用户名: 密码: 验证码:
光纤光栅传感技术与工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在研究光纤光栅传感特性的基础上,针对大型土木工程结构长期健康监测的需要,研制开发了钢管封装的光纤光栅应变传感器和光纤光栅温度传感器,研究了封装传感器的应变和温度传感特性及其温度补偿方法,通过全面分析应变传感器的应变传播过程,计算光纤光栅应变传感器的应变响应时间与工作频率,研究钢管封装的光纤光栅传感器本身应变传递率的影响因素和埋入基体材料中的应变传递问题,在一系列实验与实际工程中实现了结构应变、温度与裂缝监测。主要研究内容包括以下方面:
     首先,基于光纤光栅的布拉格方程,分析了光纤光栅应变与温度传感特性,以及应变与温度的交叉耦合问题,提出了光纤光栅应变传感的温度补偿原理和方法,研究表明:光纤光栅在实际结构应变监测时必须考虑温度影响。
     其次,针对土木工程结构长期监测的需要,自行开发了金属管式封装的光纤光栅应变传感器和金属管式封装的光纤光栅温度传感器,并对其传感特性进行了试验研究。从力学角度出发,对实验室中常用的应用等强度梁的标定方式的误差进行分析与修正。详细研究了两种基体材料上钢管封装的光纤光栅应变传感器的应变灵敏度系数。
     第三,通过对应变传播过程的全面分析,计算了光纤光栅应变传感器在动态工作状态下的应变响应时间及粘贴在不同基体材料上的最高工作频率,计算结果表明,自行开发的光纤光栅应变传感器应变响应速度很快,工程应用中可不考虑光纤光栅应变传感器的应变响应滞后问题,光纤光栅应变传感器的工作频率满足低频振动系统中的频率要求。
     第四,采用有限元方法分析了光纤光栅应变传感器本身应变传递率的影响因素,对埋入基体材料中的光纤光栅应变传感器的应变传递率的几种计算方法进行了对比。
     第五,将自行开发的光纤光栅应变传感器与温度传感器应用于一系列模型试验中。分别监测了混凝土固化期收缩应变与温度变化、海底管线模型和海洋平台模型地震响应过程、三层框架剪力墙结构地震破坏过程中的整体结构变化与裂缝监测。研究了光纤光栅传感器在不同试验中的布设工艺,在这些实验中实现了应变与温度的同时测量,解决了光纤光栅应变传感器的温度补偿问题,提供的监测数据可靠。在框架剪力墙结构的破坏实验中,监测到结构从弹性状态到塑性状态过程中的裂缝的发生、发展情况,结构整体在进入极限状态时的“关键部位”的应变变化情况,以及多次振动作用下钢筋上的“残余应变”,还可根据实际需要,给出框—剪结构在试验前的“初始应变”。结果显示,光纤光栅传感器具有抗电磁干扰能力强和测量灵敏度高的优点,能够检测到强电磁干扰下的微弱应变信号
Based on the research of FBG's sensing properties, the packaged FBG sensors have been developed for the sake of long-term health monitoring of large civil infrastructure. Also the strain and temperature properties of packaged FBG sensors well as their temperature compensation technique were studied. Then, after fully analyzing the strain transmitting process of the strain sensors and calculating the strain response time and operation frequency of the packaged FBG sensors, the factors influencing the strain transfer ratio of the packaged FBG sensors and the problems of the strain transfer when the packaged FBG sensors are embedded in the host matrix have been studied. And in series of experiments and practical projects, homemade FBG sensors have been used to monitor strain, temperature and crack of the structures. The main contents include:Firstly, based on the principle of light travel in FBG, the strain and temperature sensing properties of the FBG sensors as well as the coupling problems of them have been analyzed. Then, the principle and technique for the temperature compensation of FBG sensors are given when using as strain sensor. The results indicate that the temperature influence cannot be neglected when using FBG to monitor the strain of the real structures.Secondly, considering the need of long-term monitoring for civil engineering, the mental tube packaged FBG strain sensor and temperature sensor are developed and their sensing properties are investigated experimentally. The calibration errors of FBG strain sensor using the usually equal-strength beam method are analyzed and modified from the standpoint of mechanics. And the strain sensitivity coefficients are studied in detail when sticking the mental tube packaged FBG sensors on two materials.Thirdly, by analyzing the strain transmitting process in host matrix, the strain response time and maximum frequency of FBG strain sensor under dynamic work conditions when glued on different materials have been computed. The results show that strain response speed of the FBG strain sensors developed by us is fast and the lag problem of strain response of FBG strain sensor needn't be considered. The operation frequency of FBG strain sensor fulfills the frequency request in low frequency vibration system.Fourthly, factors influencing strain transfer ratio of FBG strain sensor are analyzed by FEM (finite element method) and several methods calculating strain transfer ratio of FBG strain sensor embedded in host matrix are compared.
    Fifthly, homemade FBG strain sensors and FBG temperature sensors have been used in a series of experiments. The technique of FBG sensor installation in these experiments, and the method that the curing of concrete is monitored by use of FBG sensors in brought forward has been studied, and the technique of simultaneous strain and temperature monitoring, the dynamic strain measurement of offshore platform model and submarine pipeline model in seismic load have been realized. In shaking table test of frame structure, FBG strain sensor has been successfully monitored dynamic strain of "key parts" of structure and "remnant strain " of rebar in several tests. By analyzing of test data, the growing state of the crack could be find from elastic state to plastic state of structure. "Original strain" of structure also can be monitored. The experimental results show that FBG's superior ability of explosion proof, immunity to electromagnetic interference and high accuracy, especially fitting for measurement applications in harsh environment.Sixthly, the FBG temperature sensors have been embedded in a pipe underground of ground-source heat pump system. The sensors are used to measure the temperature distribution of the soil and thermal energy of the underground soil to heat or cool a building. The FBG sensors were designed and packaged delicately to eliminate the influence of strain as well as to improve the thermal sensitivity. The measurement temperature is consistent with associated theories on the temperature distribution of underground soils. The technique of FBG sensor spot installation has been explored, and FBG strain sensors and FBG temperature sensors have been successfully installed in a building of Dalian University of Technology. The FBG sensors have monitored the strain course and temperature change under construction of building.
引文
[1] 李宏男,李东升.土木工程结构安全性评估、健康监测及诊断评述.地震工程与工程振动,2002,22(3):82-90.
    [2] 李宏男等.结构健康监测.大连:大连理工大学出版社,2004.
    [3] 欧进萍,周智.光纤光栅传感器及其在大型结构工程健康监测领域的应用.光纤传感器的发展与产业化国际论坛,平湖,2005.
    [4] 周智.土木工程结构光纤光栅智能传感元件及其监测系统:(博士学位论文).哈尔滨:哈尔滨工业大学,2002.
    [5] 蔡德所.光纤传感技术在大坝工程中的应用.北京:中国水利水电出版社,2002.
    [6] 欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用.北京:科学出版社,2003.
    [7] Bang-Fuh Chen. Dynamic responses of coastal structures during earthquakes including sediment-sea-structure interaction. Soil dynamics and earthquake engineering, 2000, 20: 445-467.
    [8] 谢强,薛松涛.土木工程结构健康监测的研究现状与发展.中国科学基金,2001,(5):285-288.
    [9] 刘德华.超长距离分布式光纤传感技术及其工程应用:(博士学位论文).杭州:浙江大学,2005.
    [10] Housner G. W., Bergm an L. A., Caughey T. K. et al. Structural Control: Past, Present, and Future. ASCE, Journal of Engineering Mechanics, 1997, 123(9): 897-971.
    [11] Stephanie A., Virginia G. Computational study on plate damage identification. NDE for health monitoring and diagnostics, San Diego, 2002, 4702-17.
    [12] 杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [13] 周智,欧进萍.土木工程智能健康监测与诊断系统.传感器技术,2001,20(11):1-4.
    [14] Ernesto Monaco, Mauro Fontana, Luca De Rosa et al. Non-destructive technique based on vibration measurement and piezoelectric patches for monitoring corrosion phenomena. NDE for health monitoring and diagnostics, San Diego, 2002, 4701-10.
    [15] Jun Ma, Darryll J. Pines. Detecting multiple damage types/locations in a civil building structure model. NDE for health monitoring and diagnostics, San Diego, 2002, 4696-18.
    [16] Man-Yong Choi, Kyoung-Koo Kang, Hae-Yon Park et al. The real-time health monitoring system of a large structure based on non-destructive testing. Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems Ⅱ, Proceedings of SPIE, San Diego, 2003, 5047-46.
    [17] 李宏男,阎石,林皋.智能结构控制发展综述.地震工程与工程振动,1999,19(2):29-36.
    [18] 梁春艳.计算智能与力学反问题中的若干问题.力学进展,2000,30(3):321-331.
    [19] William N. Martin, Anindya Ghoshal, Mannur J. Sundaresan et al. Artificial nerve system for structural monitoring. NDE for health monitoring and diagnostics, San Diego, 2002, 4702-6.
    [20] Zhishen Wu, Bin Xu. A real-time structural parametric identification system based on fiber optic sensing and neural network algorithms. Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems Ⅱ, Proceedings of SPIE, San Diego, 2003, 5047-32.
    [21] Michael Camerino, Kara Peters. Flexibility approach for damage localization suitable for multi-scale sensor fusion. Smart structure and materials 2003: smart sensor technology and measurement systems, Proceedings of SPIE, San Diego, 2003, 5050-3.
    [22] Jun Ma, Darryll J. Pines. Detecting damage in a building structure model under seismic excitation. Smart structures and materials 2001: Smart systems for bridge, structure, and highways, Proceedings of SPIE, Newport Beach, 2001, 4330-16.
    [23] J. M. Nichols, M. D. Todd, L. N. Virgin et al. Vibration-based damage assessment using local attractor variance. Smart structures and materials 2001: Smart systems for bridge, structure, and highways, Proceedings of SPIE, Newport Beach, 2001, 4330-17.
    [24] Yoo Jin Kim, Maria Q. Feng, Luis Jofre et al. Development of microwave imaging technology for NDE of civil engineering structures. Nondestructive detection and measurement for homeland security Ⅱ, Proceedings of SPIE, San Diego, 2004, 5395-8.
    [25] A. W. Otieno, P. Liu, V. S. Rao. Damage detection using modal strain and laser vibrometer measurements. Smart structures and integrated systems, Proceedings of SPIE, 2000, Newport Beach, 3985-31.
    [26] 吴新璇.混凝土无损检测技术手册.北京:人民交通出版社,2003.
    [27] 胡自力,熊克,杨红.基于智能材料结构的几种损伤评价方法.航空学报,2002,23(1):1-5.
    [28] Oleg G. Kotiaevy, Shigeaki Uchida. Non-destructive inspection of concrete structures with the use of photorefractive two-wave mixing. NDE for health monitoring and diagnostics, San Diego, 2002, 4702-29.
    [29] Douglas E. Adams, Charles R. Farrar. Application of frequency domain ARX features for linear and nonlinear structural damage identification. NDE for health monitoring and diagnostics, San Diego, 2002, 4702-19.
    [30] Harmon L. M. et al. Investigation of delimitation with ultrasonic spectroscopy. NDE for health monitoring and diagnostics, San Diego, 2002, 4704-25.
    [31] Hwai-Chung Wu, Kraig Wamemuende. Nonlinear active wave modulation approach for evaluating bond conditions between adhesively bonded FRP sheet/concrete substrate. NDE for health monitoring and diagnostics, San Diego, 2002, 4702-27.
    [32] 刘效尧,蔡键,刘晖.桥梁损伤诊断.北京:人民交通出版社,2002.
    [33] 周杏鹏,仇国富,王寿容,操家顺.现代检测技术.北京:高等教育出版社,2004.
    [34] 栾桂冬,张金铎,金欢阳.传感器及其应用.西安.西安电子科技大学出版社,2002.
    [35] 何道清.传感器与传感器技术.北京:科学出版社,2005.
    [36] 靳伟,阮双琛.光纤传感技术新进展.北京:科技出版社,2005.
    [37] 廖延彪.光纤光学.北京:清华大学出版社,2000.
    [38] 杜善义,冷劲松,王殿富.智能材料系统和结构.北京:科学出版社,2001.
    [39] Raymond M. Measures. Structural monitoring with fiber optic technology. San Diego: A harcourt science and technology company, 2001.
    [40] 张劲松,陶智勇,韵湘.光波分复用技术.北京:北京邮电大学出版社,2002.
    [41] 张桂菊.应用于高温高压测量的非本征型光纤法布里-珀罗传感器系统研究.(博士学位论文).大连:大连理工大学,2005.
    [42] Hill K. O., Fujii Y., Johnson D. C. et al. Photosensitivity in optical fiber waveguide: application to reflection fiber fabrication. Appl. Phys. Lett., 1978, 32(10): 647-649.
    [43] 张颖.布喇格光纤光栅传感技术研究.(博士学位论文).天津:南开大学,2001.
    [44] Meltz G., Morey M. m., Gkenn W. H. Formation of Bragg gratings in optical fibers by a transverses holographic method. Opt. Lett, 1989, 14(5): 823-825.
    [45] Hill K. O. Bragg gratings fabricated in monomode photosensitive optical fiber by UV expose through a phase mask. Appl. Phys. Lett., 1993, 62(10): 1035-1037.
    [46] 南秋明.光纤光栅应变传感器的研制及应用.(硕士学位论文).武汉:武汉理工大学,2003.
    [47] Vengsarkar A. M. et al. Long-period fiber gratings as band-rejection filters. J. Lightware Technol., 1996, 14(1): 58-65.
    [48] Giles C. R. Light wave application of fiber Bragg gratins. J. of Lightwave Technol., 1997, 15(8): 1391-1404.
    [49] Mizrahi V, Sipe J. E. Optical properties of photosensitive fiber phase gratins. J. of Lightwave Technol., 1993, 11(10): 1513-1517.
    [50] Erdogan T. Cladding-mode resonances in short and long period fiber grating filters, J. Opt. Soc. Am. A, 1997, 14(8): 1760-1773.
    [51] Davis D. D. et al. Long-period fiber gratings fabrication with focused CO2 laser pulses. Electronics Lett., 1998, 34(3): 302-303.
    [52] 童峥嵘.光纤光栅传感网络及解调技术的研究.(博士学位论文).天津:南开大学,2003.
    [53] 励强华.用于动态测量的光纤光栅传感技术.(博士学位论文).哈尔滨:哈尔滨工业大学,2003.
    [54] Erdogan T. Sipe J. E. Tilted fiber phase gratings. J. Opt. Soc. Am. A, 1996, 13(2): 296-313.
    [55] Yun-Jiang Rao. In-fibre Bragg grating sensors. Meas. Sci. Technol., 1997, 8: 355-375.
    [56] R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, et al. Fiber-optic Bragg grating sensors for bridge monitoring. Cement and concrete composites, 1997, 19: 21-33.
    [57] R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane. Structural health monitoring of innovative bridges in Canada with fiber optic sensors. Smart Mater. Struct., 2001, 10: 560-573.
    [58] Jinsong Leng, Anand Asundi. Structural health monitoring of smart composite materials by using EFPI and FBG sensors. Sensors and actuators, 2003, 103: 330-340.
    [59] 万里冰,武湛君,张博明等.应用光纤Bragg光栅测量混凝土结构内部应变.光电子·激光,2002,13(7):722-725.
    [60] Kin-tak Lau, Libo Yuan, Li-min Zhou, Jingshen Wu, Chung-ho Woo. Strain monitoring in FRP laminates and concrete beams using FBG sensors. Composites structures, 2001, 51: 9-20.
    [61] E. Rivera, D. J. Thomson. Accurate strain measurements with fiber Bragg grating sensors and wavelength references. Smart structure and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2004, 5384-33.
    [62] A. Reutlinger, R. Graue, Kayser-Threde Gmbh, Munich, Germany, Wolfratshauser Str. Fiber optic sensor network for structural health monitoring. Sensory phenomena and measurement instrumentations for smart structures and materials, Proceeding of SPIE, Newport Beach, 2000, 3986-50.
    [63] Kelly L. Stinson-Bagby, Robert S. Fielder. Distributed strain and temperature mapping in the safe affordable fission engine (SAFF-100) thermal simulator using fiber Bragg gratngs. Smart structures and materials: Industrial and commercial applications of smart structures technologies, Proceeding of SPIE, San Diego, 2004, 5388-47.
    [64] Nobuo Takeda, Tadahito Mizutani, Kentaro Hayashi, Yoji Okabe. Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks. Smart structures and materials: Smart structures and integrated systems, Proceeding of SPIE, San Diego, 2003, 5056-37.
    [65] Jason S. Kiddy, Chris S. Balawin, Toni Salter. Certification of a submarine design using fiber Bragg grating sensors. Smart structures and materials: Industrial and commercial applications of smart structures technologies, Proceeding of SPIE, San Diego, 2004, 5388-44.
    [66] Dawn K. Gifford, Beooks A. Childers, Roger G. Duncan, et al. Structural integrity monitoring of aircraft panels using a distributed Bragg grating sensing technique. Smart structure and materials: smart sensor technology and measurement systems, Proceedings of SPIE, San Diego, 2003, 5050-57.
    [67] J. M. Lopez-Higuera, J. Echevarria, A. Quintela, et al. Strain and temperature transducer on one fiber Bragg grating. Smart structures and materials: sensory phenomena and measurement instrumentation for smart structures and materials, Proceeding of SPIE, Newport Beach, 2001, 4328-21.
    [68] Chris Baldwin, Toni Salter, Jack Niemczuk, Peter Chen, Jason Kiddy. Structural monitoring of composite marine piles using multiplexed fiber Bragg grating sensors: in-field applications. Smart structures and materials: smart systems for bridges, structures and highways, Proceeding of SPIE, San Diego, 2002, 4696-10.
    [69] Daniele Inaudi. Application of optical fiber sensor in civil structural monitoring. Smart structures and materials: sensory phenomena and measurement instrumentation for smart structures and materials, Proceeding of SPIE, Newport Beach, 2001, 4328-1.
    [70] 张家坤.光纤光栅传感技术在土木工程结构中的应用研究.(硕士学位论文).北京:北京交通大学,2004.
    [71] 于秀娟,余有龙.钛合金片封装光纤光栅传感器的应变和温度传感特性研究.光纤光栅传感器及其在大型结构工程健康监测领域的应用.光纤传感器的发展与产业化国际论坛,平湖,2005.
    [72] 赵雪峰,田石柱,周智,万里冰,欧进萍.钢片封装光纤光栅监测混凝土应变试验研究.光电子·激光,2003,14(2):171-174.
    [73] Philipp M. Nellen, Andreas Frank, Rolf Bronnimann, Urs Sennhauser. Optical fiber Bragg gratings for tunnel surveillance. Sensory phenomena and measurement instrument for smart structures and materials, Proceeding of SPIE, Newport Beach, 2000, 3986-36.
    [74] Li Sun, Hongnan Li, Qin Jiao. FBG sensors for the measurement of the dynamic response of offshore oil platform model. Health monitoring and smart nondestructive evaluation of structural and biological systems, Proceeding of SPIE, 2005, 5768-41.
    [75] Li Sun, Hongnan Li, Liang Ren. The application of FBG sensors in the measurement for the dynami response of submarine pipeline model. 6th International symposium on test and measurement (ISTM), 2005, 3604-3606.
    [76] Liang Ren, Hongnan Li, Jing Zhou, et al. Development of health monitoring system for ocean offshore platform with fiber Bragg grating sensors. 15th International offshore and polar engineering conference (ISOPE), 2005, 4, 424-428.
    [77] Liang Ren, Hongnan Li, Li Sun. Development of tube-packaged FBG strain sensor and application in the vibration experiment of submarine pipeline model. The international society for optical engineering, Advanced sensor systems and applications Ⅱ, Beijing, 2004, 5634-1: 98-103.
    [78] 周智,赵雪峰,武湛君,万里冰,欧进萍.光纤光栅毛细钢管封装工艺及其传感特性研究.中国激光,2002,29(12):1089-1092.
    [79] Hideaki Iwaki, Hiroshi Yamakawa, Akira Mita. Health monitoring system using FBG-based sensors for a 12-story building with column dampers. Smart structures and materials: smart systems for bridge, structures and highways, Proceeding of SPIE, Newport Beach, 2001, 4330-56.
    [80] 廖帮全.光纤光栅理论、传感应用及全光纤声光调制研究.(博士学位论文).天津:南开大学,2002.
    [81] 李宏男等.光纤光栅传感健康监测技术及其工程应用.大连理工大学项目技术报告,2005.
    [82] Maurice P. Whelan, Daniel Albrecht, Antonio Capsoni. Remote structural monitoring of the cathedral of Como using an optical fibre Bragg sensor system. Smart structures and materials: smart sensor technology and measurement systems. Proceeding of SPIE, San Diego, 2002, 4694-17.
    [83] Kin-tak Lau, Chi-chiu Chan, Li-min Zhou, Wei Jin. Strain monitoring in composite-strengthened concrete structures using optical fiber sensors. Composites: part B: engineering, 2001, 32: 33-45.
    [84] Scan Calvert, Joel P. Conte, Babak Moaveni, Whittern L. Schulz, Raymond de Callafon. Full scale testing results of structural damage detection using long gage fiber Bragg gratings and modal analysis. Smart structure and materials: smart systems and nondestructive evaluation for civil infrastructures, Proceedings of SPIE, San Diego, 2003, 5057-58.
    [85] Larissa Sorensen, Thomas Gmur, John Botsis. Long FBG sensor characterization of residual strains in AS4/PPS thermaoplastic laminates. Smart structure and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2004, 5384-39.
    [86] Whitten L. Schulz, Jpel P. Conte, Eric Udd. Long gage fiber Bragg grating strain sensors to monitor civil structures. Smart structures and materials: smart systems for bridge, structures and highways, Proceeding of SPIE, Newport Beach, 2001, 4330-8.
    [87] Seam Calvert. High speed dual-axis strain using a single fiber Bragg grating. Smart structure and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2004, 5384-30.
    [88] Michael Camerino, Kara Peters. Flexibility approach for damage localization suitable for multi-scale sensor fusion. Smart structure and materials: smart sensor technology and measurement systems, Proceedings of SPIE, San Diego, 2003, 5050-3.
    [89] J. M. Menendez, J. A. Guemes. Bragg grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates. Sensory phenomena and measurement instrument for smart structures and materials, Proceeding of SPIE, Newport Beach, 2000, 3986-37.
    [90] Catherine Black, Eric Udd, Whitten Schulz, Steve Kregar, et al. Using multi-axis fiber grating strain sensors to measure transverse strain and transverse strain gradients in composite materials with complex weave structures. Smart structures and materials: smart sensor technology and measurement systems. Proceeding of SPIE, San Diego, 2002, 4694-19.
    [91] 贾宏志,李育林,忽满利,张培琨.光纤Bragg光栅温度和应变的灵敏度分析及应用研究.激光杂志,1999,20(5):12-14.
    [92] Z. J. Wang, Y. Zhou, X. W. Wang, W. Jin. A fiber-optic Bragg grating sensor for simultaneous static and dynamic temperature measurement on a heated cylinder in cross-flow. International journal of heat and mass transfer, 2003, 16: 2983-2992.
    [93] Jaehoon Jung, Hui Nam, Byoungho L EE, Jae Oh Byun, Nam Seong Kim. Fiber Bragg grating temperature sensor with controllable sensitivity. Applied optics, 1999, 38(13): 2752-2754.
    [94] 关柏鸥,刘志国,开桂云等.光纤光栅温度传感器.传感技术学报,1999,2:89-93.
    [95] 巩宪锋.光纤光栅传感器及其应用的关键技术研究.(博士学位论文).北京:北京科技大学,2004.
    [96] 孙丽,李宏男,任亮等.光纤光栅温度传感器在地源热泵中的应用.大连理工大学学报,已录用(2006年6月发表).
    [97] Liang Ren, Hongnan Li, Li Sun, Dongsheng Li. FBG sensor for on-line temperature measurements. Smart structure and materials: sensors and smart structures technologies for civil mechanical and aerospace systems, Proceeding of SPIE, San Diego, 2004, 5391-9.
    [98] P. Moyo, J. M. W. Brownjohn, R. Suresh, S. C. Tjin. Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering structures, 2005, 27: 1828-1834.
    [99] 郭团,乔学光,贾振安,孙安,陈长勇.光纤光栅温度应变智能传感原理及增敏技术研究.物理学和高新技术,2003,32(3):176-181.
    [100] Noritomo Hirayama, Yasukazu Sano. Fiber Bragg grating temperature sensor for practical use. ISA transactions, 2000, 39: 169-173.
    [101] 董新永,关柏鸥,张颖等.单个光纤光栅实现对位移和温度的同时测量.中国激光,2001,28(7):621-624.
    [102]尉婷,乔学光,贾振安等.单光纤光栅实现位移、温度同时区分测量.传感器技术学报,2005,18(2):358-362.
    [103] 关柏鸥,刘志国,开桂云等.基于悬臂梁结构的光纤光栅位移传感器研究.光子学报,1999,28(11):983-985.
    [104] 童峥嵘,黄勇林,蒙红云等.一种新颖的光纤光栅位移传感器的研究.传感技术学报,2002,1:10-13.
    [105] 余有龙,谭光耀,廖信义等.免受温度影响的光纤光栅位移传感器.光学学报,2000,20(4):538-542.
    [106] 刘波,牛文成,杨亦飞等.基于光纤布喇格光栅传感器的精密位移测量.纳米技术与精密工程,2005.3(1):53-55
    [107] Hideaki Iwaki, Keiji Shiba, Nobuo Takeda. Structural health monitoring system Using FBG-based sensors for a damage tolerant building. Smart structure and materials: smart systems and nondestructive evaluation for civil infrastructures, Proceedings of SPIE, San Diego, 2003, 5057-49.
    [108] Berkoff T. A., Kersy A. D. Experimental demonstration of a fiber Bragg grating accelemeter. Phot. Tech. Lett, 1996, 8(12): 1677-1679.
    [109] Todd M. D., Johnson G. A., Althouse B. A. et al. Flexural beam-based fiber Bragg grating accelerometer, Phot. Tech. Lett, 1998, 10(11): 1605-1607.
    [110] Akira Mita, Isamu Yokoi. Fiber Bragg grating accelerometer for buildings and civil infrastructures. Smart structures and materials: smart systems for bridge, structures and highways, Proceeding of SPIE, Newport Beach, 2001, 4330-57.
    [111] Mira A. Fiber Bragg grating-based acceleration sensors for civil and building structures, Interntional workshop on present and future health monitoring, Weimar:Bauhans-University Weimar, 2000.
    [112] Joan R. Casas, Paulo J. S. Cruz, M. ASCE.Fiber optic sensors for bridge monitoring. Journal of bridge engineering, 2003, 8(6): 362-373.
    [113] 田珂珂,张松伟,李志明,李芳,刘育梁.光纤光栅加速度传感器及高速解调技术.光纤光栅传感器及其在大型结构工程健康监测领域的应用.光纤传感器的发展与产业化国际论坛,平湖,2005.
    [114] Chia-Chen Chang, Gregg Johnson, Sandeep Vohra, Beyan Althouse. Development of fiber Bragg grating based soil pressure transducer for measuring pavement response. Sensory phenomena and measurement instrument for smart structures and materials, Proceeding of SPIE, Newport Beach, 2000, 3986-67.
    [115] Sylvain Magne, Jonathan Boussoir, Stephane Rougeault, et al. Health monitoring of the Saint-Jean bridge of Bordeaux, France using fiber Bragg grating extensometers. Smart structures and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2003, 5050-45.
    [116] Wolfgang R. Habel. Fiber optic sensor for deformation measurements: criteria and method to put them to the best possible use. Smart structure and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2004, 5384-23.
    [117] F. M. Araujo, L. A. Ferreira. Simultaneous determination of curvature, plane of curvature and temperature using a miniaturized sensing head based on fiber Bragg grating. Smart structures and materials: sensory phenomena and measurement instrumentation for smart structures and materials, Proceeding of SPIE, Newport Beach, 2001,4328-51.
    [118] Marty Laylor, Sean Calvert, Tad Taylor, Whitten Schulz, Ross Lumsden, Eric Udd. Fiber optic grating moisture and humidity sensors. Smart structures and materials: smart sensor technology and measurement systems. Proceeding of SPIE, San Diego, 2002, 4694-26.
    [119] Kevin R. Cooper. Long-term evaluation of a fiber optic-based irreversible moisture sensor. Smart structure and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2004, 5384-9.
    [120] Wesley Kunzler, Sean Calvert, Marty Laylor. Implementing fiber optic sensors to monitor humidity and moisture. Smart structure and materials: smart sensor technology and measurement systems, Proceeding of SPIE, San Diego, 2004, 5384-8.
    [121] Yong Zhao, Jian Yang, Bao-Jin Peng, Shi-Yuan Yang. Experimental research on a novel fiber-optic cantilever-type inclinometer. Optics & laser technology, 2005, 37: 555-559.
    [122] Eric Udd, Marley Kunzler, Marty Laylor, Whitten Schulz, Steve Kreger. Fiber grating systems for traffic monitoring. Health monitoring and management of civil infrastructure systems, Proceeding of SPIE, Newport Beach, 2001,4337-66.
    [123] Marley Kunzler, Rob Edgar, Eric Udd, Tad Taylor. Fiber grating traffic monitoring systems. Smart structures and materials: smart systems for bridges, structures and highways, Proceeding of SPIE, San Diego, 2002, 4696-29.
    [124] 方正军,刘海涛,徐志宏.光纤光栅传感器在公路健康监测中的应用研究.光纤光栅传感器及其在大型结构工程健康监测领域的应用.光纤传感器的发展与产业化国际论坛,平湖,2005.
    [125] 姜德生,何伟.光纤光栅传感器的应用概况.光电子·激光,2002,13(4):420-430.
    [126] Fribele P., et al. Fibre Bragg grating strain sensors: present and future applications in smart structures. Optics and photonics news, 1998,9:33-37.
    [127] Slowik V., et al. Fibre Bragg grating sensors in concrete technology. Laser, 1999,3:109-119.
    [128] P. L.Fuhr, S. Spammer. Fiber optic sensors in the Waterbury Bridge. SPIE, 1998, 3489:124-129.
    [129] ]Vohra S. T., et al. Quasi-static strain monitoring during the "push" phase of a box-girder bridge using fiber Bragg grating sensors. European workshop on optical fiber sensors, Scotland, UK, 1998.
    [130] Y. M. Gebremichael, W. Li., W. J.O., et al. Integration and assessment of fiber Bragg grating sensors in an all-fibre reinforced polymer composite road bridge. Sensors and actuators: A, 2005, 118:78-85.
    [131] Foote P. D. Fiber Bragg grating strain sensors for aerospace smart structure. SPIE, 1994,2361: 162-166.
    [132] Michael N. Trutzel, Karsten Wauer, Daniel Betz, et al. Smart sensing of aviation structures with fiber-optic Bragg grating sensors. Sensory phenomena and measurement instrument for smart structures and materials, Proceeding of SPIE, Newport Beach, 2000, 3986-19.
    [133] J. Borinski, S. A. Meller, W. Pulliam, et al. Optical fiber sensors for in-flight health monitoring. Sensory phenomena and measurement instrument for smart structures and materials, Proceeding of SPIE, Newport Beach, 2000, 3986-62.
    [134] D. R. Hjelme, et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle models. Applied optics, 1997,36:328-336.
    [135] Chris Baldwin, Peter Chen, Jason Kiddy, et al. Structural testing of a Navy LPD-17 propulsion propeller using Bragg grating sensors and digital spatial wavelength domain multiplexing (DSWDM). Smart structures and materials: Industrial and commercial applications of smart structures technologies, Proceeding of SPIE, Newport Beach, 2001, 4332-15.
    [136] P. Ferdinand, et al. Applications of Bragg grating sensors in Europe. Proc. of the optical fiber sensors Conf. Williamsbury, VA, USA, 1997:14-19.
    [137] P. J. Henderson. Current metering using fibre grating based interrogation of a conventional current Trans-former. Proc. of the optical fiber sensors Conf. Williamsburg, VA, USA, 1997:186-189.
    [138] T. E. Hammon, et al. Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fibre Bragg grating as a reference. Proc. of the 11th International Conf. On optical fibre sensors, Sapporo, Japan, 1996:566-569.
    [139] N. M. Theune, M. Kaufmann, P. Krammer, et al. Applications of fiber optical sensors in power generators: current and temperatures sensors. Proc. of Opto2000 Conf., 2000:22-25.
    [140] W. Weis, et al. MWD Telemetry system for coil-tubing drilling using optical fiber grating modulators dowm-hole. Proc. of the optical fiber sensors Conf. Williamsbury, VA, USA, 1997:416-419.
    [141] Ph. M. Nellen, P. Mauron, A. Frank, et al. Reliability of fiber Bragg grating based sensors for downhole applications. Sensors and actuators: A, 2003, 103: 364-376.
    [142] V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, E. Mitrani, J. Mendiela, A. Marquez Lucero. Fiber optic Bragg grating-based sensor for liquid hydrocarbon leak detection and localization. Sensory phenomena and measurement instrument for smart structures and materials, Proceeding of SP1E, Newport Beach, 2000, 3986-39.
    [143] A. I. Gusarov, et al. High total dose radiation effection temperature sensing fiber Bragg gratings. IEEE Photonics technology letters, 1999, 11(9): 1159-1161.
    [144] P. Ferdinand, et al. Applications of Bragg grating sensors in Europe. Proc. of the optical fiber sensors Conf. Williamsbury, VA, USA, 1997:14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700