红水河,2002,16(2): P15~18.
    [11]吴子牛.计算流体力学基本原理[M].中国水利水电出版社,2001.
    [12]陈波,李宁等.多孔介质的变形场一渗流场—温度场耦合有限元分析[J].岩石力学与工程学报,2004,11(24): P1698~1700.
    [13]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [14]雷光耀,张锁春.堤坝饱和非饱和渗流的数值模拟[J],岩土工程学报,1998,8(14): P1566~1569.
    [15] Noorishad J. A finite element method for coupled stress and flow analysis Infractured rock mass. Int. J Rock Mech. Min. Set. Geomech. Abstr. 1982.
    [16] Barton. N. Bandis S.C. Strength deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech.Abstr.1985, 22(3 ):P121~140.
    [17] Vermeer PA. A five-constant model unifying well established concepts: results of the international workshopon constitutive relations for soil. Netherlands,Grenoble Balkema. 1984.
    [18] Morgan K Lewis,RW White IR. The mechanisms of ground surface subsidence above compacting reservoirs ans their analysis by finite element method. Appl.Math.Modeling,1980,4: P217~224.
    [19] Vandamme LM,Roegiers JC. Poroelasticity in hydraulic fracturing simulations. JPT,1990:P1199~1203 .
    [20] Lewis RW,Roberts PJ,Schrefler BA. Finite element modeling of two phase heat and fluid flow I deforming porous media. Transport porous media,1989,4: P319~334.
    [21] Romstad K. M., Herrmann L. R., Shen C. K. Integrated study of reinforced earth—Ⅰ: Theoretical formulation[J]. Journal of the Geotechnical Engineering Division, 1976, 102(5): P457~471.
    [22] Chen T-C, Chen R-H, Lin S-S. A nonlinear homogenized model applicable to reinforced soil analysis[J]. Geotextiles and Geomembranes, 2000, 18(5): P349~366.
    [23]李锡夔,钟万勰.不可压缩材料有限元分析中的广义位移方法[J].大连工学院学报,1981,12(12): P91~94.
    [24]张洪武.基于梯度塑性模型的多孔介质应变局部化分析的基本理论[J].岩土力学,2006,1(14): P55~57.
    [25]陈平,张有天.裂隙岩体渗流应力耦合分析[J].岩石力学与工程学报,1994,4(22): P331~333.
    [26] Yang Z. Strength and deformation characteristic of reinforced sand [C]. Dissertation Presented to the University of Califormia. Los Angeles, Calif, 1972.
    [27]刘占芳,严波.孔介质理论发展史上的重要成果[M].重庆大学出版社,1995.
    [28]王彦,降雨入渗对边坡稳定的影响[M]河海大学硕士论文,2001
    [29]崔政权,李宁.边坡工程一理论与实践最新发展,[M].北京:中国水利水电出版社,1999
    [30]苗国航.我国预应力岩土锚固技术的现状与发展明.地质与勘探,2003,39(3):91~94
    [31]陈祖煌,杨健.岩土预应力锚固技术的进展〔J〕.贵州水力发电,2004,18(5):5~10
    [32]刘玲,赵中夏,程智.岩质高边坡预应力锚固的几个问题(r〕.交通科技与经济,2004(3):4~5
    [33]陈发达,岩土工程中的预应力锚索设计[J〕.水电勘测设计,2001(4):32~38
    [34]晏成明,沈辉一岩土锚固技术应用和研究现状及其展望〔J〕.岩土工程界,2002,14(2):14~18
    [35]徐祯祥,岩土锚固技术成就之今昔——为庆贺中国岩土锚固工程协会成立20周年而作[J].岩土锚固工程
    [36]程良奎,范景伦等.岩土锚固[M].北京:中国建筑工业出版社,2003.1.
    [37]李健中,水力学[M]西安:陕西科学技术出版社,2002, 333~334
    [38]杜二霞.均质土坝渗流有限元分析研究:[硕士学位论文][D].石家庄:河北农业大学,2002
    [39]郑宏,李春光,李倬芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626~628.
    [40]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1~8.
    [41]连镇营,韩国城,孔宪京.强度折减法研究边坡开挖的稳定性[J].岩土工程学报, 2001, 23(4):406~411.
    [42]郑颖人,赵尚毅,张鲁渝用有限元强度折减法进行边坡稳定分析[J]中国工程科学,2002,4(10):57~61 [ 43]哈秋舲,张永兴.岩石边坡岩体卸荷非线性力学研究[M]北京:中国建筑工业出版社,1997
    [44]哈秋舲,李建林.长江三峡工程岩石边坡卸荷宏观力学参数研究[J] .北京:中国建筑工业出版社,1996
    [45]李建林.卸荷岩体力学理论与应用[M] .北京:中国建筑工业出版社,1999
    [46]周维垣.高等岩石力学[M]北京:中国水利水电出版社,1990
    [47]张有天,周维垣.岩石高边坡的变形与稳定[M]北京:中国水利水电出版社,1999
    [48]杨挺青,粘弹性力学[M]华中理工大学出版社,1990
    [49]孙广忠、姚宝魁.中国滑坡地质灾害及其研究-中国典型滑坡.北京:科学出版社,1988年
    [50]陈祖湿、汪小刚、杨健等.岩质边坡稳定分析一一原理、方法、程序.北京:中国水利水电出版社[M],2005
    [51]徐芝纶,弹性力学简明教程[M]北京:人民教育出版社,1979年11月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700