桩波动性状若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Some Aspects of the Wave Behavior in Piles
  • 作者:许进军
  • 论文级别:博士
  • 学科专业名称:岩土工程
  • 学位年度:2001
  • 导师:曾国熙
  • 学科代码:081401
  • 学位授予单位:浙江大学
  • 论文提交日期:2001-03-01
摘要
本文用弹性动力学方程研究了无限长埋入桩的波动性状的若干问
    题。针对轴对称情况,推导了纵向模态的频率方程。频率方程代表了
    无量纲频率和无量纲波数之间的超越关系。频率方程的解为无究多个,
    并且形成无穷多支频散曲线(无量纲频率-无量纲波数曲线)。本文用
    数值方法计算了在软土与硬土中混凝土桩的前5支频散曲线。敏感性
    分析表明,无量纲波数实部与桩周土的剪切模量和密度无关,并与自
    由杆很一致。而波数虚部则,随着桩周土剪切模量与密度的增大而增
    大。
     导波模态单位长度的衰减可以直接由波数虚部来代表。相速度和
    群速度随频率或波数而变化,这点与一维波动理论的假设相反。随着
    曲线分支阶次和频率的提高,导波模态的能量及位移分布曲线的起伏
    程度也相应增大。当无量纲频率低于2时,L(0,1)模态衰减最小,
    容易被激发,这点与实际中广泛采用的频响函数测试法(导纳法)相
    印证。当无量纲频率高于12时,模态L(0,2)衰减最小,其模态相对
    比较简单,这意味着这些模态在实际中也可能被激发。
Guideci wave propagatjon in an infinitely long cylindrical pile embedded
    
     in soil is developed from dynamic equations ot?elasticity. Considering
    
     axisymmetric motion in the pile, the frequency equation for longitudinal
    
     modes is derived herein. The frequency equation represents a transcendental
    
     relationship between the non梔imensional frequency, Q, and non梔imensional
    
     wave number, Ja .The solution of the frequency equation is satisfied by an
    
    
     infinite number of modes that form branches in Q梸a plane. The first five
    
     branches of the longitudinal family of modes in a concrete pile embedded in
    
     sottjloose and hard dense soils were numerically evaluated respectively.
    
     Sensitivity analyses show that the real branches in the Q梸tplane are
    
     essentially independent of the shear modulus and density of the surrounding
    
     soil, and correspond closely to the branches of longitudinal modes in a
    
     free梥tanding?pile. However, the imaginary components of the branches in
    
     the Q梸~ plane are higher for soils with increased shear modulus and
    
     density.
    
     The attenuation of the longitudinal guided wave modes is represented
    
     directly by the imaginary part of the wave number, in nepers per length. The
    
     phase and group velocities vary with the frequency or wave number, contrary
    
     to the assumptions made in the theory of the one梔imensional approach. The
    
     power and displacement profiles of a given guided wave mode generally become
    
    
    
    
    
    
    
    
    
     more oscillatory as the order o~ the branch increases and as the frequency
    
     increases. For non梔imensional frequencies less than 2, the L (0, 1) modes
    
     display the lowest attenuation and are easily induced in a pile, as evidenced
    
     by the popularity of the impulse response test in practice. Modes on the
    
     L(0,2)hranch have the least attenuation compared to all other modes for
    
     non梔imensional frequencies above 12, and their relative simple mode shapes
    
     suggest that they are likely to be induced in practice.
引文
[1]徐攸在,刘兴满,桩的动测新技术,中国建筑工业出版社,1989。
    [2]张何舟,赵淳生,桩基故障诊断理论分析(一)——理想桩的自由振动特性,振动测试与诊断。1991.Vol.ii(1):1—8页。
    [3]工奎华,基桩完整性动测定量化及拟合分析(硕士学位论文),河海大学,1993。
    [4]汪凤泉,王奎华等,非完整桩土耦合系统动力学模型及定解问题,东南大学学报,1993.Vol.23(增刊):1—6页。
    [5]王奎华,谢康和,曾国熙,有限长桩受迫振动问题解析解及应用,岩土工程学报,。
    [6]王奎华,谢康和,曾国熙,弹性支承桩受迫振动问题广义函数解及应用,浙江大学学报。
    [7]袁建新,朱国普,桩的大应变波动分析优化算法程序,岩土工程学报,1990,12卷,第6期。
    [8]W.f.Starke,Mathew,C.Janes,低应变完整性试验的精度和可靠性,第三届应力波理论在桩基工程中的应用国际会议论文,1988,5。
    [9]陈龙珠,梁国钱等,桩轴向荷载—沉降曲线的一种解析算法,岩土工程学报,1994,16卷,第6期。
    [10]潘时声,振动法与传递涵数法结合的试桩技术,岩土工程学报,1994,16卷,第6期。
    [11]罗惟德,单桩承载力机理分析与荷载—沉降曲线的理论推导,岩土工程学报,1990,12卷,第1期。
    [12]柴华友,土阻尼对应力波在一维变波阻抗桩中的传播的影响,土木工程学报,1994,27卷,第3期。
    [13]徐攸在,动力测定桩的承载力的方法,岩土工程学报,1992,1992,14卷,第1期。
    [14]唐念慈,关于“动力测定桩的承载力的方法”一文的讨论,岩土工程学报,1992,14卷,第4期。
    [15]赵学勐,关于“动力测定桩的承载力的方法”一文的讨论,岩土工程学报,1992,15卷,第2期。
    [16]徐攸在,对“动力测定桩的承载力的方法”的讨论的答复,岩土工程学报,1992,15卷,第2期。
    [17]王礼立,《应力波基础》,国防工业出版社,1985。
    [18]韩英才,Novak,M.,单桩非线性振动实用分析方法的研究,土木工程学报,1989,22卷,第3期。
    [19]J.P.瓦尔夫著,吴世明等译,《土与结构动力相互作用》,地震出版社,1989。
    [20]陈清军,徐植信,桩基动力响应分析的Green函数法,城市建设与发展研究论文集,同济大学出版社,1992。
    [21]陈吕聚,王勇,机械导纳法分析桩的纵向振动,湖南大学学报,1985,12卷,第2期。
    [22]钱家欢,殷宗泽主编,《土工原理与计算》第二版,中国水利水电出版社,1996。
    [23]沈杰编,《地基基础设计手册》上海科学技术出版社,1988。
    [24]手册编委会,《桩基工程手册》,中国建筑工业出版社,1995。
    [25]顾晓鲁,钱鸿缙等主编,《地基与基础》第二版,中国建筑工业出版社,1993。
    [26]杨从清,连续介质中的应力瞬变,浙江大学学报,1985,5。
    [27]刘金砺,《桩基础设计与计算》,中国建筑工业出版社,1990。
    [28]卢世深,打入桩技术的国际动向,岩土工程学报,1987,第9卷,第5期。
    [29]杨克已等,基础-桩-土共同作用的性状与承载力研究,岩土工程学报,1988,第10卷,第1期。
    [30]陈雨孙,周红,纯摩擦桩荷载—沉降曲线的拟合方法及其工作机理,岩土工程学报,1987,第9卷,第2期。
    
    
    [31]黄强,桩侧摩阻力计算的简单数学模型,岩土工程学报,1987,第9卷,第5期。
    [32]江礼茂,寇绍全,陆岳屏,一个以波动理论为基础计算单桩承载力的计算机程序,岩土工程学报,1990,第12卷,第4期。
    [33]陈凡,FEIPWAPC特征线桩基波动分析程序,1990,第12卷,第5期。
    [34]完整桩或破损桩的“质量—弹簧—阻尼”模型研究及实测结果对比,水文地质及工程地质,1992,第19卷,第1期。
    [35]柯李文,PDA——CASE动力试桩研究,岩土工程学报,1991,第13卷,第2期。
    [36]吴军帅,姜朴,土与混凝土接触而后动力剪切特性,1992,第14卷,第2期。
    [37]李小军,土的动力本构关系的一种简单函数表达式,1992,第14卷,第5期。
    [38]粱守信,周永全,周福良,输入实测力波的波动分析法确定弹桩承载力,建筑结构学报,1982,第2期。
    [39]蒋泽汉,机械阻抗法无破损检验桩基础质量,振动与动态测试,1986,第2期。
    [40]粱国钱,桩动振动特性及其检测方法研究,浙江大学博士学位论文,1994,5。
    [41]万小毛,基桩完整性检测技术的研究及其检测系统的开发与研制,南京航空学院博士学位论文,1992,12。
    [42]李云松,稳态激振下单桩响应时域分析,浙江大学硕士学位论文,1993,12。
    [43]童建富,桩基的动态测试研究及动力分析,浙江大学硕士学位论文,1990,12。
    [44]沈翔电,瞬态激振力下桩的动力响应及其应用研究,浙江大学硕士学位论文,1994,12。
    [45]谭小梅,变截面桩动力响应研究,浙江大学硕士学位论文,1995,12。
    [46]欧维义编,《数学物理方程》,吉林大学出版社,1991。
    [47]杨应辰,徐明聪,《数学物理方程与特殊函数》,国防工业出版社。
    [48]Bielifeld, M.w., Rausche, F. 1992. General report 2: Dynamic testing. B. J. Barkema, Rotterdam, 1992.
    [49]Van Koten, H., Middendorp, P., Van Brederode, P. 1980.: An analysis of dissipative wave Propagation in a Pile, Intel Seminar on the Application of Stress-Wave Theory On Piles/Stockholm.
    [50]Yves Robert 1992. A new approach to the analysis of high-strain dynamic pile test data, Can. Geotech. J. VOL 31, 1994.
    [51]Legrand, C. 1985. Non-Destructive Teting of pile, Belgium Geotechnical Volume published for the Golden Jubilee of the ISSMFE.
    [52]Rausche, F., Likins, G.& Shen Ren Kung 1992. Pile Integrity Testing and analysis, Proc. Of Stress-Wave Theory to Piles, The Hague, September, 5.
    [53]Middendorp, P. 1987. Numerical Model for TNOWAVE, TNOIBBC report BI-86-75.
    [54]Smith, E.A.L.1960. Pile Driving Analysis by the Wave Equation, Jrl. of the Soil Mechanics and Foundation Division, ASCE, Vol.86, No. SM4, August 1960.
    [55]Van Koten, H.& Middendorp, P.1980. Equipment for Integrity Testing and Bearing Capacity of Piles, Proc. Of Int. Sseminar on the Application of Stress-Wave Theory to Piles, Stockholm.
    [56]Parola 1970. Mechanics of Impact Pile Driving, Ph.D.dissertation, University of Illinois at Urbana-Champaign.
    [57]Holeyman, A.E. 1992. Keynote lecture: Technology of pile dynamic testing, Application of Stress-Theory to Piles. Balkema, Rotterdam, 1992. pp363-370.
    
    
    [58] Broms, B., Lim Pauy Choo 1988. A Single Pile Driving Formula Based on Stress-Wave Measurements, Proc. Of the 4~(th) Int. Conf. On the Application of Stress-Wave to Piles, Ottawa, May, 1988.
    [59] Middendorp, P and Van Koten, H. 1982. The method of Sonic Integrity Test(TNO Report in Dutch).
    [60] Courage, W.M.G., Bielefeld, M.W. 1992. TNOWAVE automatic signal matching, Application of Stress-Theory to Piles, Balkema, Rotterdam, 1992.
    [61] Middendorp, P., Reiding, F.J. 1988. Determination if Discontinuities in Piles by TNO Integrity and Signal Matching Techniques. Fellenius, B.H.(ed.), Proc. 3~(rd). Int. Conf. On Application of Stress-Wave Theory to Piles, Ottawa, Canada.
    [62] Hartung, K. Meier, Rodatz, W. 1992. Integrity testing on model piles, Application of Stress-Theory to Piles. Balkema, Rotterdam, 1992.
    [63] Balthaus, H.G., Meseck, H. 1985. Numerical Modelling of Pile Behavior under Low-Strain Integrity Testing, Numerical Methods in Geomechanics, Inshruck 1985.
    [64] Prakash, CH. Sharma, A.K., Rastogi, PC. 1992. Diagnosis of cast-in-situ piles resting on rock by FPDS, Application of Stress-Theory to Piles. Balkema, Rotterdam, 1992.
    [65] Reiding, F. J. 1992. Computer-integrity pile test equipment, Application of Stress-Theory to Piles. Balkema, Rotterdam, 1992.
    [66] Bolton Seed, H., Lymon C.Reese 1955. The action of soft clay along friction piles, J.Transactions, ASCE. Vol.81.
    [67] Hull, T.S. 1987. The static behavior of laterally loaded piles, Ph. D. dissertation, University of Sydney, Australia.
    [68] Meyerhof, G.G. 1963. Some recent research on the bearing capacity of foundations. Can. Geotech. J. 1, No.1.
    [69] Skempton, A.W. 1959. Cast-in-situ bored piles in London clay. Geotechnique-9, No.4.
    [70] Davis, A.G., Pobertson, S.A. 1976. Vibration testing of piles, Structural Engineer, London, Vol.54, No.6.
    [71] Novak, M. 1977. Vertical vibration of floating piles, Jnl.Eng. Mechs. Div. ASCE, Vol.103, No.EM1.
    [72] Novak, M., Sachs, r. 1973. Torsional coupled vibration of embedded footings, International Journal of arthquake Engineering and Structural Dynamic, John wiley & Sons Ltd., London, Vol.2, No.1.
    [73] Davis, R.A.L., Mure, J.N., Kightley, M.L. 1987. The dynamic analysis of piled foundations using the CAPWAP C method, Ground Eng. No. 5, 1987.
    [74] Rausche, F., Moses, F., & Goble, G.G. 1972. Soil resistance predication from pile dynamic, J. of the Soil Mechanics and Foundation Division, ASCE., Vol.98, No. SM9, 1972.
    [75] Desai, C.S. 1974. Numerical design-analysis for piles in sands, J. of the Geotech Eng. Div., ASCE, Vol.100,No. GT6,1974.
    [76] Kuhlemeyer, R.L., Vertical Vibration of piles, J. OF the Geotech Eng. Div., ASCE, Vol.105, No.GT2,Feb., 1979.
    [77] Kuhlemeyer, R.L., Static and dynamic laterally loaded floating piles, J. of the Geotech Eng. Div., ASCE,Vol. 105, No.GT2,Feb., 1979.
    [78] Nogami, T, Novak, M., 1976. Soil-Pile Interaction in vertical vibration, International Journal of Earthquake Engineering and Structural Dynamic, London, Vol.4, No.3. , 1976.
    
    
    [79] Novak, M., Aboul-Ella, F., 1978. Impedance function of piles in layered media, J. of the Eng. Mechanics Div, ASCE, Vol.104, No. EM3, June, 1978.
    [80] Nogami, T., Konagai, K. 1987. Dynamic response of Vertically loaded nonlinear pile foundations, J. of Geotech Eng. Div. ASCE, Vol. 113, No. 2, 1987.
    [81] Sheta, M., and Novak, M. 1968. Vertical vibration of pile groups, J. of Geotech Eng. Div. ASCE, Vol.108, No.GT4, Apr., 1982.
    [82] Butterfield, R., Banerjee, P.K., 971. The elastic analysis of compressible piles and pile groups, Geotechnique Vol. 21, No. 1,1971.
    [83] Davis, A.G., Dunn, C.S. 1974. From theory to experiouse with the non-destructive vibration testing of piles, Proc. Of Institution of Civil Eng. Part 2, Vol.57, 1974.
    [84] Novak, M. 1980. Approximate approach to contact effects of piles, Special Technical Publication on Dynamic Response of Pile Foundation Analytical Aspects, ASCE, Oct. 1980.
    [85] Bose, S.K., Haldar, S.S. 1985. Soil impedance in vertical vibration of a floating pile, Soil Dynamics and Earthquake Eng., Vol.4, No.4, 1985.
    [86] Ting, J.M., 1987. Full-scale cyclic dynamic lateral pile responses, J. of Geotech Eng. Div., Vol. 113, No. 1, Jan. 1987.
    [87] Novak, M. 1977. Vertical Vibration of floating piles, J.of the Eng. Mech. Div., ASCE, Feb. 1977.
    [88] Smith, E.A.L. 1955. Impace and Longitudinal wave transactions American Society of Mechanical Engieneers, 195.
    [89] Novake, M., Sharnouby, B.E. 1983. Stiffness constants of singlepile, J. of the Geotechnical Eng. Div., ASCE, Vol.109, No.GT7, 1983.
    [90] Graff, Karl. F. 1975. Wave Motion in Elastic Solids, Ohio State University Press, 1975.
    [91] Nogaimi, T, Novak, M. 980. Coefficient of soil reaction to pile vibration, J. of the Geotechnical Eng. Div., ASCE, Vol.106, NO.GT5, 1980.
    [92] Forehand, P.W., Reese, J.L. 1964. Predication of pile capacity by the wave equation, J. of the Soil Mech. Found. Div., ASCE, Vol.90, No.SM2,1964.
    [93] Gough, W., Richards, J.P.G., Williams, R.P. 1983. Vibration and Waves, Halsted Press of John Wiley & Sons, 1983.
    [94] Hardin, B.O., Drnevich, V.P.G., 1972. shear modules and damping in soils measurement and parameter effects, J. of the Soil Mech. Found. Div., ASCE, Vol. 98, No.SM6,1972.
    [95] W.S.Housel 1966. Pile Load Capacity, Estimates and test results, J. of Soil Mech. And Found. Div., ASCE, Vol. 92, No.SM4, July, S1966.
    [96] poulos, H.G. 1972. Load-Settlement Predication of pile piers, Proc.ASCE, SM9,1972.
    [97] Isaacs, D.V.1931. Reinforced concrete pile formula, Inst. Rust, Eng. J., Vol.12, 1931.
    [98] Lowery, L.L. et al 1967. Pile driving analysis-simulation of hammers cushions, pile and soil, Res. Report, TTI, 1967.
    [99] Forehand, P.W., Reese, J.L. 1964. Predication of pile capacity by the equation, SM2, ASCE, March, 1964.
    [100] Samson, G.H., Hirch, T.J., Lowery, L.L. 1963. Computer study of dynamic behavior of piling, ST4, ASCE, August, 1963.
    [101] Coyle, H.M., Gibson, G.C. 1971. Empirical damping constant for sand and clays, SM3, ASCE,1971.
    [102] Fellenius, B.H. 1984. Geotechnically allowable stress for driven piles, Civil
    
     Engineering/ASCE, November, 1984.
    [103] Rausche, F, Goble, G.G., Linkins, G.E. 1985. Dynamic determination on pile capacity, Journal of geotechnical engineering, Vol.111, No.3, May, 1985.
    [104] Rausche, F, Moses, R, Goble, G.G. 1972. Soil resistence predication from pile dynamic, J. of the Soil Mech. and Found. Div., ASCE, SM9. September, 1972.
    [105] CAPWAP/C Description and Development, PDA User's Day, Stockoholm, Sweden.
    [106] Fischer, H.C. 1984. Stress Wave Theory for Pile Driving Application, Lecture at the Second Intl. Conf. on the Application of Stress Theory on Piles, Stockholm. Sweden. Paquet, J. and Briard, M. controle Non-destructive des Piowx on Beton, Annds ITBTP, 1975.
    [107] Blaney,G.E.,Dynamic Stiffness of Piles,Proc. Of the Second Ins. Conf. On Num. Methods in Geomechanics, 1976
    [108] Angelides,D.C.,and Roesset,J.M.,Nonlinear Dynamic Stiffness of Piles, Research Report R80-13, Department of Civil Eng.,M.I.T.,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700