桩承式路堤承载机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩承式路堤是一种新型软土地基处理形式,最适用于软土下有坚硬土层或岩层,建设时间较紧而总体沉降和不均匀沉降又必须严格控制的情况。
     本文对桩顶平面上路堤部分,根据平衡条件建立基本方程,引入应力连续条件,然后建立桩和桩间土部分的基本微分方程,结合相应的边界条件,最后将两部分又统一为一个整体进行求解,获得了桩土弹性条件下桩承式路堤的应力降低比、桩荷载分担比、平均桩土应力比等。
     从现场测试数据与理论计算结果的比较看,计算值与现场测试值较为接近,表明计算方法基本能够反映桩承式路堤的承载机理。
     通过考察桩间距、桩长、桩帽置换率、桩径、填土高度、桩侧土模量、桩体模量、路堤填土模量等参数的变化,揭示了其对桩体荷载分担比、应力降低比、土拱效应、平均桩土应力比等的影响规律,得到了一些有益的结论。
The pile-supported embankment is a new ground improvement technique over soft soil. This technology is most suitable for situations where soft soil is underlain by a stiff soil layer or bedrock, time is of the essence, and limits on total and differential settlement must be controlled.
    By analyzing the embankments on the pile cap, the paper builds the fundamental equations which are based on equilibrium state, take into account the condition of continuous stresses, then establish the fundamental differential equation on both the pile and the soil. Finally, these equations are solved on boundary condition by considering the embankments, pile and soil as a whole body. The ratio of the load on pile, the stress-reduction ratio and the ratio of stress between pile and soil are obtained.
    The formulas are employed to analyze several practical cases, and the results are close to the field test results. It indicated that this method can reflect the real action of the load supporting mechanisms of pile-supported embankments.
    Influencing regularities with regard to soil arching effect, the ratio of the load on pile, the stress-reduction ratio and the ratio of stress between pile and soil are found by parametric analysis. The influencing factors include center-to-center spacing between piles, pile length, pile diameter, pile cap diameter, embankment height, pile modulus, soil modulus, etc.
引文
[1] Naughton P J, Kempton G T. Comparison of Analytical and Numerical Analysis Design Method for Piled Embankments[BD]. Contemporary Issues in Foundation Engineering(GSP 131).ASCE.2005.
    [2] Han J, Collin J G. Geosynthetic Support Systems over Pile Foundations[BD]. GRI-18 Geosynthetics Research and Development in Progress. ASCE. 2005.
    [3] Han J, Gabr M A. Numerical Analysis of Geosynthetic Reinforced and Pile-Supported Earth Platforms over Soft Soil[J]. Journal of Geotechnical and Geoenvironmental engineering, ASCE. 2002,128(1):44-53.
    [4] 龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002,p16.
    [5] Han J. Design and Construction of Embankments on Geosynthetic Reinforced Platforms Supported by Piles[C]. Proceedings of 1999 ASCE/ PaDOT Geotechnical Seminar, Central Pennsylvania Section, ASCE and Pennsylvania Department of Transportation, Hershey, PA, 66-84.
    [6] Russell D, Pierpoint N. An Assessment of Design Methods for Piled Embankments[J]. Ground Engineering, 1997, 11: 39-44.
    [7] Kempton G, Russell D, Pierpoint N D, Jones C J F P. Two- and Three-Dimensional Numerical Analysis of the Performance of Piled Embankments [C]. Proceeding, 6th International Conference on Geosynthetics, 1998, 767-772.
    [8] Han J, Wayne M H. Pile-Soil-Geosynthetic Interactions in Geosynthetic Reinforced Platform/Piled Embankments over Soft Soil[C]. Rep. No.000777, Presentation at 79th Annual Transportation Research Board Meeting,Washington,2000.
    [9] Alexiew D, Brokemper D, Lothspeich S. Geotextile Encased Columns (GEC) Load Capacity, Geotextile Selection and Pre-Design Graphs[BD]. Contemporary Issues in Foundation Engineering(GSP 131). ASCE.2005,1-14.
    [10] 赵刚,欧阳仲春.桩承加筋土垫层复合地基的原理与计算[J].城市道桥与防洪.2004.5:118-121.
    [11] 陈云敏,贾宁,陈仁朋.桩承式路堤土拱效用分析[J].中国公路学报,2004,17(4):1-6.
    [12] 姚红英.复合桩基处理在上海F1赛车场软土路基的实践浅谈[J].上海公路.2004.No.1:16-20.
    [13] Reinaldo Vega-Meyer, Yong Shao[BD]. Contemporary Issues in Foundation Engineering (GSP 131).ASCE.2005.
    [14] David Whyte. The Overriding Aspects of The Design of Geosynthetic-reinforced Pile supported embankments[BD]. Contemporary Issues in Foundation Engineering(GSP 131).ASCE.2005.
    [15] Terzaghi K. Theoretical soil mechanics [M] . New York: John Wiley & Son, 1943.
    [16] 饶为国.桩—网复合地基沉降机理及设计方法研究[D].北京:北方交通大学,2002.
    [17] Wang M C, Feng Y X, Jao M. Stability of Geothynthetic-reinfotced Soil above a Cavity[J]. Geotextiles and Geomembranes,Elsevier, 1996,14: 95-109.
    [18] Low B K, Tang S K, Chao V. Arching in Piled Embankments [J]. Journal. of Geotechnical Engineering, ASCE, 1994,120(11), 1917-1938.
    [19] Marston A, Anderson A O. The theory of loads on pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe[R]. Iowa Engineering Experiment Station Bulletin, Iowa State College, Ames,Iowa, 1913,No.31,181.
    [20] Jones C J F P, Lawson C R, Ayres D J. Geotextile Reinforced Piled Embankments[C]. Proceedings, International Conference on Geotextiles, Geomembranes, and Related Products, 1990, 155-60.
    [21] Miriam E, Stewart, George M F. Influence of Clay Compressibility on Geosynthetic Loads in Bridging Layers for Column-Supported Embankments[BD]. Contemporary Issues in Foundation Engineering(GSP 131).ASCE.2005.
    [22] 刘吉福.路堤下复合地基桩土应力比分析[J].岩石力学与工程学报,2003,22(4):674-677.
    [23] 陈仁朋,许峰,陈云敏,贾宁.软土地基上刚性桩—路堤共同作用分析[J].中国公路学报,2005,18(3):7-13.
    [24] 池跃君,沈伟,宋二祥.刚性桩复合地基桩、土相互作用的解析法[J].岩土力学,2002,23(5):546-550.
    [25] 孙晓锋.路堤桩及带垫层刚性桩复合地基的荷载传递分析[D].上海:同济大学硕士学位论文.2006
    [26] Love J, Milligan G. Design Methods for Basally Reinforced Pile Supported Embankments over Soft Ground.[J]. Ground Engineering, 2003,3:39-43.
    [27] Card G B, Carter G R. Case History of A Piled Embankment in London's Docklands[M]. Engineering Geology of Construction, Geological Society Engineering Geology Special Publication, 1995, No. 10, 79-84.
    [28] SvanΦ G, Ilstand T, Eiksund G. Want A. Alternative Calculation Principle for Design of Piled Embankments with Base Reinforcement[C]. Proc.4th International Conference on Ground Improvement Geosystems,Helsinki,2000,June.
    [29] Rogbeck Y, Gustavsson S, Sodergren I, Lindquist D. Reinforced Piled Embankments in Sweden-Design Aspects[C].Proceedings, Sixth International Conference on Geosynthetics, 1998, 755-62.
    [30] Horgan G J, Sarsby R W. The Arching Effect of Soils over Voids and Piles Incorporating Geosynthetic Reinforcement[C]. Geosynthetics-7th ICG, Delmas, Gourc & Girard, Lisse: Swets & Zetilinger, 2002, 373-378.
    [31] Guido V A, Kneuppel J D, Sweeney M A. Plate Loading Tests on Geogrid-Reinforced Earth Slabs[C]. Proceeding. Geosynthetics '87 Conference, New Orleans,1987,p216-225.
    [32] Jenner C J, Austin R A, Buckland D. Embankment Support over Piles Using Geogrids [C]. Proceeding. Sixth International Conference. Geosynthetics, 1998,p763-766.
    [33] Bell AL, Jenner C, Maddison JD, Vignoles J. Embankment Support Using Geogrids with Vibro Concrete Columns[C]. Fifth International Conference on Geotextiles, Geomenbranes and Related Products, Singapore,1994,p335-338.
    [34] Collin J G. Column Supported Embankment Design Considerations[C]. Proceedings of the 52nd Annual Geotechnical Engineering Conference, University of Minnesota, 2004, 51-78.
    [35] Hewlett W J, Randolph M F. Analysis of Piled Embankments [J]. Ground Engineering, 1988,21(3), 12-18.
    [36] Han J, Shen S L, Yang J S, Yan L. Geosynthetic-Reinforced and Pile-Supported Embankments[C]. Proceedings of 1st World Forum of Chinese Scholars in Geotechnical Engineering, shanghai, 2003,August.
    [37] Chen C F, Yang Y. Research on Beating Capacity of Geosynthetic-Reinforced and Pile-Supported Earth Platforms over Soft Soil and Analysis of Its Affecting Factors.[BD]. Advances in Earth Structures: Research to Practice (GSP 151).ASCE.2006,294-301.
    [38] 雷金波等.路堤下带帽控沉疏桩复合地基沉降及方法分析[J].煤炭工程,2006,(1):28-30.
    [39] Kuwabara F & Poulos H G. Downdrag Forces in Group of Piles [J]. Journal of Geotechnical engineering, ASCE. 1989, 115(GT6):806-818.
    [40] Chow Y K. Negative Skin Friction on Pile Group[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14: 75-91.
    [41] Chow Y K, Lim C H &Karunaratne G P. Numerical Modeling of Negative Skin Friction on Pile Groups[J]. Computers and Geotechnics, 1996,18(3):201-224.
    [42] Poorooshasb H B, Alamgir M, Minura N. Negative Skin Friction on Rigid and Deformable Piles[J]. Computers and Geotechnics,1996,18(2): 109-126.
    [43] Lee C J, Bolton M D, Altabbaa. A Numerical Modeling of Group Effects on The Distribution of Dragloads in Pile Foundation [J]. Geotechnique,2002,52(5):325-335.
    [44] 王建华,高绍武,陆建飞.表面堆载作用下群桩负摩阻力研究[J].计算力学学报,2003,20(2):169-174.
    [45] 王建华,陆建飞,沈为平.Biot固结理论在单桩负摩阻力研究中的应用[J].岩土工程学报,2000,22(5):590-593.
    [46] Orianne Jenck, Daniel Dias, Richard Kastner. Two-Dimensional Physical and Numerical Modeling of a Pile-Supported Earth Platform over Soft Soil[J]. Journal of Geotechnical and Geoenvironmental engineering, ASCE. 2007, 133(3):295-305.
    [47] 陈福全,李大勇.桩承加筋路堤性状的有限元分析[J].山东科技大学学报.2006,25(2):50-53.
    [48] Russell D, Naughton P J, Kempton G T. A New Design Procedure for Piled Embankments[C]. Proceeding of the 56th Canadian Geotechnical Conference, Winnipeg,2003.
    [49] Parametric Study on Geosynthetic-Reinforced Pile-Supported Embankments.[BD]. Advances in Earth Structures: Research to Practice (GSP 151).ASCE.2006,255-261.
    [50] Pham H T V, Suleiman M T, White D J. Numerical Analysis of Geosynthetic-Rammed Aggregate Pier Supported Embankment[C]. Proceedings of Geo-Trans 2004 Conference, Los Angles, CA,2004, July
    [51] 夏元友,芮瑞.刚性桩加固软土路基竖向土拱效应的试验分析[J].岩土工程学报,2006,28(3):327-331.
    [52] Vanel L, Howell D, Behringer C, et al. Memories in Sand: Experimental Tests of Construction History on Stress Distribution under Sand Piles[J]. Physical Review E, 1999.60(5):5040-5042.
    [53] Lawrence. The Mechanism of Load Transfer in Granular Materials Utilizing Tactile Pressure Sensor [D]. University of Massachusetts Lowell,2002.
    [54] 周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [55] 张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174-184.
    [56] K.Ono & M. Yamada[J]. Geotechnique,1993, vol (43),No.1.105-120.
    [57] Seed H B, Reese L C. The Action of Clay Along Friction Piles[J]. Trans. ASCE, 1957, vol(122).
    [58] Randolph M F, Worth C P. Analysis of Deformation of Vertically Loaded Piles[J]. Journal of Geotechnical Engineering,ASCE, 1978,104(2): 1465-1488.
    [59] 《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995,p41.
    [60] 建筑桩基技术规范(JGJ94—94)第5.2.16.1条.
    [61] 王沫然.Matlab与科学计算[M].北京:电子工业出版社,2003.
    [62] 楼晓明,熊巨华.柔性荷载作用下减少沉降桩基础的现场测试与分析报告[R].上海:同济大学地下建筑与工程系,2004.
    [63] 许峰.桩承式路堤的工作机理研究[D].浙江:浙江大学硕士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700