商用车动力总成悬置性能模拟与疲劳寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶悬置成本低,承载能力大,普遍用于中重型商用车的动力总成悬置系统,在动力总成和车架(车体)间起到衰减振动和限位的重要作用。由于中重型商用车的工作载荷大、路况环境恶劣,常发生橡胶悬置的过早失效,表现为橡胶的开裂和金属与橡胶层的脱落,严重影响到整车可靠性和耐久性,更影响到用户的经济利益。由于橡胶悬置的静动刚度和寿命影响因素较多,机理非常复杂,目前大多厂家对橡胶悬置的的设计通常是逆向设计,靠经验进行设计,缺少正向设计的理论和开发流程,迫切需要基于静动刚度特性和疲劳寿命的橡胶悬置的正向设计开发理论和方法。目前金属材料疲劳寿命预测方法及理论已经发展成熟,但是在橡胶悬置的设计方面,缺少成熟的理论和方法,尤其是在橡胶悬置疲劳寿命预测方面,更是少之又少。本文以某重型商用车所配道依茨(DEUTZ)动力总成前、后橡胶悬置研究对象,进行动力总成橡胶悬置系统的隔振性能模拟仿真和疲劳寿命的预测研究,具体内容分为七个部分:
     第一章归纳总结了国内外有关橡胶减振件有限元模拟及橡胶减振件疲劳寿命预测方面的研究现状,回顾了有限元方法作为现代设计方法最有效的手段,在橡胶减振件方面的应用和发展,重点对汽车动力总成橡胶悬置有限元建模、静动刚度特性模拟、疲劳寿命预测,特别对橡胶疲劳破坏分析所采用的各种研究方法等进行了归纳和总结。
     第二章建立了动力总成橡胶悬置的有限元模型,并进行有限元计算分析。将橡胶悬置的三维几何模型导入有限元前处理软件,进行网格划分,继而导入非线性有限元软件ABAQUS中,根据橡胶材料试样的应力——应变数据,构造了本橡胶悬置的本构关系,并采用马斯林效应和永久变形力学特性,模拟橡胶材料在循环载荷造成的累进破坏过程。对橡胶悬置的静、动刚度特性进行计算模拟,并与静、动刚度试验数据对比,吻合较好,验证了有限元模型的正确性,也为下一步对橡胶悬置的寿命预测奠定基础。
     第三章基于前面的理论模型,对动力总成橡胶悬置疲劳裂纹萌生寿命开展研究。以最大主应变为中间破坏变量,将动力总成橡胶悬置的寿命与标准3D哑铃状试件的寿命联系起来,预测元件的单轴载荷下疲劳寿命,并曲线拟合得到以载荷表示的单轴载荷疲劳寿命预测公式。动力总成橡胶悬置实际上不仅受到Z向载荷,而且还受到X向载荷和Y向载荷,因此以最大主应力为中间破坏变量,预测动力总成橡胶悬置多轴载荷下的疲劳寿命,并曲线拟合得到多轴载荷-疲劳寿命关系,其中前悬置载荷-寿命关系以双轴载荷-疲劳寿命曲面图来表示,后悬置载荷-寿命关系以X向、Y向、Z向载荷形成三维坐标轴系,以不同色彩区域表示寿命,制成三轴载荷-疲劳寿命云图来表示。双轴载荷-疲劳寿命曲面和三轴载荷-疲劳寿命云图的提出能够直观有效地揭示多轴载荷下动力总成橡胶悬置的载荷-疲劳寿命关系。
     第四章采用断裂力学方法分析动力总成橡胶悬置的疲劳裂纹扩展。道依茨动力总成前后悬置的失效形式为橡胶悬置疲劳裂纹发展及断裂。依据悬置实际破坏形式确定裂纹的位置和角度,划分会聚于裂纹线的网格,建立带有裂纹的常规有限元模型模拟动力总成悬置的橡胶体断裂的失效形式。为分析悬置橡胶-金属界面上的开裂,采用粘接单元模拟橡胶和金属材料间复杂的结合部界面层,模拟动力总成橡胶悬置的橡胶-金属硫化界面疲劳裂纹扩展。为满足预测裂纹出现的时机、位置及发展方向的需要,本文采用最新的扩展有限元技术,模拟了沿任意的路径自动产生和传播的裂纹。
     第五章对影响动力总成橡胶悬置性能的影响因子进行分析。橡胶悬置的刚度、疲劳寿命受很多因素的影响,针对分析的不同阶段,将正交设计、回归拟合、方差分析及相关分析等方法有机结合,形成了影响因子综合分析体系。本文重点考虑了预载、尺寸形状、硬度等因子对于动力总成橡胶悬置的静动刚度和疲劳寿命的综合影响,得出了一系列结论:硬度对于前、后悬置影响均较大,又可以方便调节,且对动刚度影响不显著,较适于抗疲劳破坏特性的设计;预载也有一定影响。前悬置的锥面角度影响较大,而底面中径影响不大;增加后悬置宽度尺寸会提高其疲劳寿命和Z向刚度。
     基于有限元方法对橡胶悬置的设计,目前尚处于初期发展阶段,第六章以道依茨动力总成橡胶悬置为本文的研究实例,提出道依茨动力总成橡胶悬置应该具备的静、动刚度和疲劳寿命。
     第七章对动力总成橡胶悬置进行试验研究。对动力总成橡胶悬置进行了静、动刚度试验、台架疲劳试验,进行了实车动力总成橡胶悬置的振动传递率测试,试验结果表明,本文建立的动力总成橡胶悬置有限元模型和分析方法的正确。
     第八章总结了本文的主要工作、研究成果和工作展望。
Rubber mounts are widely used in medium and heavy commercial vehicles' powertrain mount systems for their low cost and high load capacity, playing the important role of anti-vibration and position-limiter between the powertrain and chassis (body). For the work environment of medium and heavy commercial vehicle is poor, and their load are very big, premature failure of of rubber mounts often occure. The performances are cracking of rubber and rubber shedding from metal. Those seriously affect the reliability and durability of the vehicle, as well as the economic interests of users.The static and dynamic stiffness performance and life of rubber mount affected by many factors, whose mechanism is very complex, and now most of the rubber mount manufacturers adopt reversal design, that is design depend on experience. The design and development processes of top-down design are lack. The top-down design and development processes based on the static and dynamic stiffness characteristics and fatigue life of rubber mount are urgent needed. Although metal fatigue life prediction methods and theories have been developed maturely. While in terms of rubber damper design, mature method and theory are lack. Especially with respect to the fatigue life prediction of rubber damper. This dissertation take the front and rear DEUTZ powertrain mount of a heavy commercial vehicle as research object, studying the simulation of powertrain mount system vibration isolation performance and its fatigue life prediction. The content consists of seven parts:
     Chapter I summarizes current research status on finite element simulation and fatigue life prediction of rubber vibration isolator in domestic and overseas. Review The application and development of finite element method in the area of rubber vibration isolator as the most effective means of modern design are reviewed. The summary focused on the finite element modeling of vehicle powertrain rubber mount, static and dynamic stiffness simulation, fatigue life prediction, especially the different research methods adopted in the rubber fatigue and damage analyses.
     ChapterⅡestablishes the finite element models of powertrain rubber mounts and carries through the compute. Three-dimensional geometric models is builted in CAD software. Then they are imported into finite element pre-processing software for meshing. The FE models are imported into nonlinear finite element software ABAQUS. Constitutive behavior of the rubber mount obtained by fitting test data into stain potential energy. The decreasing load capacity of rubber material due to the progressive destruction under cyclic loading is simulated by the mechanical property of mullins effect and permanent set. The static and dynamic finite element analysis of rubber mount are conducted respectively. Through comparing with the static and dynamic stiffness test data of powertrain mounts, the finite element models are verified accurate, laying a foundation for the fatigue life prediction of rubber mounts.
     ChapterⅢstudies the fatigue crack initiation life of engine mounts. Taking maximum principal strain as a medium, the life of powertrain mounting components are linked to that of the standard 3D dumbbell specimen. Then the components' fatigue life under uniaxial loading are predicted. And fatigue life prediction formulae are curve fitted being indicated by load. In fact there are not only uniaxial load on the engine mounts, but impacts and vibrations in all directions. Therefore the maximum principal stress is used for the medium destruction variable of powertrain mounts' multi-axle fatigue life. The powertrain mounts' fatigue life under multiaxial loading are predicted and curve fitted expressed by the multi-axis load-fatigue life relationships. For the front mount, three-dimensional load-life fatigue diagram is made, taking the vertical and radial load as x and y value, the mount life as the z value. While for the rear mount, multi-dimensional load-life fatigue diagram is made:loads in x, y and z directions are presented by value on x, y and z axles, value of fatigue life is presented by regions of different colors. Three-dimensional fatigue life surface and the multi-dimensional cloud chart proposed here can make it effective to reveal relationships between multi-axis load and fatigue life.of powertrain mounts.
     Chapter IV analyzes fatigue crack growth of powertrain mounts with fracture mechanics. The failure form of front and rear DEUTZ powertrain mounts is fatigue crack growth till fracture. According to the actual failure phenomena the location and angle of cracks on mounts is determined, and the conventional fracture FE model is established with meshes converging at the crack line to simulate the failure form of mount. To analyze the mount's cracking near rubber-metal interface, the cohesive elements are made use of to simulate the complex junction layer of the rubber-metal interface, simulating the fatigue crack growth near the rubber-metal sulfide interface of engine mounts. The latest extended finite element technology is adopted to simulate the initiation and propagation of a discrete crack along an arbitrary, solution-dependent path without the requirement of remeshing in the bulk materials, meeting the needs of forecasting the appearance occasion, location and direction of cracks.
     Chapter V carries out the analysis with the factors that influence the performances of powertrain mounts. The stiffness and fatigue performances of rubber mounts are effected by various of complex factors. Contraposing different stages of analysis, the methods such as orthogonal design, regression curve fitting, analysis of variance and correlation analysis are combined organically to form a comprehensive analysis system of factors. Composite effects to the static and dynamic stiffness and fatigue life of engine mount costed by factors such as preload, configuration, hardness and other factors are analyzed, and a series of conclusions are obtained:hardness is of great impact for both front and rear mount, which can be adjusted easily, while its impact on the dynamic stiffness is not significant, suitable for the design of anti-fatigue performence; preload is also vnaanlbzon; the cone angle of front mount is of bigger impact, while the bottom diameter shows a lack of sensitivity; increasing the lateral size of rear mount would enhance its fatigue life and increase its vertical stiffness.
     The rubber vibration isolator design based on finite element simulation is still in the early stage of development, Chapter VI takes the DEUTZ powertrain rubber mounts as an research example, proposes the static and dynamic stiffness and fatigue life that DEUTZ powertrain rubber mounts should possess.
     ChapterⅦconducts experiment research on the powertrain mounts. The static and dynamic stiffness experiments, as well as fatigue bench test of powertrain mount is carried out. And the vibration transmissibility test of real vehicle powertrain rubber mounts are carried out. The experimental results demonstrate that the finite element model of engine mounts established and the analysis methods of this dissertation are veracity.
     ChapterⅧis a summary of the main work and achievements, as well as the prospects of future research.
引文
[1]戴永谦.发动机悬置软垫断裂模拟[D].大连:大连理工大学动力机械与工程专业,2006.
    [2]右田哲彦.江伟译.橡胶的疲劳与疲劳破坏—关于机理与配方设计[J].橡胶译丛//合成橡胶,83:23-41.
    [3]徐立,吴桂忠.有限元分析中橡胶应变能函数的若干形式[J].橡胶工业,1999,46(12):707-711.
    [4]Dassault Systemes Simulia Corporation. Abaqus analysis user's manual volume III [OL]. Providence, RI, USA:Dassault Systemes Simulia Corporation,2009:1-25[18.5.1]. http://www. simulia. com
    [5]范让林,刘立,吕振华,等.发动机隔振橡胶元件的有限元分析[J].内燃机学报,2009,27(2):186-191.
    [6]WEBER G, ANAND L. Finite deformation constitutive equations and time integration procedure for isotropic hyperelastic-viscoplastic solids[J]. Computer Methods in Applied Mechanics and Engineering,1990,79:173-202.
    [7]SIMO J C. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory [J]. Computer Methods in Applied Mechanics and Engineering,1992,99:61-112.
    [8]CHAYLTON D J, Yang J.袁立译.有限元分析所用橡胶弹性特性的表征方法[J].橡胶译丛,1996//Rubber Chem. Technol.,1994,67:481-503.
    [9]BERGSTROM J S, BOYCE M C. Constitutive modeling of the large strain time-dependent behavior of elastomers [J]. Journal of the Mechanics and Physics of Solids,1998,46(5): 931-954.
    [10]OGDEN R W, ROXBURGH D G. A pseudo-elastic model for the mullins effect in filled rubber [J]. Proceedings of the Royal Society of London, Series A,1999,455:2861-2877.
    [11]BERGSTROM J S, BOYCE M C. Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues[J]. Mechanics of Materials,2001,33(5):523-530.
    [12]GOVINDARAJAN S M, HURTADO J A, Mars W V. Simulation of mullins effect in filled elastomers using multiplicative decomposition[C]. Paris, France:European Conference for Constitutive Models for Rubber, September,2007.
    [13]荣继刚,黄友剑,张亚新,等.橡胶轴箱弹簧垂向刚度及蠕变特性的研究[J].特种橡胶制品,2009,30(2):60-63
    [14]马闯.液压悬置橡胶主簧的有限元仿真分析[D].长春:吉林大学汽车工程学院,2006.
    [15]MORMAN K N. Recent applications of ABAQUS to the analysis of automotive rubber components[C]. ABAQUS Users'Conference,1998.
    [16]CHARLTON D J, YANG J. A review of methods to characterize rubber elastic behavior for use in finite element analysis[J]. Rubber Chemical Technology,1994,33:481-503.
    [17]王利荣,吕振华,HAGIWARA I.橡胶隔振器有限元建模技术及静态弹性特性分析[J].汽车工程,2002,24(6):480-485.
    [18]WEN B S, ZHEN H L, JIAN J S. Finite element analysis of static elastic characteristics of the rubber isolators in automotive dynamic systems[C]. SAE:2003-01-0240.
    [19]王锐,李世其,宋少云.橡胶隔振器系列化设计方法研究[J].噪声与振动控制,2006,4:11-25.
    [20]YANG L M, SHIM V P W, LIM C T. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber[J]. International Journal of Impact Engineering, 2000,24:545-560.
    [21]YUN H S, HO J L, KWANG J K. Consideration of static-strain-dependent dynamic complex modulus in dynamic stiffness calculation of mount/bushing by commercial finite element dodes[C]. SAE International:2005-01-2413.
    [22]NEGRETE N. G, VINOLAS J, Kari L. A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code[J]. Journal of Sound and Vibration,2006,296:757-776.
    [23]NEGRETE N. G, VINOLAS J, Kari L. A nonlinear rubber material model combining fractional order viscoelasticity and amplitude dependent effects[J]. Journal of Applied Mechanics,2009,76:011009-1
    [24]赵振东,雷雨成.橡胶元件在汽车悬架中的应用分析[J].汽车技术,2006,1:19-23
    [25]潘孝勇,上官文斌,柴国钟,等.基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模[J].振动与冲击,2007,26(10):7-15
    [26]王晓侠,刘德立,周海亭.橡胶隔振器参数计算与分析[J].噪声与振动控制,2008,4.
    [27]范让林,吕振华.汽车动力总成隔振难点与被动悬置改进技术[J].汽车技术,2009,404(5):18-21.
    [28]李晓芳.橡胶钢双材料非线性有限元分析及破坏机理研究[D].福州:福州大学化学工程专业,2006.
    [29]KIM W D, LEE H J, KIM J Y, et al. Fatigue life estimation of an engine rubber mount [J]. International Journal of Fatigue,2004,26:553-560.
    [30]LUO R K, Wu W X. Fatigue failure analysis of anti-vibration rubber spring [J]. Engineering Failure Analysis,2006,13:110-116.
    [31]SHASKA K, IBRAHIM R A, GIBSON R F. Influence of excitation amplitude on the characteristics of nonlinear butyl rubber isolators [J]. Nonlinear Dynamics,2007,47: 83-104.
    [32]CHANG S W, Wan D K, JAE D K. A study on the material properties and fatigue life prediction of natural rubber component [J]. Materials Science and Engineering A,2008, 483:376-381.
    [33]QIAN L, JIAN C Z, ZHAO B. Fatigue life prediction of a rubber mount based on test of material properties and finite element analysis[J]. Engineering Failure Analysis, 2009,16:2304-2310.
    [34]RYAN J H, ALI F, WILL V M. Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions[J]. International Journal of Fatigue,2008,30:1231-1247.
    [35]CHANG S W, WAN D K, SEONG H L, et al. Fatigue life prediction of vulcanized natural rubber subjected to heat-aging[J]. Procedia Engineering,2009,1:9-12.
    [36]AYOUB G, NAIT A M, ZAIRI F, et al. Multiaxial fatigue life prediction of rubber-like materials using the continuum damage mechanics approach[J]. Procedia Engineering, 2010,2:985-993.
    [37]史守峡,刘建百.有限元分析平面应力非线性橡胶材料的J积分[J].哈尔滨工程大学学报, 1998,19:7-12.
    [38]HAYASHI K, NEMAT N S. Energy release rate and crack kinking[J]. International Journal of Solids and Structures,1981,17(1):107-114.
    [39]HE M Y, JOHN W H. Crack deflection at an interface between dissimilar elastic materials[J]. International Journal of Solids and Structures,1989,25(9): 1053-1067.
    [40]THEOCARIS P S, TSAMASPHYROS G, THEOTOKOGLOU E E. A combined integral-equation and finite-element method for the evaluation of stress intensity factors[J]. Computer Methods in Applied Mechanics and Engineering,1982,31(2):117-127.
    [41]STEVENSON A, MALEK K. On the puncture mechanics of rubber[J]. Rubber Chemistry and Teehnology,1994,67:743-760.
    [42]SAINTIER N, CAILLETAUD G, PIQUES R. Crack initiation and propagation under multiaxial fatigue in a natural rubber[J]. International Journal of Fatigue,2006,28:61-72.
    [43]YVONNE T, GUNTER H. Numerical prediction of crack propagation and crack widths in concrete structures [J]. Engineering Structures,2009,31:1832-1840.
    [44]HUSNU D, MICHAEL K. A micro-continuum-mechanical material model for failure of rubber-like materials:application to ageing-induced fracturing [J]. Journal of the Mechanics and Physics of Solids,2009,57:1340-1356.
    [45]XIAO H C, YIU W M. Three-dimensional elastoplastic finite element modelling of deformation and fracture behaviour of rubber-modified polycarbonates at different triaxiality [J]. Journal of Materials Science,1999,34:2139-2149.
    [46]戴永谦,宋希庚,薛冬新,等.裂纹生长方法在橡胶疲劳分析中的应用研究[J].振动与冲击,2005,24(4):115-119.
    [47]BENZEGGAGH M L, KENAN M E. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composite Science and Technology,1996,56:439-449.
    [48]REEDER, KYONGCHAN J S, CHUNCHU P B, Ambur D R. Postbuckling and growth of delaminations in composite plates subjected to axial compression[C]. Denver, Colorado:43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002,1746:10.
    [49]CAMANHO P P, DAVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. NASA/TM-2002-211737,2002:1-37.
    [50]SIVA S R, AMIT S, KRISHNA G, et al. In-plane fracture of laminated fiber reinforced composites with varying fracture resistance:Experimental observations and numerical crack propagation simulations[J]. International Journal of Solids and Structures, 2010,47:901-911.
    [51]聂璞林.界面断裂韧性与膜基结合性能关系的研究[D].上海:上海交通大学材料科学与工程专业,2009.
    [52]MELENK J, BABUSKA I. The partition of unity finite element method:basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering,1996,39: 289-314.
    [53]BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering,1999,45: 601-620.
    [54]SUKUMAR N, PREVOST J H. Modeling quasi-static crack growth with the extended finite element method part I:computer implementation[J]. International Journal for Solids and Structures,2003,40:7513-7537.
    [55]SUKUMAR N, HUANG Z Y, PREVOST J H, et al. Partition of unity enrichment for bimaterial interface cracks [J]. International Journal for Numerical Methods in Engineering,2004, 59:1075-1102.
    [56]ELGUEDJ T, GRAVOUIL A, COMBESCURE A. Appropriate extended functions for X-FEM simulation of plastic fracture mechanics[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:501-515.
    [57]SONG J H, AREIAS P M A, BELYTSCHKO T. A method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering,2006,67:868-893.
    [58]REMMERS J J C, R D B, NEEDLEMAN A. The simulation of dynamic crack propagation using the cohesive segments method[J]. Journal of the mechanics and physics of solids,2008, 56:70-92.
    [59]Xiao Q Z, KARIHALOO B L. Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM[J]. Computer Methods in Aoolied Mechanics and Engineering,2007,196:1864-1873.
    [60]BENVENUTI E. A regularized XFEM framework for embedded cohesive interfaces[J]. Computer Methods in Aoolied Mechanics and Engineering,2008,197:4367-4378.
    [61]KAZUKI S, TOMOAKI U. Reformulation of XFEM based on PUFEM for solving problem caused by blending elements [J]. Finite Elements in Analysis and Design,2009,45:806-816.
    [62]HACHMI B D, OLIVIER J. On the use of XFEM within the Arlequin framework for the simulation of crack propagation[J]. Computer Methods in Aoolied Mechanics and Engineering,2010,199:1403-1414.
    [63]CAMPILHO R D S G, BANEA M D, CHAVES F J P, SILVA L F M. Extended finite element method for fracture characterization of adhesive joints in pure mode I[J]. Computational materials science,2011,50:1543-1549.
    [64]余天堂.模拟三维裂纹问题的扩展有限元法[J].岩土力学,2010,31(10):3280-3294.
    [65]金峰,方修君.扩展有限元法及与其它数值方法的联系[J].工程力学,2008,25:1~17.
    [66]许杨剑,袁荒.利用扩展有限元法对准脆性材料中的混合型疲劳裂纹扩展进行分析.中国力学学会学术大会[C].[出版者不祥],2007.
    [67]李明,关正西.扩展有限元法在SRM脱粘分析中的应用研究[J].弹箭与制导学报,2007,27(3):169-172.
    [68]楚锡华,刘辉,陈龙,等.裂纹对悬臂梁力学响应影响的扩展有限元模拟[J].武汉大学学报(工学版),2009,42(2):223-259.
    [69]刘长虹,李洪升,彭军.基于XFEM的裂纹扩展分析[J].上海工程技术大学学报,2010,24(3):218-220.
    [70]乔华,陈伟球.基于ARLEQUIN方法和XFEM的结构多尺度模拟[J].工程力学,2010,27:29-33.
    [71]梁天也,马闯.汽车动力总成液压悬置橡胶主簧静特性有限元分析[J].振动与冲击,2007,26(9):155-178
    [72]化学工业部沈阳橡胶研究设计院.GB/T528-1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定[S].国家质量技术监督局,1998.
    [73]化学工业部沈阳橡胶研究设计院.GB/T7757-93硫化橡胶或热塑性橡胶压缩应力应变性能的测定[S].国家质量技术监督局,1993.
    [74]姜莞,史文库,滕腾,等.基于有限元方法的发动机悬置强度改进设计[[J].汽车技术,2011,1:20-24.
    [75]Dassault Systemes Simulia Corporation. Abaqus/CAE User's Manual [OL]. Providence, RI, USA:Dassault Systemes Simulia Corporation,2009:12-14[16.6]. http://www. simulia. com.
    [76]陈莲,周海亭.计算橡胶隔振器静态特性的数值分析方法[J].振动与冲击,2005,24(3):480-485
    [77]赵涛.汽车动力总成悬置系统优化设计及软件开发[D].长春:吉林大学汽车工程学院,2005.
    [78]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1986:70-72.
    [79]熊云亮.全顺轻型客车动力总成液压悬置动特性研究[D].长春:吉林大学汽车工程学院,2000.
    [80]王锐.橡胶隔振器动力学性能及设计方法研究[D].武汉:华中科技大学,2007.
    [81]GENT A N. Engineering with rubber[M]. Cincinnati, Ohus:Hanser Gardner Publications, 2001.
    [82]ELLYIN F. Fatigue damage, crack growth and life prediction[M]. Boca Raton, Florida: Chapman & Hall,1997.
    [83]DEESKINAZI J, ISHIHARA K, VOLK H, et al. Towards predicting relative belt edge endurance with the finite element method[J]. Tire Science Technology,1990,18: 216-35.
    [84]YAMASHITA S. Selecting damping materials [J]. International Polym Science Technology, 1992,19(4):41-56.
    [85]洪起超.工程断裂力学基础[M].上海:上海交通大学出版社,1987.
    [86]Dassault Systemes Simulia Corp.. Abaqus Analysis User's Manual Volume Ⅱ[OL]. Providence, RI, USA:Dassault Systemes Simulia Corp.,2009:1[11.4.2]-20[11.4.3]. http://www. simulia. com
    [87]杨立强.CTOD和J积分及其特征值δc与Jlc关系的研究[D].武汉:武汉理工大学交通学院,2004.
    [88]申振荣,郎福元,龚俊,等.疲劳裂纹扩展率的工程计算方法[J].甘肃科学学报,2003,15(1):21-25.
    [89]王春生,陈艾荣,陈惟珍.铆接钢桥剩余寿命与使用安全评估实例[J].同济大学学报(自然科学版),2006,34(4):461-466.
    [90]庄茁,张帆,岑松,等.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [91]MARTIN K, JONAS F. A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint[J]. International Journal of Fracture,2002,118:99-118.
    [92]CHAPULIOT S, CURTIT F. Experimental determination of the C* parameter for a plate with a surface crack and submitted to bending [J]. International Journal of Pressure Vessels and Piping,2001,78:875-880.
    [93]Dassault Systemes Simulia Corp.. Abaqus Analysis User's Manual Volume IV[OL]. Providence, RI, USA:Dassault Systemes Simulia Corp.,2009:1 [28.5]-19[28.5.6]. http://www. simulia. com
    [94]ZHENG M H. Inelastic and failure analysis of laminate structures by ABAQUS incorporated with a general constitutive relationship[J]. Journal of Reinforced Plastics and Composites 2007;26;1135-1181
    [95]朱任海,杨琪瑜,沈文瑛.统计分析方法[M].北京:中国林业出版社,1990.
    [96]马成良,张海军,李素平.现代试验设计优化方法及应用[M].郑州:郑州大学出版社,2007:70-100.
    [97]黄润龙.数据统计与分析技术-SPSS软件实用教程[M].北京:高等教育出版社,2004:141-245.
    [98]刘润幸.SPSS 8.0 for Windows统计软件使用指南[M].广州:广东人民出版社,1999:51-195.
    [99]徐灏.机械设计手册[M].北京:机械工业出版社,2000.
    [100]刘宇艳,万志敏.橡胶疲劳性能研究进展[J].合成橡胶工业,2000,23(2):128-131.
    [101]龙岩.基于改进传递路径分析方法的动力总成悬置系统优化设计[D].长春:吉林大学汽车工程学院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700