交通荷载作用下道路与软土复合地基共同作用性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通荷载作用下道路或机场跑道的沉降计算,是工程界普遍关心的问题,也是学术界长期以来的重点研究课题。受地理条件限制,很多高速公路和机场跑道建造在深厚软土地基上,而软土高压缩性、低强度等特点又难以满足工程对变形的严格要求,需要对软粘土进行处理构成复合地基,以减小地基沉降。车辆或飞机等交通荷载作用下,道路或机场跑道与地基是一共同作用、相互影响的有机整体,其共同作用变形特性,是一值得深入研究的课题。
     本文首先介绍了软土地基和复合地基动力特性研究现状,从理论研究、试验模拟和数值分析三方面总结了道路与地基共同作用研究现状,接着概述了适合岩土材料的弹塑性本构理论和动态弹塑性有限元理论,叙述了总应力法和有效应力法动力分析的区别及适用性,然后概括了路面材料、软粘土和复合地基的动力特性。
     总结了交通荷载特性及其研究现状,介绍了典型的道路结构特点。概括了软土地基和软土复合地基动孔压模型的研究现状,分别建立了动孔压经验模型,并且基于前人的室内动三轴试验结果确定了模型计算参数。
     编制了动态弹塑性有限元分析程序,通过程序计算结果与解析解的对比分析,验证了本文程序的正确性,说明了采用有效应力法分析地基动力变形问题的必要性。程序在分析结构与土体动力相互作用时,可实现多种动力加载方式的模拟。
     将交通荷载简化为半波正弦荷载,假定地基土体为硬化型土,运用本文编制的动态弹塑性有限元程序,分析了单次动力加载和循环动力加载条件下道路横截面与软土地基共同变形特性。分析了荷载因素(包括荷载类型、荷载幅值、荷载频率)和地基土体参数(包括回弹模量、内聚力、内摩擦角、泊松比、阻尼比)对变形的影响。采用本文建立的软土地基动孔压模型,对比分析了不排水有效应力法和总应力法计算结果,计算了残余孔隙水压力消散所产生的固结沉降,探讨了孔压对道路变形的影响。
     运用本文编制的动态弹塑性有限元程序,计算分析了循环动力加载条件下道路横截面与复合地基及软土地基共同变形特性。采用本文建立的复合地基动孔压模型,详细分析了孔压、道路结构层参数、复合地基和软土地基各参数以及水平荷载对道路变形特性的影响。将交通荷载简化为移动的集中荷载,计算分析了单次移动加载和循环移动加载条件下道路纵截面与复合地基共同变形特
    
    交通荷载作用下道路与软土复合地基共同作用性状研究
    性,探讨了孔压、行车速度及道路结构层和地基参数对道路变形的影响。
     最后,对某道路与软土地基横截面、某机场跑道与复合地基纵截面两工程
    实例进行了计算分析,结果表明,有限元计算沉降与工程实测沉降基本吻合。
     本文建立了软土地基和复合地基的动孔压经验模型,编制了不排水有效应
    力动力反应分析有限元程序,不仅考虑了地基土体的弹塑性,而且考虑了道路
    结构与地基的相互作用,比较全面地分析了交通荷载作用下道路与地基的整体
    变形特性,对道路工程或机场道面工程的建设具有一定的指导意义。
Settlement calculation of pavement or airport runway under traffic load is one of most concerned problems in engineering area, as well as a key subject in academic area. Limited by geographic conditions, many express highways and airport runways have to be built on thick soft soil foundation. For its high compressibility and low strength, soft soil should be improved by composite foundation technology to satisfy the strict requirement of deformation. Subjected to traffic load, the pavement and foundation should be taken as a whole system of interaction, and of which deformation characteristics are worth studying.
    Firstly, the paper introduced the present study state on dynamic characteristics of soft subgrade and composite foundation, generalized the present study state on interaction of pavement and foundation from theory study, experimental modeling and numerical analysis aspects. Subsequently, the theory of elasto-plastic constitute and dynamic finite element method(FEM) are summarized, the difference and applicability of total stress method and effective stress method are described. Then, dynamic features of pavement materials, soft soil and composite foundation are depicted simply.
    The features and present study state of traffic load are generalized, and the typical structure of pavement is introduced. Then the paper summarized the present study state on dynamic pore pressure model of soft subgrade and composite foundation, established empirical dynamic pore pressure model respectively, and the model parameters are obtained based on formers' indoor dynamic triaxial tests.
    A dynamic elasto-plastic FEM program is compiled, and is verified by comparing the calculated results with analytical solutions. Many types of dynamic load can be used to analyze the problems of interaction of soils and structures with this program. And it is necessary to use effective stress method to study dynamic deformation problems of soil subgrade.
    For convenience, traffic load is simplified as half-sinusoidal load, and the soil of subgrade is assumed to be strain-hardening. The deformation characteristics of pavement section and soft soil subgrade under traffic load are analyzed, considering the effects of load (including type, amplitude and frequency) and parameters of soft soil (including resilient modulus, cohesion, internal friction angle, Poisson ratio, damping ratio et al). With the established dynamic pore pressure model, the calculated results of total stress method and effective stress method are compared. Consolidation settlement induced by dispersion of residual pore pressure is calculated, and the effect of pore pressure on pavement settlement is discussed.
    The deformation characteristics of pavement section and composite foundation
    
    
    
    under cyclic traffic load are analyzed with the FEM program. With the dynamic pore pressure model of composite foundation established, the effects of pore pressure, horizontal load, parameters of pavement structure, soft subsoil and composite foundation on pavement deformation are discussed in detail. Taking the traffic load as moving point load, the deformation characteristics of longitudinal section of pavement and composite foundation under moving point load are analyzed, considering the effect of pore pressure, traffic velocity, parameters of pavement structure and subgrade.
    Finally, two examples of pavement section and soft subgrade, longitudinal section of airport runway and composite foundation are calculated. And the results show that the calculated settlement agree well with that of measured.
    The paper established the dynamic pore pressure models of soft soil subgrade and composite foundation, compiled the dynamic FEM program of undrained effective stress method, considering the elasto-plasticity of foundation soil as well as the interaction of pavement and foundation, thoroughly analyzed the deformation characteristics of pavement and foundation, and these results are instructive for the construction of pavement or airport runway.
引文
Andersen K H, et al. Cyclic and static laboratory tests on drammen clay. J of Geotech Engrg Div, ASCE, 1, 1980, 106(5): 499~529
    Azzouz A, et al. Cyclic behavior of clays in undrained simple shear. J of Geotech Engrg,ASCE, 1989,115(5): 637~657
    Balaam N P and Booker J R. Analysis of rigid rafts supported by granular piles. Int J for numerical and analytical methods in geomechartics, 1981,(5)
    Barker W R. Nonlinear finite element analysis of heavily loaded airfield pavement systems. Proc Applications of the Element method in Geotech Engrg, 1972,657~693
    Barron R A. Consolidation of fine grained soils by drain wells,Trans,ASCE,1948,Vol 113
    Battiato G, Verga C and Ronca G. Viscoelastic deformations in a two-layered paving system predicted from laboratory creep results,Trans Res Record 640,Transportation Research Board,Washington D C,34~38,1977
    Brown S F. Soil mechanics in pavement engineering. Geotechnique, 1996,46(3): 383~426
    Brown S F, et al. Repeated load triaxial testing of a silty clay.Geotechnique, 1975,25(1): 95~114
    Castro G, et al. Shear strength of soils and cyclic loading. J of Geotech Engrg Div, ASCE,1976, 102(9): 887~894
    Chai Jin-chun, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil. J Geotech Engrg Div, ASCE,2002,128(11): 907~916
    Chen Y H and Shen J T. Axially-loaded damped Timoshenko beam on viscoelastic foundation. Int J Meth Engrg, 1993,36(6): 1013~1027
    Chen S S. The response of multilayered systems to dynamic surface loads. PhD thesis,University of Califomia at Berkeley, Calif, 1987
    Clough R W. The finite element method in plane stress analysis. Proc 2nd ASME conference on electronic computation, Pittsbrugh,Pa,1980
    Collins I F and Wang A P. Shakedown in layered pavements under moving surface loads. Int J Num Anal Meth Geomech,1993,17:165~174
    Dafalias Y F and Herrmann L R. A bounding surface soil plassti8city model. Proc Int Syrup Soil under Cyclic and Transient Loading, Swansea. 1980
    Desai C S. Constitutive model for geological materials. J Engrg Mech Div, Vol 110, No 9
    Desai C S, Somasundaram S and Frantyiskonis G. A hierarchical approach for constitutive modeling at geologic materials. Int J Num Anlay Meth in Geomeeh, 1986,10(3)
    Dobry R and Vueetie M. Dynamics properties and seismic response of soft clay deposits. State-of-the Art paper, Proc Int Sym on Geotech Engrg of soft soils,Mexico City,1987, Vol 2
    Dobry R, Ladd R S, Yokel F Y and Chung R M. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. Building Science Series 183,1982,National Bureau of Standards, U S Department of Commerce,U S
    
    Government Printing Office,Washington D C
    Douglas R A. Repeated-load behavior of geosynthetic-built unbound roads. Canadian Geotechnical Journal, 1997, 34(2): 197~203
    Drucker D C, Gibson R E and Henkel D H. Soil mechanics and work-hardening theory of plasticity, Trans,ASCE, 1957,Vol 122
    Finn W D L, Lee K W and Maartman C H. Cyclic pore pressures under anisotropic conditions earthquake engineering and soil dynamics. Proc ASCE Geotech Engrg Div Spec Cord, Vol 1,1978
    Fryba L, Dynamic interaction of vehicles with trucks and roads, Vehicle System Dynamics, 1987, Vol 6:129-138
    Fujiwara H, et al. Consolidation of alluvial clay under repeated loading. Soils and Foundations, 1985,25(3): 19~30
    Fujiwara H, et al. Secondary compression of clay under repeated loading. Soils and Foundations, 1987,27(2): 21~30
    Fujiwara H, et al. Effect of preloading on post-construction consolidation settlement of soft clay subjected to repeated loading. Soils and Foundations, 1990,30(1): 76~86
    Hardin B O, Black W L. Vibration of modulus of normal consolidated clay. J Soil Mech Found Div, ASCE, 1968,94(SM2)
    Hither P Y, et al. Rotation of principal directions in K0-consolidated clay. J of Geotech Engrg Div, ASCE, 1987,113(7): 774~788
    Huang M H and Thambiratnam D P. Deflection response of plate on Winkler foundation to moving accelerated loads. Engineering Structures,2001,23:1134~285
    Hyde A F L and Brown S F. The plastic deformation of a silty clay under creep and repeated loading tests on underined strength and compressibility of clay. Soils and Foundations, Geotechnique, 1973,Vol 26,No 1: 237~244
    Hyodo M, Yasuhara K, et al. Prediction of clay behavior in undrained and partially drained cyclic triaxial tests. Soils and Foundations,1992,32(4): 117~127
    Hyodo M and Yamamoto, et al. Undrained cyclic shear behavior of normally consolidated clay subjected to initial static shear stress. Soils and Foundations, 1994,34(4): 1~11
    Idriss I M, Dobry R and singh R D. Nonlinear behavior of soil clays during cyclic loading. J soil Mech and Found Div, ASCE,98(6),1978,1427~1447
    Idriss I M, Dobry R and Singh R D. Behavior of soft clays under earthquake loading conditions. Proc 8th Annual Offshore Technology Conference, 1976,Houton
    Ishihara K and Okada S. Effects of stress history on cyclic behavior of sand. Soils and Found, 1978,18(4)
    Ishihara K. Dynamic properties of soils and gravels from laboratory tests. Seminar Proceeding Soil Dynamics and Geotechnical Earthquake Engineering,Lisbon, 1992,1~17
    Ishihara K. Soil behavior in earthquake geoteehnies. Clarendon Press,Oxford,UK, 1996
    Kim J & William G. Buttlar. Analysis of reflective crack control system involving reinforcing grid over base-isolating interlayer mixture. Journal of Transportation Engineering. 2002, 128(4): 375~364
    
    
    Koutsoftas D C. Effects of cyclic loads on undrained strength of two marine clays. J of Oeotech Engrg Div, ASCE, 1978,104(5): 609~620
    Koutsoftas D C and Fischer J A. Dynamic properties of two marine clays. J Geotech Engrg, ASCE, 1980,106(6): 645~657
    Krieg R D. A practical two-surface plasticity theory. J Appl Mech Trans,ASCE,42:641~646
    Ladd C C, et al. Stress-deformation and strength characteristics. Proe 9th Int Conf on Soils Mech and Found Engrg, Tokyo, Japan,.1977,Vol 2:421~494
    Lee K W and Finn W D L. DESRA-2,dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential. The University of British Columbia, Faculty of Applied Science, 1978
    Lo K Y. The pore pressure-strain relationship of normally consolidated undisturbed clays. Part Ⅰ and Part Ⅱ,Canadian Geotechnical Journal, 1969,Vol 6:383N412
    Malek A M. Cyclic behavior of clay in undrained simple shearing and application to offshore structures. J Geotech Engrg, ASCE, 1989,115(5): 615~636
    Majorana C and Mazzalai P, et al. Prediction of the settlement of steel petroleum tanks resting on stone columns reinforced soil. Proc 8th ECSMFE
    Martin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading. J Geotech Engrg Div, ASCE, 1975,101 (GTS): 423~438
    Matisui T, et al. Cyclic stress-strain history and shear characteristics of clay. J of Geotech Engrg Div, ASCE, 1980, 106(10): 1101~1120
    Matsui T, et al. Estimation of shear characteristics degradation and stress-strain relationship of saturated clays after cyclic loading. Soils and Foundations, 1992,32(1): 161~172
    Matsui T, Ohara H and Ito T. Cyclic stress-strain history and shear characteristics of clay. J of the Geotech Engrg Div, Proc.ASCE, 1980,106(10): 1101~1120
    Mladen Vucetic and Richardo Dobry. Degradation of marine clays under cyclic loading. J of Geotech Engrg,1988,114(2): 133~149
    Monismith C L, Lysmer J and Sousa J et al. Truck pavement interactions requisite research. Conf Vehicle Pavement, SP765,Society of Automotive Engineering(SAE),warrendale
    Mroz Z. On the description of anisotropic hardening. J of Mech phys Solids, 1967,15
    Neven matasovie and Mladen Vucetie. Generalized cyclic-degradation-pore-pressure generation model for clays. J of Geoteeh Engrg, 1995,121 (1): 33~42
    Neven Matasovic and Mladen Vuceric. A pore pressure model for cyclic straining of clay. Soils and Foundation. 1992,32(3): 156~173
    Ohara S, et al. Study on the settlement of saturated clay layer induced by cyclic shear. Soils and Foundations,1988,28(3): 103~113
    Onoue A and Mori N, et al. In-situ experiment and analysis on well resistance of gravel drains. Soils and Foundations, JSMFE, 1987,27(2)
    Parmelee R A. Building-foundation interaction effects. J Engrg Mech Div, ASCE, 1967,93(SM2)
    Prevost J H. Mathematical modeling of monotonic and cyclic undrained clay behavior. Int J for Num and Analy Meth in Geomech,1977
    
    
    Pykc R and Beikae M. A computer program for nonlinear ground response analysis: User's manual,Taga Engrg, Software Services, Berkeley, Calif
    Reissner E, Sagoci H F. Forced torsional oscillation of an elastic half-space. J Appl Physics,1944, 15:652-662
    Roscoe K H,Schofield A N and Wroth C P. On the yielding of soils,Geotechnique, 1963, Vol 8, No 1
    Roscoe K H, Schoficld A N and Thurairajah. Yielding of clays in states wetter than critical, Geotechnique, 1963,13
    Roscoe K H and Burland J B. On the generalized stress strain behavior of "wet" clay. Engineering Plasticity Ed,by J Hoyman and F A Leekie,Cambridge Univ Press, 1968
    Sandhu R S and Wilson E L. Finite element analysis of seepage in elastic media.ASCE,1969, 95(3)
    Schweiger H F and Pande G N. Numerical analysis of a road embankment constructed on soft clay stabilized with stone columns. Proc Num Mech in Geomech, 1998,1329~1333
    Schweiger H F and Pande G N. Modelling stone column reinforced soils—A modified Voigt approach. Proc 3rd Num Models in Geomech, 1989,204~214
    Seed H B & Chan C K. Effect of duration of stress application on soil deformation under repeated loading, Proc 5th ICSMF: 341~345
    Seed H B and Idriss I M. Influence of soil condition on ground motions during earthquake. J Soil Mech Found Div, ASCE, Vol 95(SM1)
    Subei N, Saxena S K and Mohammadi J. A BEM-FEM approach for analysis of distresses in pavements. Int J Num Anal Meth Geocech, 1991,15: 103~119
    Taylor P W, et al. Dynamic cyclic strain tests on clay. Proc 7th Int. Conf. on SMFE,Mexico,1969, (1)
    Theirs G R, et al. Cyclic stress-strain characteristics of clay. J of Soil Mech And Found Die, 1968, 94(SM6): 555~569
    Vucetic M, Dobry R and Petrakis E. Cyclic simple shear behavior of over-consolidated offshore clay. Proc 2nd Int Conf on soil dynamics and Earthquake Engrg on board of the liner, the Queen Elizabeth 2,1985,(2): 107~116
    Wang Z L, Dafalias Y F and Shen C K. Bounding surface hypoplasticity model for sands. J Engrg Mech,ASCE, 1990,116(5)
    White T D and Zaghloul S M. Pavement analysis for moving aircraft load. Journal of Transportation Engineering, 1997,123 (6): 436~446.
    Wood D M. Soil behavior and critical state soil mechanics, Cambridge University Press, 1990
    Yasuhara K, et al. Cyclic strength and deformation of normally consolidated clay. Soils and Foundations, 1982,22(3): 77~91
    Yasuhara K, Undrained and drained cyclic triaxial tests on a marine clay. Proc 11th ICSMFE, 1985,(2),1095~1098
    Yasuhara K, Postcyclic undrained strength for cohesive soils. J of Geotech Engrg,ASCE,1994, 120(11): 1961~1979
    Yasuhara K, et al. Effects of cyclic loading on undrained strength and compressibility of clay. Soils and Foundations, 1992,32(1): 100~116
    Yasuhara K, Approximate prediction of soil deformation under drained-repeated loading. Soils
    
    and Foudations,1983, 23(2): 13~25
    Yasuhara K. Consolidation and settlement under eyelie loading. Proe Int Symp on Compression and Consolodation of Clay soils, 1995,979~1001
    Zeng G X, Xie K H & Shi Z Y, Consolidation analysis of sand-drained ground by FEM, Proc 8th ARCSMFE,1987,(1)
    Owen D R J & Hinton E.曾国平等译.塑性力学有限元.理论与应用.北京:兵器工业出版社,1989
    鲍尔斯J E,胡人礼 陈太平译,林亚超 邹守简校.基础工程结构分析及程序.北京:中国铁道出版社,1982
    白冰 刘祖德.冲击荷载作用下饱和软粘土孔压与消散规律.岩土力学,19(2):33~38
    白冰 刘祖德.饱和软粘土的再固结性状研究.岩土工程学报,1999,21(2):189~195
    白冰 刘祖德.冲击荷载作用下饱和软粘土强度计算方法.水利学报,1999,(7):1~6
    白冰 章光等.冲击荷载作用下饱和软粘土的一些性状.岩石力学与工程学报,2002,21(3):423~428
    曹新文 蔡英.铁路路基动态特性的模型试验研究.西南交通大学学报,1996,31(1):36~41
    陈善民.水泥搅拌桩复合地基的静、动力特性研究.杭州:浙江大学博士学位论文,2001
    陈善民 王立忠等.水泥土动力特性室内试验及复合地基抗震特性分析.浙江大学学报(工学版),2000,34(4):398~403
    陈强 黄志义等.组合型复合地基的特性及其FEM模拟研究.土木工程学报,2001,34(1):50~55
    陈仲颐 周景星.土力学.北京:清华大学出版社,1994
    邓学钧 张登良.路基路面工程.北京:人民交通出版社,2000
    邓学钧 李昶.水平荷载作用下路面结构应力.岩土工程学报,2002,24(4):427~431
    邓学钧 黄卫 黄晓明.路面结构计算和设计电算方法.南京:东南大学出版社,1997
    丁皓江 谢贻权等.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1983
    第四届全国土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1986,199~207
    段继伟.水泥搅拌桩的荷载传递规律.岩土工程学报,1994,16(4):1~8
    范敏 解有丽 邬瑞峰.土-桩-结构相互作用体系的非线性地震响应分析.地震工程与工程振动,1987,7(1)
    扶长生等.具有埋深基础的土.结构系统的非线性地震响应分析.地震工程与工程振动,1987,7(1)
    高速公路丛书编委会.高速公路路基设计与施工.北京:人民交通出版社,1997
    龚晓南.高速公路软弱地基处理理论与实践.上海:上海大学出版社,1998
    龚晓南.复合地基理论与实践在我国的发展.复合地基理论与实践学术讨论会论文集,1996,1~15
    龚晓南.土塑性力学.杭州:浙江大学出版社,1997
    龚晓南.土工计算机分析.北京:中国建筑工业出版社,2000
    龚晓南.高等土力学.杭州:浙江大学出版社,1996
    龚晓南.复合地基理论及工程应用.北京:中国建筑工业出版社,2003
    顾卫华 王余庆.砾石排水桩与地面压重的抗液化效果.岩土工程学报,1985,7(4):34~44.
    呙润华 凌建明.飞机荷载作用下场道地基附加应力特征.同济大学学报,2001,29(3):288~290
    韩杰 叶书麟.考虑井阻和涂抹作用碎石桩复合地基固结度计算.第三届全国地基处理学术讨论会论文集,1992,351~358
    郝玉龙 陈云敏等.深厚软土未打穿砂井超载预压地基孔隙水压力消散规律分析.中国公路
    
    学报,2002,15(32):36~39
    何广讷.复合地基沉降计算实用法的分析.地基处理,1998,9(2):3~9
    侯永峰.循环荷载作用下复合土与复合地基性状研究.杭州:浙江大学博士学位论文,2000
    华南理工大学 浙江大学等.地基及基础.北京:中国建筑工业出版社,1991
    黄明聪.复合地基振动反应与地震响应数值分析.杭州:浙江大学博士学位论文,1999
    黄文熙 濮家骝 陈愈炯.土的硬化规律与屈服函数.岩土工程学报,1981(3)
    黄晓明 邓学均.文克勒地基上板在动荷下的挠度计算方法.东南大学学报,1989,19(6):55~60
    黄晓明 邓学均.弹性半空间地基板在动荷作用下的力学分析.岩土工程学报,1991,13(4):66~70
    黄晓明.移动荷载作用下粘弹性文克勒地基板的力学分析.重庆交通学院学报,1990,9(2):450~51
    江静贝.复合地基的地震反应分析.建筑科学,1996,(1):23~28
    蒋军.循环荷载作用下软粘土及含砂芯复合试件性状研究.杭州:浙江大学博士学位论文,2000
    蒋维城.固体力学有限元分析.北京:北京理工大学出版社,1989
    交通部标准.公路水泥混凝土路面设计规范(JTJ012-84).北京:人民交通出版社,1985
    李海晓.复合地基和上部结构相互作用的地震动力反应分析.杭州:浙江大学博士学位论文,2001
    李小军 廖振鹏 张克绪.土体动力本构模型评述.世界地震工程,1993,(4):15~18
    林琼.水泥系搅拌桩复合地基试验研究.杭州:浙江大学硕士学位论文,1989
    刘一林.水泥搅拌桩复合地基变形特性研究.杭州:浙江大学硕士学位论文,1991
    刘一亮 刘祖德 杨起敬.周期荷载下软土残余变形的模型试验研究.武汉水利电力学院学报,1992,25(4):353~361
    楼晓东.水泥土桩复合地基的固结有限元分析.杭州:浙江大学硕士学位论文,1998
    罗晓.软土地基弹塑性地震响应分析.杭州:浙江大学博士学位论文,1995
    卢成文.世界飞机手册.北京:航空工业出版社,1997
    倪光乐 苏克之 李成明.弹性矩型板与非线性地基共同作用的简化计算法.岩土力学,2000,21(3):239~243
    钱家欢 殷宗泽.土工原理与计算.北京:中国水利水电出版社,1996
    钱建固 陈正杰.软土地基水泥土群桩竖向应力传递机理分析.工业建筑,2001,31(11):12~15
    沈珠江.土的三重屈服面应力应变模式.固体力学学报,1984(2)
    沈珠江.用有限单元法计算软土地基的固结变形.水利水运科技情报,1977,(1)
    沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(30):21~28
    王建华 要明伦.饱和软粘土动力特性的弹塑性分析.第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1990,150~154
    王建华 要明伦.软粘土不排水循环特性的弹塑性模拟.岩土工程学报,1996,18(3):33~39
    王金昌.广义荷载作用下道路与软基共同作用研究.杭州:浙江大学博士学位论文,2003
    王林玉.交通荷载作用下道面和软土地基共同作用数值分析.杭州:浙江大学博士学位论文,1999
    王勖成 邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997
    王志良 王余庆等.不规则循环剪切荷载作用下土的弹塑性模型.岩土工程学报,1980,2(3):10~20
    魏汝龙.正常压密土的本构定律.岩土工程学报,1981(3)
    吴世明.土动力学.北京:中国建筑工业出版社,2000
    夏志皋.塑性力学.上海:同济大学出版社,1991
    谢定义.土动力学.西安:西安交通大学出版社,1988
    
    
    谢康和.砂井地基固结理论、数值分析与优化设计.杭州:浙江大学博士学位论文,1987
    谢康和.复合地基固对理论研究现状与发展.地基处理,1993,4(3):1~14
    谢康和 周健.岩土工程有限元分析理论与应用.北京:科学出版社,2002
    邢仲星 陈晓平.复合地基力学特性研究及有限元分析.土工基础,2000,14(2):1~4
    徐干成.饱和砂土循环动应力应变的弹塑性模型研究.空军工程学院博士学位论文,1993
    徐稼轩 郑铁生.结构动力分析的数值方法.西安:西安交通大学出版社,1993
    许金余.飞机-道面-土基动力耦合系统有限元分析.计算结构力学及其应用,1994,11(1):77~83
    徐日庆 龚晓南.边界面本构模型及其应用.第五届全国岩土力学数值分析与解析方法讨论会论文集(第一卷),武汉:武汉测绘科技大学出版社,1994,26~31
    徐志英.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动.1985,5(4)
    徐志英 周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动,1985(4)
    徐志英 周健.奥罗尔土坝三维排水有效应力动力分析.水利学报,1991(1)
    徐志英.砂基内设置砾石排水桩抗地震液化的分析与计算.勘察科学技术,1985,12(1):1~7
    杨桂通 熊祝华.塑性动力学.北京:清华大学出版社,1984
    杨起敬.周期应变历史对软士残余强度和残余变形的影响.水利学报,1991,(10):13~18
    杨涛 殷宗泽.复合地基沉降的复合本构有限元分析.岩土力学,1998,19(2):19~24
    杨锡武.公路水泥混凝土路面典型结构设计.北京:人民交通出版社,2002
    阎澎旺.往复荷载作用下重塑软粘土的变形特性.岩土工程学报,1991,13(1):48~53
    杨建斌 朱向荣 王林玉.路面与弹性地基共同作用变形分析.浙江大学学报(增刊),1997,273~276
    要明伦 聂栓林.饱和软粘土动变形计算的一种模式.水利学报,1994,(7):51~55
    叶国铮.路面永久变形的实验研究.岩土工程学报,1987,9(1):113~116
    俞建荣 陈荣生 金志强.半刚性基层与刚性面层联结状态对刚性路面荷载应力的影响分析.岩土工程学报,1996,18(4):34~39
    曾国熙 龚晓南等.正常固结土K_0固结三轴试验研究.浙江大学学报,1987,(2)
    张诚厚 袁文明等.高速公路软基处理.北京:中国建筑工业出版社,1997
    张克绪 谢君斐.土动力学.北京:地震出版社,1989
    张廷楷.高速公路.北京:人民交通出版社,2001
    郑大同 王惠昌.循环荷载作用下土的非线性应力应变模型.岩土工程学报,1983,5(1):65~76
    郑颖人 沈珠江.岩土塑性力学原理.中国人民解放军后勤工程学院,1998
    钟阳 王哲人 郭大智.求解多层弹性半空间轴对称问题的传递矩阵法.土木工程学报,1992,25(6):37~43
    钟阳 孙林等.轴对称半空间层状弹性体系动态反应的理论解.中国公路学报,1998,11(2):24~29
    周健等.动力荷载作用下软粘土的残余变形计算模式.岩土力学,1996,17(1):55~60
    周健 徐志英.土(尾矿)坝的三维有效应力动力反应分析.地震工程与工程振动,1984,(3)
    周建.循环荷载作用下饱和软粘土特性研究.杭州:浙江大学博士学位论文,1998
    朱百里 沈珠江.计算土力学.上海:上海科学技术出版社,1990
    祝龙根 吴晓峰.低幅应变应变下砂土动力特性的研究.全国土工建筑物及地基抗震学术讨论会论文汇编.陕西机械学院,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700