AZ与AM系列挤压变形镁合金的低周疲劳变形行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种具有高比强度和比刚度的轻质金属材料,镁合金已在汽车、航空、计算机及通讯等工业领域获得了广泛的应用。疲劳是各种工程构件服役期间的主要失效形式之一,对于镁合金结构件亦不例外。因此,研究镁合金的疲劳变形和断裂行为不仅具有理论意义,而且也具有一定的实用价值。本文主要针对不同处理状态的AZ和AM系列挤压变形镁合金的低周疲劳行为进行了系统的研究,以期为此种镁合金的抗疲劳设计和合理使用提供可靠的理论依据。
     低周疲劳实验结果表明:不同处理状态的挤压变形AZ31镁合金在本实验所采用的外加总应变幅下均表现为循环应变硬化;挤压态和时效态AZ61镁合金在低的外加总应变幅下表现为循环稳定其后发生循环应变硬化,在其他外加总应变幅下则呈现循环应变硬化,而固溶态以及固溶+时效态AZ61镁合金在所有外加总应变幅下均表现为循环应变硬化;不同处理状态的挤压变形AM20和AM30镁合金可以表现为循环应变硬化、循环应变软化和循环稳定,主要取决于外加总应变幅的高低和热处理状态。热处理可以有效地提高热挤压AZ31镁合金在较高外加总应变幅区下的疲劳寿命,但降低合金在较低外加总应变幅区下的疲劳寿命;时效处理可以有效地提高挤压变形AZ61镁合金在较低外加总应变幅区间的疲劳寿命,而固溶+时效处理则降低挤压变形AZ61镁合金的疲劳寿命;固溶+时效处理可有效提高挤压变形AM20镁合金在较高外加总应变幅下的疲劳寿命,而固溶处理可提高挤压变形AM30镁合金在较高和较低外加总应变幅区间的疲劳寿命。不同处理状态的AZ和AM系列挤压变形镁合金的弹性应变幅、塑性应变幅与疲劳断裂时的载荷反向周次之间的关系可分别用Basquin和Coffin-Manson公式来描述,其循环应力幅与塑性应变幅之间呈线性关系;在较高的外加总应变幅下进行疲劳变形时,不同处理状态的AZ和AM系列挤压变形镁合金循环滞后回线上压缩变形部分的宽度大于拉伸变形部分的宽度,表现出明显的拉-压不对称循环变形行为。在总应变控制的疲劳加载条件下,不同处理状态的AZ和AM系列挤压变形镁合金的疲劳裂纹均是以穿晶方式萌生于疲劳试样表面,并以穿晶方式扩展且呈现典型的解理断裂特征。
As the light metallic materials with high specific strength and high specific rigidity, magnesium alloys have been widely used in automobile, aeronautical, computer and communication fields. Fatigue is a main failure form of various structural components during operation. For the magnesium alloy components, the same case is also true. Therefore, the investigation concerning fatigue behavior of magnesium alloys is of both academic and practical significance. In this investigation, the strain-controlled fatigue deformation and fracture behaviors of extruded AZ and AM series magnesium alloys with different treatment states have been studied in order to provide a reliable theoretical foundation for both fatigue resistant design and reasonable usage of these magnesium alloys.
     The results of low-cyclic fatigue tests reveal that the extruded AZ31 magnesium alloys with different treatment states at various strain amplitudes exhibit the cyclic strain hardening. The as-extruded and aged AZ61 magnesium alloys exhibit the stable cyclic stress response followed by cyclic strain softening at lower total strain amplitude, while show the cyclic strain hardening at other imposed total strain amplitudes. For the extruded AZ61 magnesium alloys subjected to solid solution and solution plus aging treatment, the cyclic strain hardening can be observed at all the total strain amplitudes used in this investigation. The extruded AM20 and AM30 magnesium alloys with different treatment states exhibit cyclic hardening, softening and stability, which depends on the imposed total strain amplitudes and heat treatment states. It is noted that the heat treatment can enhance the fatigue lives of the hot-extruded AZ31 magnesium alloys at higher total strain amplitudes, while leads to a reduction in the fatigue lives of the hot-extruded AZ31 magnesium alloys at lower total strain amplitudes. Aging treatment can effectively enhance the fatigue lives of the extruded AZ61 magnesium alloys at lower total strain amplitudes, while solution plus aging treatment leads to a reduction in the fatigue lives of the AZ61 magnesium alloys. Solution plus aging treatment can effectively enhance the fatigue lives of the extruded AM20 magnesium alloy at higher total strain amplitudes, while solution treatment can prolong the fatigue lives of the extruded AM30 magnesium alloys in both higher and lower total strain amplitude regions. For the AZ and AM series magnesium alloys with different treatment states, the relations between elastic strain amplitude, plastic strain amplitude and reversals to failure can be described by Basquin and Coffin- Manson equations, respectively. In addition, a linear relationship between cyclic stress amplitude and plastic strain amplitude is also noted for the extruded AZ and AM series magnesium alloys with different treatment states. It has also been observed that when the extruded AZ and AM series magnesium alloys with different treatment states are subjected to fatigue deformation at higher total strain amplitudes, the width of theσεhysteresis loop in the compressivedirection is greater than that in the tensile direction. It means that the AZ and AM series magnesium alloys exhibit the pronounced anisotropic deformation behavior in the direction of tension and compression during strain-controlled fatigue deformation. For the extruded AZ and AM series magnesium alloys with different treatment states, the fatigue cracks initiate in a transgranular mode at the surface of fatigue specimens, and propagate transgranularly. In addition, the cleavage fracture feature can be found in the fatigue crack propagation region.
引文
[1]K H马图哈主编,丁道云等译.非铁合金的结构与性能.北京:科学出版社,1999.
    [2]Kojima Y. Platform science and technology for advanced magnesium alloy. Materials Science Forum,2000,350-351:3-18.
    [3]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004.
    [4]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [5]Mordike B L, Ebert T. Magnesium:Properties-applications-potential. Materials Science and Engineering,2001, A302:37-45.
    [6]刘英,李元元,张卫文等.镁合金的研究进展和应用前景.轻金属,2002,(8):56-61.
    [7]张永忠,张奎,樊建中等.压铸镁合金及其在汽车工业中的应用.特种铸造及有色合金,1999,(3):54-57.
    [8]李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用.特种铸造及有色合金,1999,(S1):120-122.
    [9]贺岩松,杨诚.镁合金在轻量化汽车中的应用.汽车工艺与材料,2002,(6):25-27.
    [10]刘祚时,谢旭红.镁合金在汽车工业中的开发与应用.轻金属,1999,(1):55-58.
    [11]Friedrich H, Schumann S. Research for a new age of magnesium in the automotive industry. Journal of Materials Processing Technology,2001,117:276-281.
    [12]Hollrigl-Rosta F, Just E, Kohler, Melzer H.J. Magnesium in the Volkswagen. Light Metal Age, 1980,38(7-8):22-29.
    [13]王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用.材料导报,2000,14(6):22-24.
    [14]李晓敏.压铸镁合金在电子产业中的应用及其发展前景.轻金属,2003,(7):37-38.
    [15]Michael M A, Hugh B. ASM Speciality Handbook—Magnesium and Magnesium Alloys. Ohio: ASM International,1999.
    [16]吕宜振,翟春泉,王渠东等.压铸镁合金的应用现状及发展趋势.铸造,1998(12):50-53.
    [17]余琨,黎文献,李松瑞.变形镁合金材料的研究进展.轻合金加工技术,2001,29(7):6-11.
    [18]刘正,王越,王中光等.镁基轻质材料的研究与应用.材料研究学报,2000,14(6):449-456.
    [19]李轶,程培元,华林.镁合金在汽车工业和3C产品中的应用.江西有色金属,2007,21(2):30-33.
    [20]宋珂.镁合金在汽车轻量化中的应用发展.机械研究与应用,2007,20(1):14-16.
    [21]向冬霞,曹建勇,王军.镁合金配件在汽车、摩托车上的应用.汽车工艺与材料,2002,(8-9):41-43.
    [22]杜文博,吴玉锋,左铁镛.镁合金在交通工具中的应用现状.世界有色金属,2006,(2):19-21.
    [23]肖峰,刘江文.镁合金在摩托车及自行车上的应用现状及前景展望.广东有色金属学报,2006,16(4):289-291.
    [24]楚雄.首钢远东镁合金制品有限公司强劲推出镁合金电动自行车.中国自行车,2005,(7):46-47.
    [25]訾炳涛,王辉.镁合金及其在工业中的应用.稀有金属,2004,28(1):229-232.
    [26]黄瑞芬.镁合金的研究应用及其发展.科技与经济,2006,(11):58-59.
    [27]李晓敏.压铸镁合金在电子产业中的应用及其发展前景.轻金属,2003,(7):37-38.
    [28]许小忠,刘强,程军.镁合金在工业及国防中的应用.华北工学院学报,2002,23(3):190-192.
    [29]李忠盛,潘复生,张静.AZ31镁合金的研究现状和发展前景.金属成形工艺,2004,22(1):54-57.
    [30]谢春晓,陈丙璇,刘凯.AZ31变形镁合金的研究与开发.金属世界,2006,(2):22-26.
    [31]张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造,2001,50(6):310-315.
    [32]李冠群,吴国华,樊昱等.主要合金元素对镁合金组织及耐蚀性能的影响.铸造技术,2006,27(1):79-83.
    [33]曾荣昌,韩恩厚,刘路等.轧制组织对镁合金AM60疲劳性能的影响.材料研究学报,2003,17(3):241-246.
    [34]Kadiri H E, Xue Y B, Horstemeyer M F et al. Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy. Acta Materialia,2006,54(19):5061-5076.
    [35]Wang R M, Eliezer A, Gutman E M. An investigation on the microstructure of an AM50 magnesium alloy. Materials Science and Engineering,2003, A355:201-207.
    [36]彭立明,曾小勤,朱燕萍等.固溶处理对AM60B+xRE及AZ91D+xRE镁合金性能的影响.材料研究学报,2003,17(1):97-106.
    [37]Barbagallo S, Laukli H I, Lohne O et al. Divorced eutectic in a HPDC magnesium-aluminum alloy. Journal of Alloys and Compounds,2004,378:226-232.
    [38]刘津伟,康永林,赵鸿金等.挤压压力及热处理对AM60组织性能的影响.汽车工艺与材料,2004,(7):24-25,36.
    [39]麻彦龙,陈清建,王勇等.AM系铸造镁合金的研究进展.材料导报,2007,21(8):84-87.
    [40]Luo A A, Sachdev A K. Development of a new wrought magnesium-aluminum-manganese alloy AM30. Metallurgical and Materials Transactions,2007,38A:1184-1192.
    [41]董文超,王朝晖,康永林等.T61热处理和过热度对AM60镁合金组织及力学性能的影响.汽车工艺与材料,2004,(7):26-28.
    [42]蒋德平,龙思远,朱志兵等.铝、锌及热处理对Mg-Al-Mn合金组织及力学性能的影响.重庆大学学报(自然科学版),2006,29(12):76-79.
    [43]Vedani M, Mapelli C. Effect of thermal treatments on microstructure and impact toughness of die cast Mg-Al -Mn alloys. Materials Science and Technology,2001,17:938-944.
    [44]Perez-Prado M T, del Valle J A, Contreras J M et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Materialia,2004,50:661-665.
    [45]曹韩学,龙思远,廖慧敏等.温度对镁合金铸锭压缩变形行为的影响.重庆大学学报(自然科学版),2005,28(12):9-12.
    [46]Yoo M H, Morris J R, Ho K M et al. Nonbasal deformation modes of HCP metals and alloys:Role of dislocation source and mobility. Metallurgical and Materials Transactions,2002,33A:813-822.
    [47]Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metallurgical and Materials Transactions,2005,36A:1689-1696.
    [48]Staroselsky A, Anand L. A constitutive model for HCP materials deforming by slip and twinning: Application to magnesium alloy AZ31B. International Journal of Plasticity,2003,19:1843-1864.
    [49]Partridge P G. Slip band extrusion in fatigued close packed hexagonal metals. Acta Metallurgica, 1965,13(5):517-525.
    [50]Lamark T T, Chmelik F, Yuri Estrin Y et al. Cyclic deformation of a magnesium alloy investigated by the acoustic emission technique. Journal of Alloys and Compounds,2004,378:202-206.
    [51]Sandor B I. Fundamentals of cyclic stress and strain. Madison:University of Wisconsin Press, 1972.
    [52]Kwadjo R, Brown L M. Cyclic hardening of magnesium single crystals. Acta Metallurgica,1978, 26(7):1117-1132.
    [53]Stephens R I, Schrader C D, Lease K B. Corrosion fatigue of AZ91E-T6 cast magnesium alloy in a 3.5%aqueous environment. Journal of Engineering Materials& Technology,1995,117:293-298.
    [54]Wolf B, Fleck C, Eifler D. Characterization of the fatigue behaviour of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurements. International Journal of Fatigue,2004,26:1357-1363.
    [55]Lee R E, Jones J D. Microplasticity and fatigue of some magnesium-lithium alloys. Journal of Materiais Science,1974,9:469-475.
    [56]Ogarevic V V, Stephens R I. Fatigue of magnesium alloys. Annual Review of Materials Science, 1990,20:141-177.
    [57]Goodenberger D L, Stephens R I. Fatigue of AZ91E-T6 cast magnesium alloy. Journal of Engineering Materials& Technology,1993,115:391-397.
    [58]Polmear I J. Light alloys-Metallurgy of the light metals. London:Arnold Press,1995.
    [59]ClarkJB. Age hardening in a Mg-9wt.%Al alloy. Acta Metallurgica,1968,16(2):141-152.
    [60]Srivatsan T S, Wei L, Chang C F. The cyclic strain resistance, fatigue life and final fracture behavior of magnesium alloys. Engineering Fracture Mechanics,1997,56(6):735-758.
    [61]Emley E F. Fatigue and corrosion fatigue. Oxford:Pergamon Press,1966.
    [62]Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials,2004,6(5): 281-289.
    [63]Mayer H, Papakyriacou M, Zettl B, et al. Inflounce of porosity on the fatigue limit of die-casting magnesium and alluminum alloys. International Journal of Fatigue,2003,25:245-256.
    [64]Eisenmeier G, Holzwarth B, Hoppel H W et al. Cyclic defoemation and fatigue behavior of the magnesium alloy AZ91. Materials Science and Engineering,2001, A319-321:578-582.
    [65]Gall K, Biallas G, Maier H J et al. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 2004,26:59-70.
    [66]Gall K, Biallas G, Maier H J et al. In-situ observations of low-cycle fatigue damage in cast AM60B magnesium in an environmental scanning electron microscope. Metallurgical and Materials Transactions,2004,35A:321-331.
    [67]Bhambri A K, Kattamis T Z. Cast microstructure and fatigue behavior of a grain-refined Mg-Zn-Zr alloy. Metallurgical Transactions,1971,2A:1869-1874.
    [68]Horstemeyer M F, Yang N, Gall K et al. High cycle fatigue mechanisms in a cast AM60B magnesium alloy. Fatigue and Fracture of Engineering Materials& Structures,2002,25: 1045-1056.
    [69]Lee S G, Patel G R, Gokhale A M. Inverse surface macro-segregation in high-pressure die-cast AM60 magnesium alloy and its effects on fatigue behavior. Scripta Materialia,2005,52: 1063-1068.
    [70]Shih T S, Liu W S, Chen Y J. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering,2002, A325:152-162.
    [71]Wang X S, Lu X, Wang D H. Investigation of surface fatigue microcrack growth behavior of cast Mg-Al alloy. Materials Science and Engineering,2004, A364:11-16.
    [72]Nan Z Y, Ishihara S, Goshima T et al. Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit. Scripta Materialia,2004,50(4):429-434.
    [73]高洪涛,吴国华,丁文江.镁合金疲劳性能的研究现状.铸造技术,2003,24(4):266-268.
    [74]Venkateswaran P, Ramana S G S, Pathak S D et al. Fatigue crack growth behaviour of a die-cast magnesium alloy AZ91D. Materials Letters,2004,58:2525-2529.
    [75]Kadiri H E, Horstemeyer M F, Jordon J B et al. Fatigue crack growth mechanisms in high-pressure die-cast magnesium alloys. Metallurgical and Materials Transactions,2008,39A:190-205.
    [76]陈立佳,吴崴,盛晓方等.挤压变形AZ91镁合金的循环形变行为.材料研究学报,2007,21:276-279.
    [77]Chen L J, Shen J, Wu W et al. Low-cycle fatigue behavior of magnesium alloy AZ91. Materials Science Forum,2005,488-489:725-728.
    [78]Gall K, Biallas G, Maier H J et al. Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Materials Science and Engineering,2005, A396:143-154.
    [79]Horstemeyer M F, Yang N, Gall K et al. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia,2004,52(5):1327-1336.
    [80]Lee S, Lee S H, Kim D H. Effect of Y, Sr and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and Materials Transactions,1998,29A:1221-1235.
    [81]Perov S N, Ogarevic V V, Stephens R I. Application and verification of fatigue life calculation methods for AZ91E-T6 cast magnesium alloy under variable amplitude loading. Journal of Engineering Materials& Technology,1993,115:385-390.
    [82]Ferguson W G, Liu W, J McCulloch. Corrosion-fatigue performance of magnesium alloys. International Journal of Modern Physics B,2003,17(8-9):1601-1607.
    [83]Song G L, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials,1999,1:11-33.
    [84]Eliezer A, Gutman E M, Abramov E et al. Corrosion fatigue of die-cast and extruded magnesium alloys. Journal of Light Metals,2001,1:179-186.
    [85]Hilpert M, Wagner L. Corrosion fatigue behavior of the hilgh strength magnesium alloy AZ80. Journal of Material Engineering and Performance,2000,9 (4):402-407.
    [86]曾荣昌,韩恩厚,柯伟等.变形镁合金AZ80的腐蚀疲劳机理.材料研究学报,2004,18(6):561-567.
    [87]Unigovski Y, Eliezer A, Abramov E et al. Corrosion fatigue of extruded magnesium alloys. Materials Science and Engineering,2003, A360:132-139.
    [88]Kobayashi Y, Shibusawa T, Ishikawa K. Environmental effect of fatigue crack propagation of magnesium alloy. Materials Science and Engineering,1997, A234-236:220-222.
    [89]Kusukawa K, Takao K. Fatigue crack initiation behavior and notch sensitivity of AZ92A magnesium alloy. Transactions of the Japan Society of Mechanical Engineers A,2002,68(7): 1092-1097.
    [90]Eifert A J, Thomas J P, Rateick R G. Influence of anodization on the fatigue life WE43A-T6 magnesium. Scripta Materialia,1999,40(8):929-935.
    [91]May U, Berg-Pollack A. Fatigue simulation of light weight components of magnesium. Advanced Engineering Materials,2003,5(12):906-910.
    [92]Sertsyuk V A, Grinberg N M, Ostapenko I L. Fatigue fracture of some magnesium alloys in vacuum at room and low temperatures. Materials Science,1980,16(4):362-365.
    [93]Grinberg N M, Serdyuk V A, Ostapenko I L, et al. Effect of low temperature on fatigue failure of magnesium alloy MA12. Materials Science,1979,15(1):17-21.
    [94]Raske D T, Morrow J. Mechanics of materials in low cycle fatigue testing. ASTM STP 465. Philadelphia:American Society for Testing and Materials,1969.
    [95]Coffin L F. Fatigue at high temperatures. ASTM STP 520. Philadelphia:American Society for Testing and Materials,1973.
    [96]Zenner H, Renner F. Cyclic material behavior of magnesium die castings and extrusions. International Journal of Fatigue,2002,24:1255-1260.
    [97]Agnew S R, Tome C N, Brown D W et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scripta Materialia,2003,48(8):1003-1008.
    [98]Emley F E. Principle of magnesium technology. Oxford:Pergamon,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700