碳纳米结与柔性电子器件力学性能的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性电子器件可以重复拉伸、压缩、折叠、扭转等和应用于复杂曲面,与传统电子器件相比,柔性电子器件在生物医学、显示、成像系统、电子皮肤和太阳能电池板等领域有着广阔的应用前景。提高电子器件的柔性有两种可行的方法:材料引入柔性和结构引入柔性。材料引入柔性是指使用具有优异力学、电学性能的新材料,如碳纳米管等,替代极限应变只有1-2%的硅,使柔性电子器件具有柔性;结构引入柔性是指使用价格便宜、制备工艺成熟的硅,改变电子器件的结构,使之具有柔性。
     虽然关于柔性电子器件的研究取得了较大的发展,但在材料引入柔性和结构引入柔性的力学分析上仍然处于探索阶段。本文基于分子动力学、分子结构力学、解析模型和有限元模拟等方法,在材料引入柔性方面研究了纳米结的压缩屈曲和拉伸破坏力学行为;在结构引入柔性方面分析了应变隔绝效应、材料粘弹性引起的速度对界面脱粘的影响和柔性电子器件制备过程的应变水平。本文所取得的研究进展包括:
     基于分子动力学方法模拟不同应变率下碳纳米结的压缩屈曲行为,研究结果表明低应变率范围内,碳纳米结发生准静态屈曲变形,应变率对临界压缩应变影响不明显;高应变率范围内,碳纳米结表现出类似波传递的变形模式。分子动力学和分子结构力学方法揭示碳纳米结的临界压缩应变和屈曲模式与其长度、直径和直径差相关。同时,分子动力学方法发现,碳纳米结长度增加时,临界压缩应变呈上升—下降趋势,屈曲模式由壳状屈曲转变为柱状屈曲。碳纳米结临界压缩应变的上升—下降趋势揭示碳纳米结存在最优长度,使碳纳米结屈曲前可以承受最大载荷,即最大屈曲载荷。
     采用分子动力学方法研究不同应变率、温度和几何因素下的碳纳米结拉伸失效行为,研究结果表明碳纳米结的屈服应变与对数应变率和温度分别近似成线性关系。同时,基于线性回归的修正转换态理论模型可以系统预测特定应变率和温度条件下的屈服应变,预测数值与分子动力学模拟结果吻合。分子动力学方法揭示受温度和几何因素影响碳纳米结呈现不同的拉伸破坏模式:脆性和韧性断裂。本文还澄清已有工作中直径决定失效模式的结论的局限性,提出长细比是决定碳纳米结的失效模式的几何因素的概念。
     本文还研究了柔性电子器件中网格结构、结构性基体和粘附层导致的应变隔绝效应。有限元模拟结果表明基于曲桥、细带的网格结构和结构性基体可以隔绝基体应变,降低电子元件中的应变,从而提高电子器件的柔韧性和可延展性。例如,由结构性基体构成的电子器件承受124%的变形时,电子元件只有0.3%的压缩变形,远小于其极限应变。同时有限元模拟结果揭示结构性基体中深沟的宽高比h/a存在阈值,使电子元件应力最小。基于剪滞假设的解析模型和有限元模拟结果表明,电子元件层与基体层间的粘附层的厚度、柔度和电子元件层的长度决定电子元件应变。可以通过增加粘附层的厚度、降低粘附层的杨氏模量和电子元件层的长度,更有效地隔绝基体应变,降低电子元件应变
     将转印过程中界面脱粘问题简化为裂纹扩展问题,使用Prony系数表征转体材料PDMS的粘弹性属性,研究特定的界面结合能时由于材料粘弹性引起的提起速度对界面脱粘的影响。当裂纹尖端的能量释放率超过界面结合能时,裂纹由闭合状态转变为张开状态,界面发生脱粘。解析模型和有限元模拟结果表明,低速范围内,随着提起速度的增加,临界拉力呈递增走势;当速度达到50um/s时,临界拉力趋于稳定数值。
     分析了引入二维预应变的柔性电子器件的制备过程,提出简化解析模型,预测处于平面、半球形和局部压平状态时弹性基体的应变和电子元件的位置分布以及制备过程中电子元件的最大应变。解析模型和有限元模拟结果表明,简化解析模型可以很好地描述不同状态时弹性基体和电子元件应变水平。
     本文对柔性电子器件的材料引入柔性和结构引入柔性的研究,可以指导柔性电子器件的设计和应用,将促进柔性电子器件的发展。
Flexible electronic devices can undergo repeated tensile, compressive, folded and twisted deformations, and they are suitable to be applied to complex curvilinear surfaces. Therefore, compared with traditional electronic devices, flexible electronic devices have better application prospects in the fields of bio-medical systems, displaying systems, imaging systems, skin electronics and solar cell circuit board. There are basically two approaches to improve the flexibility of electronic devices:the material-induced flexibility and the structure-induced flexibility. The former is achieved by using new materials (such as carbon nanotube) with extraordinary mechanical and electrical properties instead of silicon, which has only1-2%failure strain. The latter is acquired by changing the structure of electronic device while still using silicon, which has the mature fabrication technology and low price.
     Although the researches on the flexible electronic devices have achieved great development, the mechanical analysis on the material-induced flexibility and the structure-induced flexibility is still at the exploratory stage. Based on the molecular dynamics (MD), the molecular structural mechanics (MSM), the analytical model and the finite element analysis (FEA) approaches, this dissertation studies the compressive buckling and the tensile failure behaviors of carbon nanotube (CNT) junctions in the filed of the material-induced flexibility, and the strain isolation effect, the velocity influence on the interfacial delamination due to the viscoelastic property of PDMS stamp and the strain distribution during the fabrication process of the flexible electronic devices. The accomplished studies are as follows:
     Based on the MD simulation, the compressive buckling behavior of CNT junctions has been studied under different strain rates. It is revealed that in the low strain rate range, the junction is prone to quasi-static buckling deformation and the influence of strain rate on the critical compressive strain is not evident; in the high strain rate range, the failure mode of junction is wave propagation. The MD simulation and the MSM approach reveal that the critical compressive strain appears to have an increasing-decreasing trend and the buckling mode transfers from the shell buckling to the column bucking with increase of the length. The increasing-decreasing trend suggests the optimal value of junction length, at which the junction can sustain the biggest load before the onset of buckling, namely the biggest buckling load.
     The MD simulations have been carried out to study the tensile failure behavior of the junction with different strain rates, temperatures and geometrical factors. It is found that the yield strain has a linear relationship with the temperature and the logarithmic strain rate, respectively. Meanwhile, based on the linear regression approach, the MTST model is capable of systematically predicting the yield strain at specified strain rate and temperature, and the predicted yield strain agrees well with that obtained by the MD simulation. The MD simulations reveal that with different temperatures and geometrical factors the junction has different failure modes:the brittle or ductile failure. This dissertation clarifies the conclusion that diameter determines the failure mode, and proposes the concept that the aspect ratio is the geometrical factor which determines the failure mode.
     This strain isolation effect invoked by the mesh structure, the structural substrate and the adhesive layer is studied. The FEA results show that the mesh structure (based on the bent bridge and the filamentary serpentine) and the structural substrate can isolate the strain from the substrate, lower the strain of the electronic component and improve the flexibility and stretchablity of the electronic devices. For example, when the flexible electronic devices based on the structural substrate undergo a124%deformation, the electronic component only has a0.3%compressive strain, which is much lower than its intrinsic limit strain. To minimize the stress of electronic component, the FEA analysis also suggests the optimal value of h/a ratio of the trench of the structural substrate. The analytical model based on the shear-lag assumption and the FEA results show that the strain of the electronic component is related to the length of the electronic component layer, the thickness and the Young's modulus of the adhesive layer. It is also founded that a relatively thick, complicant adhesive layer is effective to reduce the strain of electronic component, and so is a relatively short electronic component layer.
     This dissertation proposed a simplifed analytical model (crack propagtion model) for the interfacial delamination during the transfer printing process. The Prony parameters are used to model the viscoelastic properties of PDMS stamp and the influence of the pick-up velocity on the interfacial delamination due to the viscoelastic properties of PDMS is explored. When the energy release rate of the crack tip exceeds the critical adhesive energy, the status of the crack will be transferred from close to open, resulting in an interfacial delamination. The analytical model and the FEA results reveal that the required pulling-off force increases with the increase of the velocity at a low pick-up velocity; when the velocity reaches50μm/s, the required pulling-off force will be saturated.
     This fabrication process of the flexible electronic devices with two-dimensional prestrain is investigated. A simplified analytical model is proposed to obtain the strain of elastic substrate, the profile and the max strain of the electronic component at flat, hemispherical and punched states. The analytical model and the FEA simulations results show that this analytical model can well predict the strain distribution of the elastic substrate and the electronic components.
     This dissertation further studies the material-induced flexibility and the structure-induced flexibility of the flexible electronic devices. This study is useful in guiding the design and application of the flexible electronic devices and promoting the development of the flexible electronic devices.
引文
[1]许巍,卢天健.柔性电子系统及其力学性能[J].力学进展,2008,38:137-50.
    [2]The morph concept [M/OL]. http://research.nokia.com/morph
    [3]J. A. Rogers, T. Someya, Y. Huang. Materials and mechanics for stretchable electronics [J]. Science,2010,327:1603-7.
    [4]R.-H. Kim, D.-H. Kim, J. Xiao, et al. Waterproof alingap optoelectronics on stretchable substrates with applications in biomedicine and robotics [J]. Nature Materials,2010,9:929-37.
    [5]I. Jung, J. Xiao, V. Malyarchuk, et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108:1788-93.
    [6]R. H. Reuss, B. R. Chalamala, A. Moussessian, et al. Macroelectronics:Perspectives on technology and applications [J]. Proceedings of the IEEE,2005,93:1239-56.
    [7]D.-H. Kim, N. Lu, R. Ma, et al. Epidermal electronics [J]. Science,2011,333: 838-43.
    [8]J. Lee, J. Wu, M. Shi, et al. Stretchable gaas photovoltaics with designs that enable high areal coverage [J]. Advanced Materials,2011,23:986-91.
    [9]E. Menard, M. A. Meitl, Y. G. Sun, et al. Micro- and nanopat tern ing techniques for organic electronic and optoelectronic systems [J]. Chemical Reviews,2007,107: 1117-60.
    [10]S. R. Forrest, M. E. Thompson. Introduction:Organic electronics and optoelectronics [J]. Chemical Reviews,2007,107:923-5.
    [11]Y. G. Sun,J. A. Rogers. Inorganic semiconductors for flexible electronics [J]. Advanced Materials,2007,19:1897-916.
    [12]D.-m. Sun, M. Y. Timmermans, Y. Tian, et al. Flexible high-performance carbon nanotube integrated circuits [J]. Nature Nanotechnology,2011,6:156-61.
    [13]Z. Y. Fan, J. C. Ho, Z. A. Jacobson, et al. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105:11066-70.
    [14]Z. Y. Fan, J. C. Ho, T. Takahashi, et al. Toward the development of printable nanowire electronics and sensors [J]. Advanced Materials,2009,21:3730-43.
    [15]F. Garnier, R. Hajlaoui, A. Yassar, et al. All-polymer field-effect transistor realized by printing techniques [J]. Science,1994,265:1684-6.
    [16]Z. N. Bao, Y. Feng, A. Dodabalapur, et al. High-performance plastic transistors fabricated by printing techniques [J]. Chemistry of Materials,1997,9:1299-301.
    [17]J. A. Rogers, Z. Bao, K. Baldwin, et al. Paper-like electronic displays:Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks [J]. Proceedings of the National Academy of Sciences,2001, 98:4835-40.
    [18]J. A. Rogers. Toward paperlike displays [J]. Science,2001,291:1502-3.
    [19]T. Sekitani, H. Nakajima, H. Maeda, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors [J]. Nature Materials,2009,8:494-9.
    [20]S. I. Park, Y. J. Xiong, R. H. Kim, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semi transparent displays [J]. Science,2009,325:977-81.
    [21]T. Sekitani, Y. Noguchi, K. Hata, et al. A rubberlike stretchable active matrix using elastic conductors [J]. Science,2008,321:1468-72.
    [22]H. C. Ko, M. P. Stoykovich, J. Z. Song, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics [J]. Nature,2008,454:748-53.
    [23]I. Jung, G. Shin, V. Malyarchuk, et al. Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts [J]. Applied Physics Letters,2010,96:3.
    [24]G. Shin, I. Jung, V. Malyarchuk, et al. Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras [J]. Small,2010,6:851-6.
    [25]C. D. Hardyck, Petrinov. Lf, Ellswort. Dw. Feedback of speech muscle activity during silent reading-rapid extinction [J]. Science,1966,154:1467-8.
    [26]D. H. Kim, J. Viventi, J. J. Amsden, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics [J]. Nature Materials,2010,9: 511-7.
    [27]S. Wanger, S. P. Lacour, J. Jones, et al. Electronic skin:Architecture and components [J]. Physica E,2004,25:326-34.
    [28]V. J. Lumelsky, M. S. Shur, S. Wagner. Sensitive skin [J]. Sensors Journal, IEEE,2001, 1:41-51.
    [29]T. J. Sullivan, S. R. Deiss, T. P. Jung, et al., A brain-machine interface using dry-contact, low-noise eeg sensors, Proceedings of 2008 Ieee International Symposium on Circuits and Systems, Vols 1-10[C], New York,2008,1986-9.
    [30]S. Kim, R. Bhandari, M. Klein, et al. Integrated wireless neural interface based on the utah electrode array [J]. Biomedical Microdevices,2009,11:453-66.
    [31]刘艳芬.完整的人工心脏[J].中国分子心脏病学杂志,2003,3:309-11.
    [32]J. A. Rogers,Y. Huang. A curvy, stretchy future for electronics [J]. Proceedings of the National Academy of Sciences,2009,106:10875-6.
    [33]T. Sekitani.T. Someya. Stretchable, large-area organic electronics [J]. Advanced Materials,2010,22:2228-46.
    [34]D.-H. Kim, J. Xiao, J. Song, et al. Stretchable, curvilinear electronics based on inorganic materials [J]. Advanced Materials,2010,22:2108-24.
    [35]K. Bradley, J. C. P. Gabriel,G. Gruner. Flexible nanotube electronics [J]. Nano Letters,2003,3:1353-5.
    [36]N. Chimot, V. Derycke, M. F. Goffman, et al. Gigahertz frequency flexible carbon nanotube transistors [J]. Applied Physics Letters,2007,91:153111
    [37]S. Hong, S. Myung. Nanotube electronics-a flexible approach to mobility [J]. Nature Nanotechnology,2007,2:207-8.
    [38]Q. Cao, H.-s. Kim, N. Pimparkar, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J]. Nature,2008,454:495-500.
    [39]S. I. Park, J. H. Ahn, X. Feng, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates [J]. Advanced Functional Materials,2008,18:2673-84.
    [40]D.-H. Kim, J.-H. Ahn, W. M. Choi, et al. Stretchable and foldable silicon integrated circuits [J]. Science,2008,320:507-11.
    [41]W. M. Choi, J. Z. Song, D. Y. Khang, et al. Biaxially stretchable "wavy" silicon nanomembranes [J]. Nano Letters,2007,7:1655-63.
    [42]D. Y. Khang, H. Q. Jiang, Y. Huang, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates [J]. Science,2006, 311:208-12.
    [43]H. Jiang, D.-Y. Khang, J. Song, et al. Finite deformation mechanics in buckled thin films on compliant supports [J]. Proceedings of the National Academy of Sciences,2007,104:15607-12.
    [44]D.-H. Kim, J. Song, W. M. Choi, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105:18675-80.
    [45]P. J. Hung, K. H. Jeong, G. L. Liu, et al. Microfabricated suspensions for electrical connections on the tunable elastomer membrane [J]. Applied Physics Letters,2004, 85:6051-3.
    [46]R. Dinyari, S. B. Rim, K. Huang, et al. Curving monolithic silicon for nonplanar focal plane array applications [J]. Applied Physics Letters,2008,92:091114.
    [47]T. Someya, Y. Kato, T. Sekitani, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes [J]. Proceedings of the National Academy of Sciences of the United States of America,2005, 102:12321-5.
    [48]H. C. Ko, G. Shin, S. D. Wang, et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements [J]. Small,2009,5:2703-9.
    [49]D. Y. Khang, J. L. Xiao, C. Kocabas, et al. Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates [J]. Nano Letters,2008,8:124-30.
    [50]M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptionally high young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381:678-80.
    [51]A. Krishnan, E. Dujardin, T. W. Ebbesen, et al. Young's modulus of single-walled nanotubes [J]. Physical Review B,1998,58:14013-9.
    [52]E. W. Wong, P. E. Sheehan, C. M. Lieber. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science,1997,277:1971-5.
    [53]P. Poncharal, Z. L. Wang, D. Ugarte, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes [J]. Science,1999,283:1513-6.
    [54]0. Lourie, H. D. Wagner. Evaluation of young's modulus of carbon nanotubes by micro-raman spectroscopy [J]. Journal of Materials Research,1998,13:2418-22.
    [55]Z. W. Pan, S. S. Xie, L. Lu, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes [J]. Applied Physics Letters,1999,74:3152-4.
    [56]M.-F. Yu,O. Lourie, M. J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000,287:637-40.
    [57]D. H. Robertson, D. W. Brenner,J. W. Mintmire. Energetics of nanoscale graphitic tubules [J]. Physical Review B,1992,45:12592-5.
    [58]G. Zhou, W. H. Duan, B. L. Gu. First-principles study on morphology and mechanical properties of single-walled carbon nanotube [J]. Chemical Physics Letters,2001, 333:344-9.
    [59]D. Sanchez-Portal, E. Artacho, J. M. Soler, et al. Ab initio structural, elastic, and vibrational properties of carbon nanotubes [J]. Physical Review B,1999,59: 12678-88.
    [60]G. Van Lier, C. Van Alsenoy, V. Van Doren, et al. Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene [J]. Chemical Physics Letters,2000,326:181-5.
    [61]X. Zhou, J. J. Zhou, Z. C. Ou-Yang. Strain energy and young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory [J]. Physical Review B,2000,62:13692-6.
    [62]C. F. Cornwell,L. T. Wille. Elastic properties of single-walled carbon nanotubes in compression [J]. Solid State Communications,1997,101:555-8.
    [63]N. Yao,V. Lordi. Young's modulus of single-walled carbon nanotubes [J]. Journal of Applied Physics,1998,84:1939-43.
    [64]S. B. Sinnott,O. A. Shenderova, C. T. White, et al. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations [J]. Carbon,1998,36:1-9.
    [65]J. P. Lu. Elastic properties of carbon nanotubes and nanoropes [J]. Physical Review Letters,1997,79:1297-300.
    [66]Y. Wang, X. X. Wang, X. G. Ni. Atomistic simulation of the torsion deformation of carbon nanotubes [J]. Modelling and Simulation in Materials Science and Engineering,2004,12:1099-107.
    [67]S. Govindjee, J. L. Sackman. On the use of continuum mechanics to estimate the properties of nanotubes [J]. Solid State Communications,1999,110:227-30.
    [68]C. Q. Ru. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements [J]. Physical Review B,2000,62:16962-7.
    [69]C. Q. Ru. Effect of van der waals forces on axial buckling of a double-walled carbon nanotube [J]. Journal of Applied Physics,2000,87:7227-31.
    [70]Y. Y. Zhang, C. M. Wang, V. B. C. Tan. Buckling of multiwalled carbon nanotubes using timoshenko beam theory [J]. Journal of Engineering Mechanics,2006,132:952-8.
    [71]G. M. Odegard, T. S. Gates, L. M. Nicholson, et al. Equivalent-continuum modeling of nano-structured materials [J]. Composites Science and Technology,2002,62: 1869-80.
    [72]C. Y. Li,T. W. Chou. A structural mechanics approach for the analysis of carbon nanotubes [J]. International Journal of Solids and Structures,2003,40:2487-99.
    [73]T. Chang, H. Gao. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model [J]. Journal of the Mechanics and Physics of Solids,2003,51:1059-74.
    [74]L. Shen, J. Li. Transversely isotropic elastic properties of single-walled carbon nanotubes [J]. Physical Review B (Condensed Matter and Materials Physics),2004, 69:045414
    [75]L. Shen, J. Li. Equilibrium structure and strain energy of single-walled carbon nanotubes [J]. Physical Review B (Condensed Matter and Materials Physics),2005, 71:165427
    [76]L. Shen, J. Li. Transversely isotropic elastic properties of multiwalled carbon nanotubes [J]. Physical Review B (Condensed Matter and Materials Physics),2005, 71:035412
    [77]M. R. Falvo, G. J. Clary, R. M. Taylor, et al. Bending and buckling of carbon nanotubes under large strain [J]. Nature,1997,389:582-4.
    [78]Q. Wei, M. Zheng, C. Ke. Post-buckling deformation of single-walled carbon nanotubes [J]. Nanoscience and Nanotechnology Letters,2010,2:308-14.
    [79]M. J. Buehler, Y. Kong, H. J. Gao. Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading [J]. Journal of Engineering Materials and Technology-Transactions of the Asme,2004,126:245-9.
    [80]C. L. Zhang, H. S. Shen. Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation [J]. Carbon,2006,44:2608-16.
    [81]Y. Y. Zhang, V. B. C. Tan, C. M. Wang. Effect of strain rate on the buckling behavior of single-and double-walled carbon nanotubes [J]. Carbon,2007,45:514-23.
    [82]Y. Y. Zhang, C. M. Wang, V. B. C. Tan. Buckling of carbon nanotubes at high temperatures [J]. Nanotechnology,2009,20:215702
    [83]C. M. Wang, Y. Y. Zhang, Y. Xiang, et al. Recent studies on buckling of carbon nanotubes [J]. Applied Mechanics Reviews,2010,63:030804.
    [84]C. Y. Li,T. W. Chou. Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach [J]. Mechanics of Materials,2004,36:1047-55.
    [85]G. X. Cao, X. Chen. Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method [J]. Physical Review B,2006,73:155435.
    [86]G. X. Cao, X. Chen. The effect of the displacement increment on the axial compressive buckling behaviours of single-walled carbon nanotubes [J]. Nanotechnology,2006, 17:3844-55.
    [87]N. Hu, K. Nunoya, D. Pan, et al. Prediction of buckling characteristics of carbon nanotubes [J]. International Journal of Solids and Structures,2007,44:6535-50.
    [88]X. Y. Wang, X. Wang, X. Chen. Thermal buckling of multi-walled carbon nanotubes based on a rigorous van der waals interaction [J]. Journal of Thermal Stresses,2007,30: 343-55.
    [89]X. H. Yao, Q. Han. The thermal effect on axially compressed buckling of a double-walled carbon nanotube [J]. European Journal of Mechanics a-Solids,2007, 26:298-312.
    [90]X. H. Yao, H. Qiang. Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field [J]. Composites Science and Technology,2007,67:125-34.
    [91]K. M. Liew, X. Q. He, C. H. Wong. On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation [J]. Acta Materialia,2004,52:2521-7.
    [92]C. Y. Wei,D. Srivastava. Nanomechanics and nanofluidics of carbon nanotubes and polymer composites [J]. Computational Mechanics, Proceedings,2004728-33.
    [93]C. Y. Wei, K. J. Cho, D. Srivastava. Tensile strength of carbon nanotubes under realistic temperature and strain rate [J]. Physical Review B,2003,67:115407.
    [94]C. Y. Wei, K. Cho, D. Srivastava. Tensile yielding of multiwall carbon nanotubes [J]. Applied Physics Letters,2003,82:2512-4.
    [95]M. B. Nardelli, B. I. Yakobson, J. Bernholc. Brittle and ductile behavior in carbon nanotubes [J]. Physical Review Letters,1998,81:4656-9.
    [96]Y. R. Jeng, P. C. Tsai,T. H. Fang. Effects of temperature and vacancy defects on tensile deformation of single-walled carbon nanotubes [J]. Journal of Physics and Chemistry of Solids,2004,65:1849-56.
    [97]B. W. Jeong, J. K. Lim,S. B. Sinnott. Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion [J]. Applied Physics Letters,2007,90:3.
    [98]J. Y. Huang, S. Chen, Z. F. Ren, et al. Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures [J]. Physical Review Letters,2007,98:185501.
    [99]C. Tang, W. L. Guo, C. F. Chen. Molecular dynamics simulation of tensile elongation of carbon nanotubes:Temperature and size effects [J]. Physical Review B,2009,79: 9.
    [100]H. Li, F. W. Sun, K. M. Liew, et al. Stretching behavior of a carbon nanowire encapsulated in a carbon nanotube [J]. Scripta Materialia,2009,60:129-32.
    [101]L. Chico, V. H. Crespi, L. X. Benedict, et al. Pure carbon nanoscale devices: Nanotube heterojunctions [J]. Physical Review Letters,1996,76:971-4.
    [102]P. Lambin, V. Meunier. Structural properties of junctions between two carbon nanotubes [J]. Appl. Phys. A,1999,68:263-6.
    [103]J. T. Hu, M. Ouyang, P. D. Yang, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires [J]. Nature,1999,399: 48-51.
    [104]J. Lefebvre, R. D. Antonov, M. Radosavljevic, et al. Single-wall carbon nanotube based devices [J]. Carbon,2000,38:1745-9.
    [105]M. Ouyang, J. L. Huang, C. L. Cheung, et al. Atomically resolved single-walled carbon nanotube intramolecular junctions [J]. Science,2001,291:97-100.
    [106]C. Garau, A. Frontera, D. Quinonero, et al. Structural and energetic features of single-walled carbon nanotube junctions:A theoretical ab initio study [J]. Chemical Physics,2004,303:265-70.
    [107]X. P. Yang, J. M. Dong. Electronic and transport properties of radially deformed double-walled carbon nanotube intramolecular junction [J]. Physics Letters A,2004, 330:238-44.
    [108]S. Melchor, J. A. Dobado. Contub:An algorithm for connecting two arbitrary carbon nanotubes [J]. Journal of Chemical Information and Computer Sciences,2004,44: 1639-46.
    [109]Y. G. Yao, Q. W. Li, J. Zhang, et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions [J]. Nature Materials,2007,6:283-6.
    [110]I. Zsoldos,G. Kakuk. New formations of carbon nanotube junctions [J]. Modelling and Simulation in Materials Science and Engineering,2007,15:739-45.
    [111]Z. Qin, Q. H. Qin, X. Q. Feng. Mechanical property of carbon nanotubes with intramolecular junctions:Molecular dynamics simulations [J]. Physics Letters A,2008,372:6661-6.
    [112]D. C. Wei,Y. Q. Liu. The intramolecular junctions of carbon nanotubes [J]. Advanced Materials,2008,20:2815-41.
    [113]B. C. Xue, W. S. Cai,X. G. Shao. Multi-terminal carbon nanotube junctions [J]. Progress in Chemistry,2008,20:1501-8.
    [114]P. A. Djondjorov, V. M. Vassilev, I. M. Mladenov. Junctions between carbon nanotubes and flat graphene sheets or co-axial carbon nanotubes [J]. Comptes Rendus De L Academie Bulgare Des Sciences,2009,62:805-10.
    [115]Z. Kang, M. Li, Q. Q. Tang. Buckling behavior of carbon nanotube-based intramolecular junctions under compression:Molecular dynamics simulation and finite element analysis [J]. Computational Materials Science,2010,50:253-9.
    [116]C. W. Marquardt, S. Grunder, A. Blaszczyk, et al. Electroluminescence from a single nanotube-molecule-nanotube junction [J]. Nature Nanotechnology,2010,5:863-7.
    [117]S. Kumar, B. A. Cola, R. Jackson, et al. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials [J]. Journal of Electronic Packaging,2011,133:020906.
    [118]L. Xiao, Z. Chen, C. Feng, et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers [J]. Nano Letters,2008,8:4539-45.
    [119]G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors [J]. Nature Materials,2004,3:106-10.
    [120]F. Xu, W. Lu,Y. Zhu. Controlled 3d buckling of silicon nanowires for stretchable electronics [J]. Acs Nano,2011,5:672-8.
    [121]Z. J. Liu, Y. W. Zhang, J. Z. Song, et al. Numerical simulation of stretchable and foldable silicon integrated circuits [J]. Advanced Materials Research,2009,74: 197-200.
    [122]S. P. Lacour, J. Jones, S. Wagner, et al. Stretchable interconnects for elastic electronic surfaces [J]. Proc. IEEE,2005,93:1459-67.
    [123]S.-K. Lee, B. J. Kim, H. Jang, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes [J]. Nano Letters,2011,11:4642-6.
    [124]S. P. Lacour, S. Wagner, Z. Y. Huang, et al. Stretchable gold conductors on elastomeric substrates [J]. Applied Physics Letters,2003,82:2404-6.
    [125]D.-H. Kim, J. A. Rogers. Stretchable electronics:Materials strategies and devices [J]. Advanced Materials,2008,20:4887-92.
    [126]Z. Y. Huang, Z. Suo, W. Hong. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate [J]. Journal of the Mechanics and Physics of Solids,2005, 53:2101-18.
    [127]C. M. Stafford, B. D. Vogt, C. Harrison, et al. Elastic moduli of ultrathin amorphous polymer films [J]. Macromolecules,2006,39:5095-9.
    [128]C. M. Stafford, C. Harrison, K. L. Beers, et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films [J]. Nature Materials,2004, 3:545-50.
    [129]E. A. Wilder, S. Guo, S. Lin-Gibson, et al. Measuring the modulus of soft polymer networks via a buckling-based metrology [J]. Macromolecules,2006,39:4138-43.
    [130]N. Bowden, S. Brittain, A. G. Evans, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J]. Nature,1998,393:146-9.
    [131]V. L. Schramm. Enzymatic transition states:Thermodynamics, dynamics and analogue design [J]. Archives of Biochemistry and Biophysics,2005,433:13-26.
    [132]V. L. Schramm. Enzymatic transition states and transition state analog design [J]. Annual Review of Biochemistry,1998,67:693-720.
    [133]A. L. Volynskii, S. Bazhenov,0. V. Lebedeva, et al. Mechanical buckling instability of thin coatings deposited on soft polymer substrates [J]. Journal of Materials Science,2000,35:547-54.
    [134]J. Song, H. Jiang, Z. J. Liu, et al. Buckling of a stiff thin film on a compliant substrate in large deformation [J]. International Journal of Solids and Structures,2008,45:3107-21.
    [135]S. Wang, J. Song, D.-H. Kim, et al. Local versus global buckling of thin films on elastomeric substrates [J]. Applied Physics Letters,2008,93:023126
    [136]C. T. Koh, Z. J. Liu, D. Y. Khang, et al. Edge effects in buckled thin films on elastomeric substrates [J]. Applied Physics Letters,2007,91:133113
    [137]H. Jiang, D.-Y. Khang, H. Fei, et al. Finite width effect of thin-films buckling on compliant substrate:Experimental and theoretical studies [J]. Journal of the Mechanics and Physics of Solids,2008,56:2585-98.
    [138]X. Chen,J. W. Hutchinson. Herringbone buckling patterns of compressed thin films on compliant substrates [J]. Transactions of the ASME. Journal of Applied Mechanics,2004,71:597-603.
    [139]X. Chen,J. W. Hutchinson. A family of herringbone patterns in thin films [J]. Scripta Materialia,2004,50:797-801.
    [140]C. L. Zhang, H. S. Shen. Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments [J]. Physical Review B,2007,75:045408
    [141]A. Carlson, H.-J. Kim-Lee, J. Wu, et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly [J]. Applied Physics Letters,2011,98:264104
    [142]Y. G. Sun, W. M. Choi, H. Q. Jiang, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics [J]. Nature Nanotechnology,2006,1:201-7.
    [143]H. Jiang, Y. Sun, R. J. A., et al. Mechanics of precisely controlled thin film buckling on elastomeric substrate [J]. Applied Physics Letters,2007,90:133119.
    [144]D. H. Kim. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations [J]. Proc. Natl Acad. Sci. USA.,2008,105:18675-80.
    [145]J. Song, Y. Huang, J. Xiao, et al. Mechanics of noncoplanar mesh design for stretchable electronic circuits [J]. Journal of Applied Physics,2009,105:123516.
    [146]J. Xiao, A. Carlson, Z. J. Liu, et al. Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile [J]. Journal of Applied Mechanics-Transactions of the Asme,2010,77:011003
    [147]W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al. Comparison of simple potential functions for simulating liquid water [J]. Journal of Chemical Physics,1983,79:926-35.
    [148]张跃,谷景华,尚家香,等.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    [149]D.罗伯.计算材料学[M].北京:化学工业出版社,2002.
    [150]B. J. Alder, T. E. Wainwright. Phase transition for a hard sphere system [J]. Journal of Chemical Physics,1957,27:1208-9.
    [151]B. J. Alder, T. E. Wainwright. Studies in molecular dynamics. I. General method [J]. Journal of Chemical Physics,1959,31:459-66.
    [152]A. Rahman. Correlations in the motion of atoms in liquid argon [J]. Physical Review,1964,136:A405-All.
    [153]J.-P. Ryckaert, G. Ciccotti.H. J. C. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints:Molecular dynamics of n-alkanes [J]. Journal of Computational Physics,1977,23:327-41.
    [154]W. F. van Gunsteren, H. J. C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics [J]. Molecular Physics,1977,34:1311-27.
    [155]L. Verlet. Computer "experiments" on classical fluids. I. Thermodynamical properties of lennard-jones molecules [J]. Physical Review,1967,159:98-103.
    [156]H. C. Andersen. Molecular dynamics simulations at constant pressure and-or temperature [J]. Journal of Chemical Physics,1980,72:2384-93.
    [157]M. Parrinello,A. Rahman. Crystal structure and pair potentials:A molecular-dynamics study [J]. Physical Review Letters,1980,45:1196-9.
    [158]W. G. Hoover, A. J. C. Ladd, B. Moran. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics [J]. Physical Review Letters,1982,48:1818-20.
    [159]M. J. Gillan, M. Dixon. The calculation of thermal conductivities by perturbed molecular dynamics simulation [J]. Journal of Physics C:Solid State Physics,1983, 16:869.
    [160]H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, et al. Molecular dynamics with coupling to an external bath [J]. Journal of Chemical Physics,1984,81: 3684-90.
    [161]W. G. Hoover. Canonical dynamics:Equilibrium phase-space distributions [J]. Physical Review A,1985,31:1695-7.
    [162]S. Nose. A unified formulation of the constant temperature molecular dynamics methods [J]. Journal of Chemical Physics,1984,81:511-9.
    [163]R. Car,M. Parrinello. Unified approach for molecular dynamics and density-functional theory [J]. Physical Review Letters,1985,55:2471-4.
    [164]S. Plimpton. Fast parallel algorithms for short-range molecular-dynamics [J]. Journal of Computational Physics,1995,117:1-19.
    [165]J. Li. Atomeye:An efficient atomistic configuration viewer [J]. Modelling and Simulation in Materials Science and Engineering,2003,11:173-7.
    [166]W. Humphrey, A. Dalke, K. Schulten. Vmd:Visual molecular dynamics [J]. Journal of Molecular Graphics,1996,14:33-8.
    [167]W. C. Swope, H. C. Andersen, P. H. Berens, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters [J]. Journal of Chemical Physics,1982,76:637-49.
    [168]C. Y. Li, T. W. Chou. Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces [J]. Composites Science and Technology,2003,63:1517-24.
    [169]J. Tersoff. Erratum:Modeling solid-state chemistry:Interatomic potentials for multicomponent systems [J]. Physical Review B,1990,41:3248-
    [170]J. Tersoff. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev. B,1988,37:6991-7000.
    [171]J. Tersoff. Empirical interatomic potential for carbon, with applications to amorphous carbon [J]. Physical Review Letters,1988,61:2879-82.
    [172]D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemcial vapor-deposition of diamond films [J]. Physical Review B,1990,42: 9458-71.
    [173]D. W. Brenner. The art and science of an analytic potential [J]. physica status solidi (b),2000,217:23-40.
    [174]S. J. Stuart, A. B. Tutein,J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions [J]. Journal of Chemical Physics,2000,112: 6472-86.
    [175]B. Ni, S. B. Sinnott, P. T. Mikulski, et al. Compression of carbon nanotubes filled with c_{60), ch_{4}, or ne:Predictions from molecular dynamics simulations [J]. Physical Review Letters,2002,88:205505.
    [176]A. Nikitin, H. Ogasawara, D. Mann, et al. Hydrogenation of single-walled carbon nanotubes [J]. Physical Review Letters,2005,95:225507.
    [177]A. R. Leach. Molecular modelling:Principles and applications (2nd edition)[M]. Harlow:Prentice Hall,2001.
    [178]N. L. Allinger. Conformational analysis.130. Mm2. A hydrocarbon force field utilizing v1 and v2 torsional terms [J]. Journal of the American Chemical Society,1977,99:8127-34.
    [179]N. L. Allinger, Y. H. Yuh, J. H. Lii. Molecular mechanics. The mm3 force field for hydrocarbons.1 [J]. Journal of the American Chemical Society,1989,111:8551-66.
    [180]W. D. Cornell, P. Cieplak, C. I. Bayly, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. Journal of the American Chemical Society,1995,117:5179-97.
    [181]C. Q. Ru. Effective bending stiffness of carbon nanotubes [J]. Physical Review B,2000,62:9973-6.
    [182]V. M. Harik. Mechanics of carbon nanotubes:Applicability of the continuum-beam models [J]. Computational Materials Science,2002,24:328-42.
    [183]X. Chen,G. X. Cao. A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation [J]. Nanotechnology,2006,17:1004-15.
    [184]R.-H. Kim, M.-H. Bae, D. G. Kim, et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates [J]. Nano Letters,20113881-6.
    [185]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [186]S. Iijima. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-8.
    [187]S. Iijima. Growth of carbon nanotubes [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1993,19:172-80.
    [188]D. G. Saito R, Dresselhaus M S. Physical properties of carbon nanotubes[M]. London: Imperial College Press,1998.
    [189]J. Tersoff. New empirical-approach for the structure and energy of covalent systems [J]. Physical Review B,1988,37:6991-7000.
    [190]Y. Wang, X. X. Wang, X. G. Ni, et al. Simulation of the elastic response and the bucirding modes of single-walled carbon nanotubes [J]. Computational Materials Science,2005,32:141-6.
    [191]A. Cao, Y. G. Wei, E. Ma. Grain boundary effects on plastic deformation and fracture mechanisms in cu nanowires:Molecular dynamics simulations [J]. Physical Review B,2008,77:5.
    [192]K. S. Cheung, S. Yip. Atomic-level stress in an inhomogeneous system [J]. Journal of Applied Physics,1991,70:5688-90.
    [193]A. Sears, R. C. Batra. Buckling of multiwalled carbon nanotubes under axial compression [J]. Physical Review B,2006,73:085410
    [194]J. Yoon, C. Q. Ru,A. Mioduchowski. Timoshenko-beam effects on transverse wave propagation in carbon nanotubes [J]. Composites Part B:Engineering,2004,35: 87-93.
    [195]J. Wu, K. C. Hwang, J. Song, et al. A finite-deformation shell theory for carbon nanotubes based on the interatomic potential-part ii:Instability analysis [J]. Journal of Applied Mechanics-Transactions of the Asme,2008,75:061006
    [196]K. J. Laidler, M. C. King. The development of transition-state theory [J]. Journal of Physical Chemistry,1983,87:2657-64.
    [197]D. W. Brenner,O. A. Shenderova, J. A. Harrison, et al. A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons [J]. Journal of Physics-Condensed Matter,2002,14:783-802.
    [198]V. L. Schramm. Enzymatic transition state theory and transition state analogue design [J]. Journal of Biological Chemistry,2007,282:28297-300.
    [199]B. I. Yakobson, M. P. Campbell, C. J. Brabec, et al. High strain rate fracture and c-chain unraveling in carbon nanotubes [J]. Computational Materials Science,1997, 8:341-8.
    [200]F. Ding, K. Jiao, M. Q. Wu, et al. Pseudoclimb and dislocation dynamics in superplastic nanotubes [J]. Physical Review Letters,2007,98:4.
    [201]G. Maltezos, R. Nortrup, S. Jeon, et al. Tunable organic transistors that use microfluidic source and drain electrodes [J]. Applied Physics Letters,2003,83: 2067-9.
    [202]J.-H. So, J. Thelen, A. Qusba, et al. Reversibly deformable and mechanically tunable fluidic antennas [J]. Advanced Functional Materials,2009,19:3632-7.
    [203]J. C. McDonald, G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices [J]. Accounts of Chemical Research,2002,35: 491-9.
    [204]H.-J. Kim, C. Son, B. Ziaie. A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels[J]. Applied Physics Letters,2008, 92:011904
    [205]D.-H. Kim, Y.-S. Kim, J. Wu, et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper [J]. Advanced Materials,2009,21:3703-7.
    [206]T. H. Kim, A. Carlson, J. H. Ahn, et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps [J]. Applied Physics Letters,2009, 94:113502
    [207]Z. Q. Jiang, Y. Huang, A. Chandra. Thermal stresses in layered electronic assemblies [J]. Journal of Electronic Packaging,1997,119:127-32.
    [208]H. Cheng, J. Wu, M. Li, et al. An analytical model of strain isolation for stretchable and flexible electronics [J]. Applied Physics Letters,2011,98:061902
    [209]J. Wu, M. Li, W.-Q. Chen, et al. A strain-isolation design for stretchable electronics [J]. Acta Mechanica Sinica,2010,26:881-8.
    [210]M. A. Meitl, Z. T. Zhu, V. Kumar, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp [J]. Nature Materials,2006,5:33-8.
    [211]S. Kim, J. A. Wu, A. Carlson, et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107:17095-100.
    [212]X. Feng, M. A. Meitl, A. M. Bowen, et al. Competing fracture in kinetically controlled transfer printing [J]. Langmuir,2007,23:12555-60.
    [213]J. Wu, S. Kim, W. Chen, et al. Mechanics of reversible adhesion [J]. Soft Matter,2011, 7:8657-62.
    [214]S. Y. Yang, A. Carlson, H. Cheng, et al. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications [J]. Advanced Materials,2012,24:2117-22.
    [215]S. Kim, A. Carlson, H. Cheng, et al. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing [J]. Applied Physics Letters,2012,100: 171909.
    [216]M. Varenberg, S. Gorb. Shearing of fibrillar adhesive microstructure:Friction and shear-related change in pull-off force [J]. J. R. Soc. Interfaces,2007,4:721.
    [217]B. Aksak, M. P. Murphy, M. Sitti, Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces, IEEE International Conference on Robotics and Automat ion[C], Pasadena, CA,2008,3058-63.
    [218]H. E. Jeong, J.-K. Lee, H. N. Kim, et al. A nontransferring dry adhesive with hierarchical polymer nanohairs [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106:5639-44.
    [219]M. Murphy, B. Aksak,M. Sitti. Gecko inspired directional and controllable adhesion [J]. Small,2009,5:170.
    [220]R. K. Kramer, C. Majidi,R. J. Wood. Shear-mode contact splitting for a microtextured elastomer film [J]. Adv. Mater.,2010,22:3700.
    [221]R. Saeidpourazar, R. Li, Y. H. Li, et al. Laser-driven non-contact transfer printing of prefabricated microstructures [J]. Journal of Microelectromechanical Systems,2012, (to appear):
    [222]Abaqus analysis user's manual v6.9[M]. Pawtucket, RI:Dassault Systemes,2009.
    [223]H. Tada, P. C. Paris, G. R. Irwin. The stress analysis of cracks handbook 3rd edition ed[M]. New York:American Society of Mechanical Engineers,2000.
    [224]Y. G. Y. Huang, W. X. Zhou, K. J. Hsia, et al. Stamp collapse in soft lithography [J]. Langmuir,2005,21:8058-68.
    [225]R. A. Schapery. Theory of crack initiation and growth in viscoelastic media.1. Theoretical development [J]. International Journal of Fracture,1975,11:141-59.
    [226]R. A. Schapery. Theory of crack initiation and growth in viscoelastic media.2. Approximate methods of analysis [J]. International Journal of Fracture,1975,11: 369-88.
    [227]R. A. Schapery. Theory of crack initiation and growth in viscoelastic media.3. Analysis of continuous growth [J]. International Journal of Fracture,1975,11: 549-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700