碳和氮化硼纳米管的物理力学性能和器件原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管和氮化硼纳米管具有独特的几何结构和优异的物理、力学和化学等性质,是构筑纳米器件的重要材料。本文利用从头算量子分子动力学、分子动力学、密度泛函理论以及量子力学和经典力学的混合模型,结合经典力学分析的方法对碳纳米管的轴向高频振动、氮化硼纳米管的电致变形和电磁中性分子的电驱动原理进行了大规模并行计算模拟和理论分析,尝试探索碳和氮化硼纳米管中存在的物理力学耦合行为,以及这种耦合行为在纳尺度器件开发中潜在的应用价值。本文通过对以上问题的研究,取得了如下进展:
     1)碳纳米管轴向高频振动的研究:人们对碳纳米管的高频振动行为进行了大量的研究,但缺乏量子分子动力学的检验,并且对振动受机电耦合效应的影响也了解甚少。本文以碳纳米管的轴向振动为例,利用从头算量子分子动力学对其振动过程进行了模拟。结果表明,碳纳米管的轴向振动受轴向电场的影响较小,而受电荷注入的影响较大。经典分子动力学方法能较好地描述该振动的主要特征,然而对振动的本征频率的预测与量子分子动力学的结果相比仍有差别。此外,对振动受机电耦合效应的影响,特别是有电荷注入的情况,经典分子动力学不能给出合理的描述。选择合适的参数,弹簧-质量块模型和空心杆模型对轴向振动的基频也可以给出较为准确的预测,然而对于高阶模态,上面两种模型的误差都比较大。此外,利用碳纳米管的轴向高频振动行为,我们提出了一种太赫兹辐射源的工作原理并申请了国家发明专利。
     2)氮化硼纳米管电致变形的密度泛函研究:寻找具有大应变能密度的智能材料一直是人们努力的方向。我们利用第一原理密度泛函方法对氮化硼纳米管的电致变形行为进行了研究。结果表明,在轴向外加电场的作用下,并且在实验中可以达到的电场强度下,锯齿型氮化硼纳米管的轴向电致变形可达4%,相应的体积功密度比目前已报道的聚合物智能材料的最高值要高100倍以上,比传统压电陶瓷材料要高出3个数量级。氮化硼纳米管的电致变形源于逆压电效应和电致伸缩效应,并且后者引起的变形量可达前者的两倍。考虑到氮化硼纳米管良好的热力学和化学稳定性以及绝缘性,它有望成为一种极富潜力的纳米智能材料。
     3)电磁中性分子电驱动原理的探索研究:对纳米和分子机器的驱动,特别是对电磁中性分子体系的驱动,是一个极具挑战性的科学和技术难题。它们不含净电荷或磁距、磁畴或电畴,因此不能用均匀的电场或磁场来进行驱动和操作。本文利用半经验量子分子动力学模拟证明:通过控制一端封闭一端开口的单壁碳纳米管上的电荷分布,可以改变它与内部中性分子之间的相互作用,进而实现对中性分子的驱动和操作。当碳纳米管带上均匀分布的正电荷时,可以将其内的中性分子打出;而当它带上均匀分布的负电荷时,则不能将内部的中性分子打出,然而却能将位于其开口端附近的中性分子吸入。这些发现有望为纳米器件和系统的驱动和控制提供一种新的机制。
Carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) are expected to have great potential applications in building nano devices due to their unique geometry structures and excellent physical, mechanical and chemical properties. Atomistic simulation is a very powerful tool to unveil the complex phenomena in nanoscale and is also helpful for designing new nano devices. In this thesis, exceptional physical mechanics properties and behaviors of CNTs and BNNTs are investigated by using the atomistic methods including the molecular mechanics (MM) and quantum mechanics (QM) as well as the hybrid QM/MM method. The main contents are as follows:
     1) High frequency longitudinal oscillation of carbon nanotubes. To check the validity of the classical mechanics methods and to study the influence of electromechanical coupling effect on the oscillation behavior, longitudinal oscillation of a (3, 3) CNT is studied by ab initio quantum mechanical molecular dynamics (ab-MD) simulations. It is found by the ab-MD simulations that axial electric field affects very slightly on the longitudinal oscillation behavior of the CNT, but electrical charging can significantly influence the oscillation behavior. Classical MD method can goodishly describe the frequency-domain characteristic of the oscillation, but it can not exactly predict the electromechanical coupling effect, especially when the CNT is electrically charged. Choosing suitable mechanical parameters, both the simple spring-mass model and the hollow rod model can yield good prediction for the fundamental frequency, but can not give accurate descriptions for the higher order modes. Furthermore, based on the high frequency longitudinal modes of the CNTs, a terahertz (THz) source is also proposed.
     2) Density functional theory studies on the electric-field-induced deformation of BNNTs. Intelligent materials with high work density are essential for nano electromechanical devices. Our density functional theory calculations indicate that the electric-field-induced deformation of zigzag BNNTs can be 4% around field strength of 1.2 V/?. The corresponding volumetric work capacity is nearly ten times higher than those of the best reported polymer intelligent materials, and about 3 orders of magnitude higher than those of traditional piezoceramics. The large electric-field-induced deformation is found to arise from both the converse piezoelectric effect and the electrostrictive effect of BNNTs. Considering the high chemical and thermal stability and electrical insulation, BNNTs they should have great value in potential applications.
     3) Quantum mechanical molecular dynamics simulations of nano-gun from CNTs. How to make nano/molecular machines work is a challenging nanotechnology issue, especially to drive magnetoelectrically neutral molecules. Here, we demonstrate by quantum mechanical molecular dynamics simulations on an ideal model that an electrically neutral nanotube or fullerene ball inside a one-end-open carbon nanotube can be driven into movement by properly charging the housing nanotube. It is more interesting that positively charged housing tube can drive the molecule inside it out, like a nano-gun; while negatively charged housing tube can only drive the molecule into oscillation inside it, but can not drive it out. Instead, a negatively charged housing tube can absorb inward a neutral molecule in the vicinity of its open end, like a nano-manipulator. These findings may be helpful for designing new nano devices.
引文
[1]刘吉平,孙洪强,碳纳米材料,北京,科学出版社, 2004.
    [2]张立德,牟季美,纳米材料和纳米结构,北京,科学出版社, 2001.
    [3]张立德,解思深,纳米材料和结构——国家重大基础研究新进展,北京,化学工业出版社, 2005.
    [4]朱宏伟,吴德海,徐才录,碳纳米管,北京,机械工业出版社, 2003.
    [5]成会明,纳米碳纳米管:制备、结构、物性及应用,北京,化学工业出版社, 2002.
    [6] D. Golberg, Y. Bando, C. C. Tang, et al., Boron Nitride Nanotubes, Adv. Mater., 2007, 19: 2413-2432.
    [7] N. G. Chopra, R. J. Luyken, K. Cherrey, et al., Boron Nitride Nanotubes, Science, 1995, 269: 966-967.
    [8] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58.
    [9] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603-605.
    [10] D. S. Bethune, C. H. Kiang, M. S. DeVries, et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363: 605-607.
    [11] B. W. Smith, M. Monthioux, D. E. Luzzi, Encapsulated C60 in carbon nanotubes, Nature, 1998, 396: 323-324.
    [12] J. Li, C. Papadopoulos, J. Xu, Nanoelectronics: growing Y-junction carbon nanotubes, Nature, 1999, 402: 253-254.
    [13] G. Zhang, X. Jiang, E. Wang, Tubular graphite cones, Science, 2003, 300: 472-474.
    [14] M. S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon, 1995, 33(7): 883-891.
    [15] E. T. Thostensona, Z. Ren, T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Comput. Sci. Techol., 2001, 61: 1899-1912.
    [16] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes—the route toward applications, Science, 2002, 297(2): 787-792.
    [17] M. Bockrath, D. H. Cobden, P. L. McEuen, et al., Single-electron transport in ropes of carbon nanotubes, Science, 1997, 275: 1922-1925.
    [18] M. S. Dresselhaus, Nanotechnology: New tricks with nanotubes, Nature, 1998, 391: 19-20.
    [19] Z. Yao, H. W. C. Postma, L. Balents, et al., Carbon nanotube intramolecular junctions, Nature, 1999, 402: 273-276.
    [20] S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393: 49-52.
    [21] E. B. Barros, A. Jorio, G. G. Samsonidze, et al., Review on the symmetry-related properties ofcarbon nanotubes. Phys. Rep., 2006, 431: 261-302.
    [22] P. Moriarty, Nanostructured materials, Rep. Prog. Phys., 2001, 64: 297-381.
    [23] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678-680.
    [24] J. P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., 1997, 79: 1297-1300.
    [25] H. J. Dai, J. H. Hafner, A. G. Rinzler, et al., Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384: 147-150.
    [26] M. F. Yu, O. Lourie, M. J. Dyer, et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, 287: 637-640.
    [27] O. Lourie, D. M. Cox, H. D. Wagner, buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett., 1998, 81: 1638-1641.
    [28] S. Berber, Y. K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 2000, 84: 4613-4616.
    [29] J. Che, T. Cagin, W. A. Goddard, Thermal conductivity of carbon nanotubes, Nanotechnology, 2000, 11: 65-69.
    [30] A. G. Rinzler, J. H. Hafner, P. Nikolaev, et al., Unraveling nanotubes: field emission from an atomic wire, Science, 1995, 269: 1550-1553.
    [31] Y. H. Li, S. Wang, A. Cao, et al., Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Lett., 2001, 350: 412-416.
    [32] A. C. Dillon, K. M. Jones, T. A. Bekkendahl, et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, 1997, 386: 377-379
    [33] A. Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B, 1994, 49: 5081-5084.
    [34] X. Blase, A. Rubio, S. G. Louie, et al., Stability and band gap constancy of boron nitride nanotubes, Europhys. Lett., 1994, 28: 335-340.
    [35] A. Loiseau, F. Willaime, N. Demoncy, et al., Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge, Phys. Rev. Lett., 1996, 76: 4737-4740.
    [36]徐丽娜,李锁龙,高峰,等,氮化硼纳米管的研究进展,应用化学, 2004, 21(9): 872-877.
    [37]何军舫,范月英,李峰,等,氮化硼纳米管的制备及其最新进展,材料导报, 2001, 15(3): 22-23.
    [38] W. Q. Han, Y. Bando, K. Kurashima, et al., Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Appl. Phys. Lett., 1998, 73: 3085-3090.
    [39] D. P. Yu, X. S. Sun, C. S. Lee, et al., Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature, Appl. Phys. Lett., 1998, 72: 1966-1968.
    [40] A. P. Suryavanshi, M.-F. Yu, J. G. Wen, et al., Elastic modulus and resonance behavior of boron nitride nanotubes, Appl. Phys. Lett., 2004, 84: 2527-2529.
    [41] T. Dumitric?, H. F. Bettinger, G. E. Scuseria, et al., Phys. Rev. B, 2003, 68: 085412-085419.
    [42] C. Y. Zhi, Y. Bando, C. C. Tang, et al., Perfectly dissolved boron nitride nanotubes due to polymer wrapping, J. Am. Chem. Soc., 2005, 127 (46): 15996 -15997.
    [43] C. Y. Zhi, Y. Bando, C. C. Tang, et al., characteristics of boron nitride nanotube-polyaniline composites, Angew. Chem. Int. Ed., 2005, 44: 7929-7932.
    [44] C. Y. Zhi, Y. Bando, C. Tang, et al., Boron nitride nanotubes/polystyrene composites, J. Mater. Res., 2006, 21: 2794-2800.
    [45] Y. H. Kim, K. J. Chang, S. G. Louie, Electronic structure of radially deformed BN and BC3 nanotubes, Phys. Rev. B, 2001, 63: 205408-205412.
    [46] M. Ishigami, J. D. Sau, S. Aloni, et al., Observation of the giant stark effect in boron-nitride nanotubes, Phys. Rev. Lett., 2005. 94: 056804.
    [47] C. W. Chen, M. H. Lee, S. J. Clark, Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field, Nanotechnology, 2004, 15: 1837-1843.
    [48] Z. H. Zhang, W. L. Guo, G. A. Tai, Coaxial nanocable: carbon nanotube core sheathed with boron nitride nanotube, Appl. Phys. Lett., 2007, 90: 133103.
    [49] Z. Zhou, S. Nagase, Coaxial nanocables of AlN nanowire core and carbon/BN nanotube shell, J. Phys. Chem. C, 2007, 111(50): 18533 -18537.
    [50] Y. Zhang, K. Suenaga, C. Colliex, et al., Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science, 1998, 281: 973-975.
    [51] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 2004, 3: 404-409.
    [52] M. L. Roukes, Nanoelectromechanical systems face the future. Phys. World, 2001, 14: 25-31.
    [53] A. N. Cleland, M. L. Roukes, A nanometre-scale mechanical electrometer, Nature, 1998, 392: 160-162.
    [54] C. T. C. Nguyen, L. P. B. Katehi, G. M. Rebeiz, Micromachined devices for wireless communications, Proc. IEEE, 1998, 86: 1756-1768.
    [55] B. Ilic, Y. Yang, H. G. Craighead, Virus detection using nanoelectromechanical devices, Appl. Phys. Lett., 2004, 85: 2604.
    [56] E. Buks, B. Yurke, Mass detection with a nonlinear nanomechanical resonator, Phys. Rev. E, 2006, 74: 046619-046627.
    [57] M. F. Bocko, R. Onofrio, On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress, Rev. Mod. Phys., 1996, 68: 755-799.
    [58] X. M. H. Huang, C. A. Zorman, M. Mehregany, et al., Nanoelectromechanical systems: Nanodevice motion at microwave frequencies, Nature, 2003, 421: 496-496.
    [59] D. W. Carr, , S. Evoy, L. Sekaric, et al., Measurement of mechanical resonance and losses in nanometer scale silicon wires, Appl. Phys. Lett., 1999, 75: 920-922.
    [60] D. W. Carr, H. G. Craighead, Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol.,B, 1997, 15(6): 2760-2763.
    [61] Y. T. Yang, K. L. Ekinci, X. M. H. Huang, et al., Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett., 2001, 78: 162-164.
    [62] L. Sekaric, J. M. Parpia, H. G. Craighead, et al., Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett., 2002, 81: 4455.
    [63] Z. L. Wang, W. A. Poncharal, W. A. de Heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM, J. Phys. Chem. Solids, 2000, 61: 1025-1030.
    [64] P. Poncharal, Z. L. Wang, D. Ugarte, et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 1999, 283: 1513-1516.
    [65] H. B. Peng, C.W. Chang, S. Aloni, et al., Ultrahigh frequency nanotube resonators, Phys. Rev. Lett., 2006, 97: 087203.
    [66] K. Jensen, C. Girit, W. Mickelson, et al., Tunable nanoresonators constructed from telescoping nanotubes, Phys. Rev. Lett., 2006, 96: 215503.
    [67] K. Jensen, J. Weldon, H. Garcia, et al., Nanotube radio, Nano Lett., 2007, 7(11): 3508-3511.
    [68] C. Li, T.-W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators, Phys. Rev. B, 2003, 68: 073405-073407.
    [69] L. F. Wang, H. Y. Hu, Flexural wave propagation in single-walled carbon nanotubes, Phys. Rev. B, 2005, 71: 195412-195418.
    [70] M. J. Longhurst, N. Quirke, Pressure dependence of the radial breathing mode of carbon nanotubes: the effect of fluid adsorption, Phys. Rev. Lett., 2007, 98: 145503.
    [71]李海军,基于原子势的碳纳米管有限元模型(博士论文),南京, 2006.
    [72] H. Ajiki, T. Ando, Energy bands of carbon nanotubes in magnetic fields, J. Phys. Soc. Jpn. 1996, 65: 505-514.
    [73] A. Latgé, C. G. Rocha, L. A. L. Wanderley, et al., Defects and external field effects on the electronic properties of a carbon nanotube torus, Phys. Rev. B, 2003, 67: 155413-155419.
    [74] A. Rochefort, M. Di Ventra, P. Avouris, Switching behavior of semiconducting carbon nanotubes under an external electric field, Appl. Phys. Lett., 2001, 78: 2521.
    [75] C. Y. Zhi, X. D. Bai, E. G. Wang, Enhanced field emission from carbon nanotubes by hydrogen plasma treatment, Appl. Phys. Lett., 2002, 81: 1690.
    [76] Q. Zheng, Q. Jiang, Multiwalled carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett., 2002, 88(4): 045503.
    [77] Q. Zheng, J. Z. Liu, Q. Jiang, Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation, Phys. Rev. B, 2002, 65: 245409.
    [78] W. L. Guo, W. Zhong, Y. T. Dai, et al., Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes, Phys. Rev. B, 2005, 72: 075409.
    [79] S. B. Legoas, V. R. Coluci, S. F. Braga, et al., Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett., 2003, 90: 055504.
    [80] C. C. Ma, Y. Zhao, C. Y. Yam, et al., A tribological study of double-walled and triple-walled carbon nanotube oscillators, Nanotechnology, 2005, 16: 1253-1264.
    [81] T. Mirfakhrai, J. D. W. Madden, R. H. Baughman, Polymer artificial muscles, Materials Today, 2007, 10: 30-38.
    [82] X. D. Wang, J. H. Song, J. Liu, et al., Direct-current nanogenerator driven by ultrasonic waves, Science, 2007, 316: 102-105.
    [83] Z. L. Wang, J. H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 2006, 312: 102-105.
    [84] W. Lu, A. G. Fadeev, B. Qi, et al., Use of ionic liquids for conjugated polymer electrochemical devices, Science, 2002, 297: 983-987.
    [85] Q. M. Zhang, H. Li, M. Poh, et al., An all-organic composite actuator material with a high dielectric constant, Nature, 2002, 419, 284-287.
    [86] Q. M. Zhang, V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly copolymer, Science, 1998, 280: 2101-2104.
    [87] R. Pelrine, R. Kornbluh, Q. Pei, et al., High-speed electrically actuated elastomers with strain greater than 100%, Science, 2000, 287: 836-839.
    [88] E. W. H. Jager, E. Smela, O. Inganas, Microfabricating conjugated polymer actuators, Science, 2000, 290: 1540-1545.
    [89] E. W. H. Jager, E. Smela, O. Inganas, et al., Microrobots for micrometer-size objects in aqueous media, Science, 2000, 288: 2335-2338.
    [90] R. H. Baughman, C. Cui, A. A. Zakhidov, et al., Carbon nanotube actuators, Science, 1999, 284, 1340-1344.
    [91] W. Guo, Y. Guo, Giant axial electrostrictive deformation in carbon nanotubes, Phys. Rev. Lett., 2003, 91: 115501.
    [92] I. Cabria, C. Amovilli, M. J. López, et al., Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes, Phys. Rev. A, 2006, 74: 063201.
    [93] D. Ishii, K. Kinbara, Y. Ishida, et al., Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles, Nature, 2003, 423: 628-632.
    [94] C. A. Ahern, R. Horn, Stirring up controversy with a voltage sensor paddle, Trends Neurosci., 2004, 27: 303-307.
    [95] F. Zhu, K. Schulten, Water and proton conduction through carbon nanotubes as models for biological channels, Biophys. J., 2003, 85: 236-244.
    [96] R. Wan, J. Li, H. Lu, et al., Controllable water channel gating of nanometer dimensions, J. Am. Chem. Soc., 2005, 127: 7166-7170.
    [97] J. Y. Li, X. J. Gong, H. J. Lu, et al. Electrostatic gating of a nanometer water channel, P. Natl. Acad. Sci., 2007, 104: 3687-3692.
    [98] X. Gong, J. Li, H. Lu, et al., A charge-driven molecular water pump. Nat. Nanotech., 2007, 2: 709-712.
    [99] B. Hinds, Molecular dynamics: A blueprint for a nanoscale pump. Nat. Nanotech., 2007, 2: 673-674.
    [100] A. R. Leach, Molecular modeling: principles and applications (London: Addison Wesley Longman Limited), 1996.
    [101]陈正隆,徐为人,汤立达编著,分子模拟的理论与实践,北京,化学工业出版社, 2007.
    [102]张田忠,郭万林,纳米力学数值模拟方法,力学进展, 2002, 32(2): 175-188.
    [103] A. D. MacKerell, D. Bashford, M. Bellott, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B, 1998, 102: 3586-3616.
    [104] I. K. Roterman, K. D. Gibson, H. A. Scheraga, A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9, J. Biomol. Struct. Dyn., 1989, 7: 391-419.
    [105] I. K. Roterman, M. H. Lambert, K. D. Gibson, et al., A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests, J. Biomol. Struct. Dyn., 1989, 7: 421-453.
    [106] T. E. Cheatham, M. A. Young, Molecular dynamics simulation of nucleic acids: successes, limitations, and promise, Biopolymers, 2000, 56: 232-256.
    [107] J. W. Ponder, D. A. Case, Force fields for protein simulations, Adv. Protein Chem., 2003, 66: 27-85.
    [108] N. L. Allinger, Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms, J. Am. Chem. Soc., 1977, 99: 8127-8134.
    [109] I. Feng, W. Kuo, C. J. Mundy, An ab initio molecular dynamics study of the aqueous liquid-vapor interface, Science, 2004, 303: 658-660.
    [110] D. Marx, J. Hutter, Ab initio molecular dynamics: Theory and Implementation, in Modern Methods and Algorithms of Quantum Chemistry, NIC Series Vol.1, edited by J. Grotendorst, 2000.
    [111] P. L. Silvestrelli, A. Alavi, M. Parrinello, et al., Ab initio molecular dynamics simulation of laser melting of silicon, Phys. Rev. Lett., 1996, 77: 3149-3152.
    [112] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 1988, 37(12): 6991-7000.
    [113] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 1990, 42(15): 9458-9471.
    [114] J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 1988, 61: 2879-2882.
    [115] E. A. Carter, Challenges in modeling materials properties without experimental input, Science, 2008, 321: 800-803.
    [116]徐光宪,黎乐民,量子化学基本原理和从头算算法,北京,科学出版社, 1999.
    [117]阎守胜,固体物理基础,北京,北京大学出版社, 2000.
    [118] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 1964, 136: B864.
    [119] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 1965, 140: A1133.
    [120] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 1981, 23: 5048–5079.
    [121] R. O. Jones, O. Gunnarsson, Density-functional formalism: Sources of error in local-density approximations, Phys. Rev. Lett., 1985, 55: 107–110.
    [122] F. Corà, M. Alfredsson, G. Mallia, et al., Principles and applications of density functional theory in inorganic chemistry II, Springer Berlin / Heidelberg, 2004.
    [123] J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 1996, 54: 16533– 16539.
    [124] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, Chem. Phys., 1993, 98: 5648-5652.
    [125] Y. Zhao, D. G. Truhlar, Benchmark databases for nonbonded interactions and their use to test density functional theory, J. Chem. Theory Comput., 2005, 1 (3): 415 -432.
    [126] S. Kristyan, P. Pulay, Can (semi)local density functional theory account for the London dispersion forces?, Chem. Phys. Lett., 1994, 229: 175-180.
    [127] K. Müller-Dethlefs, P. Hobza, Noncovalent interactions: a challenge for experiment and theory, Chem Rev., 2000, 100(1):143-168.
    [128] Q. Wu, W. Yang, Empirical correction to density functional theory for van der Waals interactions, J. Chem. Phys., 2001, 116: 515-524.
    [129] M. Dion, H. Rydberg, E. Schr?der, et al., Van der Waals density functional for general geometries, Phys. Rev. Lett., 2004, 92: 246401.
    [130] F. Ortmann, W. G. Schmidt, F. Bechstedt, Attracted by long-range electron correlation: adenine on graphite, Phys. Rev. Lett., 2005, 95: 186101.
    [131] H. Rydberg, M. Dion, N. Jacobson, et al., Van der Waals density functional for layered structures, Phys. Rev. Lett., 2003, 91: 126402.
    [132] S. Tsuzuki, T. Uchimaru, K. Tanabe, Intermolecular interaction potentials of methane and ethylene dimers calculated with the M?ller–Plesset, coupled cluster and density functional methods, Chem. Phys. Lett., 1998, 287: 202-208.
    [133] S. Ma, W. Guo, Size-dependent polarizabilities of finite-length single-walled carbon nanotubes, Phys. Lett. A, 2008, 372: 4835-4838.
    [134] P. Agre, Aquaporin water channels (Nobel Lecture), Angew. Chem. Int. Ed Engl., 2004, 43: 4278-4290.
    [135] D. Bucher, S. Raugei, L. Guidoni, et al., Polarization effects and charge transfer in the KcsA potassium channel, Biophys. Chem., 2006, 124: 292-301.
    [136] D. Bucher, L. Guidoni, U. Rothlisberger, The protonation state of the Glu-71/Asp-80 residues in the KcsA Potassium channel: A First-Principles QM/MM molecular dynamics study, Biophys. J, 2007, 93: 2315-2324.
    [137] HyperChem 7.0 Reference manual.
    [138] J. Pawlak, M.H. O’Learyb, P. Paneth, Are mutated enzymes good models for interpretation of intrinsic isotope effects?, J. of Mol. Struct. (Theochem), 1998, 454: 69–75.
    [139] V. Zoete, M. Meuwly, On the influence of semirigid environments on proton transfer along molecular chains, J. Chem. Phys., 2004, 120: 7085-7094.
    [140] P. Godignon, M. Placidi, Recent improvements of SiC micro-resonators, Phys. Status Solidi (c), 2007, 4: 1548-1553.
    [141] G. Cao, X. Chen, J. W. Kysar, Strain sensing of carbon nanotubes: numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes, Phys. Rev. B, 2005, 72: 195412.
    [142] M. J. Martina, B. H. Houston, Gas damping of carbon nanotube oscillators, Appl. Phys. Lett., 2007, 91: 103116
    [143] A. Pullen, G. L. Zhao, D. Bagayoko, et al., Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain, Phys. Rev. B, 2005, 71: 205410.
    [144]王秀敏,徐新龙,李福利, THz技术进展,首都师范大学学报(自然科学版), 2003, 24(3): 17-25.
    [145]王少宏,许景周,汪力,等, THz技术的应用及展望,物理, 2001, 30(10): 612-615.
    [146] H. Park, J. W. Park, A. K. L. Lim, et al., Nanomechanical oscillations in a single-C60 transistor, Nature, 2000, 407: 57-60.
    [147] J. M. Seminario, P. A. Derosa, L. E. Cordova, et al., A molecular device operating at terahertz frequencies: theoretical simulations, IEEE Trans. Nanotechnol., 2004, 3: 215-218.
    [148] J. W. Kang, H. J. Hwang, Operating frequency in a triple-walled carbon-nanotube oscillator, J. Korean Phys. Soc., 2006, 49(4): 1488-1492.
    [149] G. Cao, X. Chen, J. W. Kysar, Strain sensing of carbon nanotubes: Numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes, Phys. Rev. B, 2005, 72: 195412.
    [150]胡海岩主编,机械振动与冲击,北京,航空工业出版社, 1998.
    [151] T. Chang, H. J. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J. Mech. Phys. Solids, 2003, 51: 1059-1074.
    [152] S. C. Fang, W. J. Chang, Y. H. Wang, Computation of chirality- and size-dependent surface Young's moduli for single-walled carbon nanotubes, Phys. Lett. A, 2007, 371: 499-503.
    [153] E. Hernandez, C. Goze, P. Bernier, et al., Elastic properties of single-wall nanotubes, Appl. Phys. A, 1999, 68: 287–292.
    [154] P. Liu, Y. W. Zhang, C. Lu, Oscillatory behavior of C60-nanotube oscillators: A molecular-dynamics study, J. Appl. Phys., 2005, 97: 094313.
    [155] D. Lu, Y. Li, U. Ravaioli, et al., Ion-nanotube terahertz oscillator, Phys. Rev. Lett., 2005, 95: 246801.
    [156] G. Cao, X. Chen, J. W. Kysar, Apparent thermal contraction of single-walled carbon nanotubes,Phys. Rev. B, 2005, 72: 235404.
    [157] T. Nakanishi, A. Bachtold, C. Dekker, Transport through the interface between a semiconducting carbon nanotube and a metal electrode, Phys. Rev. B, 2002, 66: 073307.
    [158]王鸣阳,郭成言,葛璜,等(翻译),纳米技术手册,北京,科学出版社, 2005.
    [159] B. Shan, K. Cho, First principles study ofwork functions of singlewall carbon nanotubes, Phys. Rev. Lett., 2005, 94: 236602.
    [160] A. Ayari, P. Vincent, S. Perisanu, et al., Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion, Nano Lett., 2007, 7: 2252-2257.
    [161] J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, et al., Artificial muscle technology: physical principles and naval prospects, IEEE Journal of Oceanic Engineering, 2004, 29: 706-728.
    [162] W. Lehmann, H. Skupin, C. Tolksdorf, et al., Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers, Nature, 2001, 410: 447–450.
    [163] R. Kornbluh, R. Pelrine, Q. Pei, et al., Ultrahigh strain response of field-actuated elastomeric polymers, Smart Structure and Materials 2000: Electroactive Polymer Actuators and Devices, 2000, 3987: 51–64.
    [164] P. G. Collins, K. Bradley, M. Ishigami, et al., Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 2000, 287: 1801-1804.
    [165] C. Zhou, J. Kong, E. Yenilmez, et al., Modulated chemical doping of individual carbon nanotubes, Science, 2000, 290: 1552-1555.
    [166] Y. Chen, J. Z. Stewart, J. Campbell, et al., Boron nitride nanotubes: Pronounced resistance to oxidation, Appl. Phys. Lett., 2004, 84: 13.
    [167] S. M. Nakhmanson, A. Calzolari, V. Meunier, et al., Spontaneous polarization and piezoelectricity in boron nitride nanotubes, Phys. Rev. B, 2003, 67: 235406-235410.
    [168] I. L. Guy, Z. Zheng, Piezoelectricity and electrostriction in ferroelectric polymers, Ferroelectrics, 2001, 264: 33-38.
    [169] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., 1998, 61: 1267–1324.
    [170] I. L. Guy, S. Muensit, E. M. Goldys, Electrostriction in gallium nitride, Appl. Phys. Lett., 1999, 75: 3641.
    [171] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, 14: 1347-1363
    [172] D. P. Shelton, J. E. Rice, Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase, Chem. Rev., 1994, 94: 3-29.
    [173] S. Ma, W. Guo, Mechanism of carbon nanotubes aligning along applied electric field, Chin. Phys. Lett., 2008, 25: 270-273.
    [174] V. Verma, V. K. Jindal, K. Dharamvir, Elastic moduli of a boron nitride nanotube, Nanotechnology, 2007, 18: 435711-435716.
    [175] B. Baumeier, P. Krüger, J. Pollmann, Structural, elastic, and electronic properties of SiC, BN,and BeO nanotubes, Phys. Rev. B, 2007, 76: 085407.
    [176] H. J. Xiang, J. L. Yang, J. G. Hou, et al., First-principles study of small-radius single-walled BN nanotubes, Phys. Rev. B, 2003, 68: 035427.
    [177] X. Zhao, Y. Liu, S. Inoue, et al., Smallest carbon nanotube is 3 ? in diameter, Phys. Rev. Lett., 2004, 92: 125502.
    [178] L. C. Qin, X. L. Zhao, K. Hirahara, et al., The smallest carbon nanotube, Nature, 2000, 408: 50-51.
    [179] S. Han, J. Ihm, Role of the localized states in field emission of carbon nanotubes, Phys. Rev. B, 2000, 61: 9986-9989.
    [180] J.-S. McEwena, P. Gasparda, F. Mittendorferb, et al., Field-assisted oxidation of rhodium, Chem. Phys. Lett., 2007, 452: 133-138.
    [181] Z.M. Ste pień, Formation of tantalum hydrides in high electric field, Appl. Surf. Sci., 2000, 165: 224-232.
    [182] A. Tomaszewska, Z. M. Stepień, The influenced of the external electric field on the hydrogen-palladium system, J. Phys.: Conf. Ser., 2007, 79: 012028-012034.
    [183] W. R. Browne, B. L. Feringa, Making molecular machines work, Nat. nanotech., 2006, 1: 25-35.
    [184] Z. Siwy, A. Fulinski, Fabrication of a synthetic nanopore ion pump, Phys. Rev. Lett., 2002, 89: 198103.
    [185] Y. Léger, L. Besombes, J. Fernández-Rossier, et al., Electrical control of a single Mn atom in a quantum dot, Phys. Rev. Lett., 2006, 97: 107401.
    [186] C. H. K. Ahn, M. Rabe, J.-M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures, Science, 2004, 303: 488-491.
    [187] M. Yoshida, E. Muneyuki, T. Hisabori, ATP synthase—a marvellous rotary engine of the cell, Nature Rev. Mol. Cell Bio., 2001, 2: 669-677.
    [188] R. K. Soong, G. D. Bachand, H. P. Neves, et al., Powering an inorganic nanodevice with a biomolecular motor, Science, 2000, 290: 1555-1558.
    [189] F. J. Sigworth, Structural biology: Life's transistors, Nature, 2003: 423, 21-22.
    [190] E. Perozo, D. C. Rees, Structure and mechanism in prokaryotic mechanosensitive channels, Curr. Opin. Struc. Biol., 2003, 13: 432-442.
    [191] R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, P. Natl. Acad. Sci., 2003, 100: 4984-4989.
    [192] J. Lee, H. Kim, S.-J. Kahng, et al., Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes, Nature, 2002, 415: 1005-1008.
    [193] Y. K. Kwon, D. Tománek, S. Iijima,“Bucky shuttle”memory device: synthetic approach and molecular synamics simulations, Phys. Rev. Lett. 1999, 82: 1470-1473.
    [194] P. Keblinski, S. K. Nayak, P. Zapol, et al., Charge distribution and stability of charged carbon nanotubes, Phys. Rev. Lett., 2002, 89: 255503.
    [195] B. Q. Wei, J. D'Arcy-Gall, P. M. Ajayan, et al., Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions, Appl. Phys. Lett., 2003, 83: 3851.
    [196] W. Guo, Y. Guo, H. Gao, et al., Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes, Phys. Rev. Lett., 2003, 91: 125501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700