用户名: 密码: 验证码:
稀土元素(La,Ce)改性CuCl_2基催化剂上乙烷氧氯化制氯乙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烷氧氯化脱氯化氢制备氯乙烯是一种新型工艺,该工艺比传统氯乙烯生产方法更经济,高效。本文制备了镁铝复合氧化物和TiO_2载体负载的CuCl_2基催化剂,以及稀土元素(La﹑Ce)改性的CuCl_2基催化剂。通过各种表征手段对催化剂的结构,氧化还原性质,表面酸性,活性组分的存在状态,以及活性组分与助剂之间的相互作用进行了系统的分析。考察了稀土助剂对乙烷氧氯化脱氯化氢制氯乙烯反应性能的影响,对催化活性中心与稀土元素(La﹑Ce)之间的作用机理进行了进一步的探讨。
     系统地考察了CeO_2分散状态对CuCl_2基催化剂的物理化学性质和乙烷氧氯化脱氯化氢制氯乙烯反应活性的影响。在反应温度T=500℃,空速GHSV=_3200h~(-1),流量比V_(C_2H_6)/V_(HCl)/V_(air)=1/2/5条件下,晶化的CeO_2物种显著提高了乙烷转化率和氯乙烯的选择性,归因于助剂CeO_2表面存在大量的空穴氧物种(O~-,O_2~-),加速了氧化还原对(Cu~+/Cu~(2+))的转化,提高了催化反应活性。
     考察了第二助剂La_2O_3的引入,对CuCl_2基催化剂物理化学性质的影响,研究发现:助剂La_2O_3前驱体溶液的浸渍顺序和La含量对活性物种CuCl_2的存在状态影响显著;载体先浸渍La_2O_3先驱体溶液,促进了活性物种CuCl_2沉降在载体表面;其中,CuCl_2基催化剂中La含量在3wt.%时,表面氯化铜含量最多,显著地提高了乙烯和氯乙烯的总选择性,而La含量在5wt.%时,活性物种CuCl_2与CeO_2协同作用最佳,对氯乙烯选择性的提高有利。
     采用水热合成法成功了制备了TiO_2载体和杂原子La,Ce,Zr改性的TiO_2载体。实验结果表明:杂原子La,Ce,Zr的引入对TiO_2载体的结构影响较大。其中,Ce~(3+)改性的TiO_2载体,表面形成了较多的弱酸中心,更有利于烷基氯化物脱除氯化氢反应的进行;同时,CuCl_2-KCl/Ce-TiO_2催化剂上的活性物种Cu~(2+)更容易还原,提高了Cl_2的生成速率,对乙烷的氯化反应和乙烯与氯气加成反应有利;此外,纯TiO_2和杂原子改性TiO_2载体负载的CuCl_2基催化剂上,铜离子存在两种状态,Cu~(2+)和Cu~+。
Vinyl chloride monomer (VCM) is an important monomer in the manufactureof polyvinyl chloride (PVC). Nowadays, VCM is commercially produced by threeprocesses: acetylene process, ethylene oxychlorination and ethane oxychlorination.We often select mercuric chloride as a main catalyst to produce vinyl chloride inprocess of acetylene oxychlorination. The method is easy to ultilize due to its simpleand mature, but it brings some disadvantage including high energy consumption andserious pollution to environment.
     Ethylene oxychlorination is main route to produce vinyl chloride. This processincludes two reactions: the process of manufacture of ethane chlorides and thecracking of ethylene dichloride (EDC). This method is advantageous to theimprovement of quality of products, but the technics is complex to produce vinylchloride. In addition, its cost fluctuates along with the change of price of oil.
     The oxychlorination reaction of ethane is a promising and economic route toproduce vinyl chloride, because ethane as a raw material is cheaper than ethylene.Europe Vinyl Corporation succeeds to set up two equipments at the Bay of Mexicoin1999s, and make it come true in2003s. The total capacity of production of vinylchloride reaches up0.3million ton per year. By contrast, there is no report about thistechnique in our county. Therefore, study of preparation of vinyl chloride by ethaneoxychlorination is of great importance.
     In this work, copper-base catalysts modified with other components wereprepared by conventional impregnation method, and the catalytic activity for ethaneoxychlorination reaction was investigated simultaneously. The catalysts werecharacterized by means of XRD, BET, H_2-TPR, SEM, TEM, UV-Vis and XPS etc. toinvestigate the relationship between the structure, surface acidity, redox properties,existence state of components and the catalytic performance. The main experimentalresults and conclusion are as follows:
     1. Oxychlorination of ethane over CeO_2modified CuCl_2-KCl/MgO~-Al_2O_3catalyst
     CeO_2modified CuCl_2-KCl/MgO~-γ-Al_2O_3catalysts were prepared by an impregnation method, and the influence of Cerium content on the structure, redox,acidity and existence state of active components was investigated. It is found thatthree types Cerium species exist on the surface of catalysts: dispersed ceria, smallaggregated crystalline ceria species and large ceria particles.
     XRD, BET and H_2-TPR tests indicated that ceria is highly dispersed on thesupport at cerium content x <1.4wt.%, and large ceria particles begin to form on thesurface of catalysts at cerium loading x≥9wt.%; while for catalysts with ceriumcontent1.4wt%≤x <9wt%is responsible for the formation of small aggregatedcrystalline ceria species on the catalysts.
     Cerium promoter plays a key role for the formation of weak acid center on thesurface of catalysts. CeO_2-CuCl_2-KCl/MgO~-γ-Al_2O_3catalysts exhibit mainly Lewisacid center, and the amount of weak acid sites reach a maximum for catalyst withcerium content x=5wt%. It is known that weak acid center is advantageous tode-hydrochloric from ethane dichloride, which is responsible for the improvement ofselectivity of ethylene and vinyl chloride.
     CuCl_2-based catalysts with small aggregated crystalline ceria possess largeamount of surface capping oxygen species (O~-, O_2~-) on the surface and reach amaximum with cerium content x=5wt%. As a result, Cu~+species is hardlyreduced to Cu~0, which is responsible for the high stability of CuCl_2-based catalyst.
     The experiment results show that both ethane conversion and selectivity ofvinyl chloride reach a maximum (98.6%and54.6%) for CuCl_2-based catalyst withcerium content x=5wt%, while the selectivity of ethylene reach a minimum(_26._2%) simultaneously. Additionally, the best reaction condition is that: T=500℃,GHSV=_3_200h-1and VC_2H6/VHCl/Vair=1/_2/5.
     2. Oxychlorination of ethane over CeO_2/La_2O_3bi-promoter modifiedCuCl_2-KCl/MgO~-Al_2O_3catalyst
     CeO_2/La_2O_3bi-promoter modified CuCl_2-KCl/MgO~-Al_2O_3catalysts wereprepared by conventional impregnation method. The experiment results show thatimpregnation order of La_2O_3precursor can affect the structure, redox, acidity andexistence state of active component of CuCl_2-based catalyst notably.
     MgO~-γ-Al_2O_3support impregnated with La_2O_3precursor firstly improves thedispersion capacity of CeO_2and KCl promoters on the support. In addition, itbenefits the deposition of active CuCl_2species on the surface of support. As a result, the conversion of Cu~+to Cu~(2+)is accelerated and more active Cu~(2+)can participate inthe reaction, which is responsible for the high activity of ethane oxychlorination.
     Lanthanum content can affect the acidity of CuCl_2-based catalysts notably. Afew amount of La species benefit the formation of weak acidic centers, which isattributed to the coverage of uncovered Al~(3+)by La~(3+)species. By contrast, largeamount of La promoter is responsible for the decrease of acidic amount, which isattributed to the big radius of La~(3+)ion and the decrease of interaction between La~(3+)and OH-species.
     La_2O_3promoter improves the stability of Ce-Cu/Laxcatalysts notably, whichis attributed to the higher ability of prohibiting the coke species deposited on thesurface. After reaction for180hours, conversion of ethane and selectivity of vinylchloride is97%and_38._2%, respectively; and the selectivity of ethylene is44%,simultaneously.
     TEM images show that coke species deposited on the Ce-Cu/La_3are easilyeliminated and form large amount of circle coke layer on the edge of used catalyst,which is responsible for the high stability of CuCl_2-based catalysts.
     _3. Study of ethane oxychlorination over CuCl_2catalysts supported on La, Ce,Zr atoms modified TiO_2support
     Pure TiO_2and La, Ce, Zr atoms modified TiO_2support were prepared usinghydrothermal treatment method. It is found that the introduction of La, Ce and Zratom to TiO_2support plays a key role for the formation of physico-chemicalproperties of support.
     The surface area of La, Ce, Zr atoms modified TiO_2increases apparentlycompared to pure TiO_2support; and these atoms exist in the different position ofTiO_2support. Zr~(4+)can insert in to Ti~(4+)lattice or interstitially position of TiO_2due tothe closer radius; while La~(3+)or Ce~(3+)ion can insert into interstitially position or existon the surface of TiO_2attributed to the bigger radius.
     The introduction of La, Ce and Zr atom to TiO_2support affects the acidity ofsupport notably. It is worth to point out that Ce~(3+)ion benefits the formation of weakacidic center; and both weak and middle acidic amount increase for La~(3+)modifiedTiO_2support. By contrast, the amount of middle acidic center increases apparently onZr~(4-)ions modified TiO_2support.
     H_2-TPR tests show that the reduction temperature of active Cu~(2+)species decreases with an order of CuK/TiO_2     XPS results show that both Cu~+and Cu~(2+)ions exist on the surface ofCuCl_2-based catalyst, simultaneously. Additionally, Ce-TiO_2support exhibits thestronger electro-negativity compared to other support, which is advantageous to thereduction of Cu~(2+)to Cu+and is responsible for the excellent activity.
引文
[1]邴涓林,李承志.中国PVC产业快速发展10年回顾与2010年动态分析[I].氯乙烯,2011,39(5):1-8.
    [2]牛菊芳,国际原油价格波动对中国经济的影响与应对措施,西部论坛,2011,21(6):58-65.
    [3]徐文渊,蒋长安,天然气利用手册,中国石化出版,2002.
    [4]徐克勋,精细有机化工原料及中间体手册[M],北京:化学工业出版社,1998。
    [5]庞晓华,全球聚氯乙烯市场前景看好,海外快递,2007.
    [6] William G D,Raymond W D:US,419953[P].2000-02-01.
    [7] Minet R G,et al,CEER,1983,15(10):35-37.
    [8] GORIN M H, Manufacture of liquid hydrocarbons:US,2488083[P].1949-11-15.
    [9]杨鼎文,石油化工,1981,3:186-192.
    [10]天津化工厂,聚氯乙烯生产与操作,燃料化学工业出版社,1968.
    [11]化学工业部锦西化工研究院,聚氯乙烯,1989.
    [12]李春华,周军,于信洋等,聚氯乙烯,2008,36(1):35-37.
    [13]陈静,侯春阳,金炜阳,程党国,陈丰秋,化工进展,2010,29(9):1603-1608.
    [14]浙江大学化学工程组.氯乙烯合成反应技术的研究[J].石油化工,1973,(1):19-30.
    [15]沈庆扬,戴擎镰,陈秉辉,复合床反应技术的模型及优化[J].化学反应工程与工艺,1986,2(2):52-62.
    [16]陈甘棠,沈庆扬,戴擎镰,等.乙炔-氯化氢合成氯乙烯复合床反应技术[J].科技通报,1987,3(3):30-33.
    [17]王红霞,氯乙烯技术现状及进展[J].石油化工,2002,31(6):483-487.
    [18]黄凤刚,氯乙烯生产工艺的比较[J].聚氯乙烯,1999,2:1-6.
    [19]张新胜,张行,刘岭梅,乙烯法VCM工艺技术进展及创新研究[J].聚氯乙烯,2002,6:14-20.
    [20]易小云,国内外氯乙烯(VCM)生产技术的初步研究[J].广东化工,2000,1:37-39.
    [21] D·卡尔梅罗,P·法吐托,A·马尔色拉,乙烯在两级固定床反应器中的氧氯化反应:中国,1175938[P].1998-03-01.
    [22]彼得·施瓦茨迈尔,因戈尔夫·米尔克,赫尔穆特·格鲁曼,直接氯化制备1,2-二氯乙烷的方法:中国,1224409[P].1999-07-28.
    [23]李红海,吴天祥,苏保卫,乙烯直接取代氯化合成氯乙烯的研究[J].化学反应工程与工艺.2004,20:167-174.
    [24]顾卫民,乙烯直接氯化生产二氯乙烷的技术研究进展[J].中国氯碱,2006,3:21-22.
    [25]刘岭梅,张永春,二氯乙烷裂解生产氯乙烯技术的改进[J].聚氯乙烯,2006,3:14-17.
    [26] Mortensen M,Minet R G,Tsotsis T T,et al,A Two-stage Cyclic Fluidized BedProcess for Converting Hydrogen Chloride to Chlorine[J].Chem Eng Sci,1996,51(10):2031-2039.
    [27] Han M H,Chang P T,Hu G S,Chen Z T,Wang D Z,Wei F,Conversion ofhydrogen chloride to chlorine by catalytic oxidation in a two-zone circulatingfluidized bed reactor [J].Chemical Engineering and Processing,2011,50:593–598.
    [28]鲁德威格·施米德哈默,鲁道夫·斯特拉斯,彼得·黑尔斯曼,克劳斯·哈塞尔沃特,格哈德·达默,乙烯氧氯化法:中国,85104821[P].1986-12-17.
    [29]鲁德威格·施米德哈默,鲁道夫·斯特拉斯,彼得·黑尔斯曼,克劳斯·哈塞尔沃特,格哈德·达默,乙烯氧氯化法:中国,85104821[P].1986-12-17.
    [30] L·卡瓦利,F·卡萨格兰德,将乙烯氧氯化为1,2-二氯乙烷的催化剂:中国,1413970[P].2003-04-30.
    [31]朱洪法,王红霞,齐兰芝,田杰,余江蓬,刘棣生,南秀琴,纯氧法乙烯氧氯化制二氯乙烷的催化剂及其制备方法:中国,1280880[P].2001-01-24.
    [32]唐亮,乙烯氧氯化制二氯乙烷催化剂的研究[J].聚氯乙烯,2005,1:22-30.
    [33]胡国埏,国外氯乙烯生产技术经济比较[J].中国氯碱,2001,1:37-44.
    [34]王俐,世界氯乙烯工艺发展近况[J].化工技术经济,2005,23(12):7-12.
    [35] Li T P,Preparation of Monohalogenated olefins:GB,2009164[P].1979-06-13.
    [36] HarthK,Schindler G–P,Walsdorf C,et al.Method for the production of1,2-dichloroethane from ethane:WO,2003048088[P].2003-06-12.
    [37]李玉芳,伍小明,氯乙烯生产技术的研究开发进展[J].江苏氯碱,2010,3:3-5.
    [38] Bewley,Lindsey,Chemical Week,2011,173(9):27-27.
    [39] Alperowicz, Natasha, Chemical Week,2011,173(2):20-20.
    [40]苯酐工业:2011,3:47.
    [41] Carroll R T,Elmer J,Louis E,Oxychlorination of lower alkanes:US,3173962
    [P].1965-03-16.
    [42] Kroenke W J,Nicholas P P,Process for the oxychlorination of an alkane usinga solid solution catalyst containing iron cations:US,4375569[P].1983-03-01.
    [43] Kroenke W J,Carroll R T,Magistro A J,Catalyst for the preparation ofethylene and vinyl chloride from ethane:US,4159968[P].1979-07-03.
    [44] Gelperin E I,Shcheglova G G,Catalyst for oxychlorination of ethane:SU,555906[P].1977-04-30.
    [45] Gaab S, Machli M, Find J, Grasselli R K, Lercher J A, Oxidativedehydrogenation of ethane over novel Li/Dy/Mg mixed oxides:structure-activitystudy [J].Top Catal,2003,23:151-158.
    [46] Conway S J, Lunsford J H, The oxidative dehydrogenation of ethane overchlorine-promoted lithium-magnesium oxide catalysts [J].J Catal,1991,131:513-522.
    [47] Wang D J,Rosynek M P,Lunsford J H,Yttria-Stabilized Zirconia SupportedCopper Oxide Catalyst:I.Effect of Oxygen Vacancy of Support on CopperOxide Reduction [J].J Catal,1995,151:155-170.
    [48] Conway S J,Wang D J,Lunsford J H,Selective oxidation of methane and ethaneover Li+-MgO-Cl catalysts promoted with metal oxides [J].Appl Catal Gen:A,1991,79(1):L1-L5.
    [49] Allen J A,Clark A J,Oxychlorination catalysts[J].Rev Pure Appl Chem,1971,21:145-165.
    [50] Villadsen J and Livberg H,Supported liquid-phase catalysts [J].Catal Rev SciEng,1978,17:203-214.
    [51] Rigel H,Schindler H D,Sze M C,Low cost hydrocarbon chlorination[J].Chem Eng Progr,1973,69:89-94.
    [52] Barclay J L, Process for producing vinyl chloride: GB,1492945
    [P].1977-11-23.
    [53] Kuck M A,Novel process for the oxychlorination of ethane:US,3987118
    [P].1976-10-19.
    [54] Riegel H,Vinyl chloride process:US,3879482[P].1975-04-22.
    [55] Sze M C, Riegel H, Production of vinyl chloride: US,3879481
    [P].1975-04-22.
    [56] Riegel H,Schindler H D,Vinyl Chloride Process:US,3879480.1975-04-22.
    [57]克莱格I M,哈德曼R,氧氯化方法:中国,1115574[P].1996-01-24.
    [58] Pyke D R,Reid R,Chlorination of alkanes:GB,2095245[P].1982-09-29.
    [59]高为华,乙烷氧氯化制氯乙烯研究进展,石油化工,2004,33(增刊):1571-1573.
    [60]冯海强,南秀琴,尹文龙,高为华,乙烷氧氯化制氯乙烯反应性能的研究I.反应条件对乙烷氧氮化反应性能的影响,石油化工,2001,30(增刊):292-294
    [61] Riegel H, Schindler H D, Vinyl Chloride Process: US,3879480[P].1975-04-22.
    [1] Allen J A,Clark A J,Oxychlorination catalysts [J].Rev Pure Appl Chem,1971,21:145-166.
    [2] Ohtsuka Y,Kuwabara M,Tomita A,Selective Oxidative Coupling of Methane toEthylene with Molten Oxides Containing Alkali Metal Chloride [J].AppliedCatalysis,1989,47(2):307-315.
    [3] Villadsen J,Livberg H,[J].Catal Rev Sci Eng,1978,17(2):203-272.
    [4] Leofanti G,Padovan M,Garilli M,Carmello D,Zecchina A,Spoto G,BordigaS,Palomino G T and Lamberti C,Alumina-Supported Copper Chloride:1.Characterization of Freshly Prepared Catalyst [J].Journal of Catalysis,2000,189:91–104.
    [5] Finocchio E,Rossi N,Busca G,Padovan M, Leofanti G,Cremaschi B,MarsellaA and Carmelloy D,Characterization and catalytic activity of CuCl2-Al2O3ethylene oxychlorination catalysts [J].Journal of Catalysis,1998,179:606-618.
    [6] Yarkerson V I,Golosman E Z,Design of heterogeneous catalytic systems:newcement-containing catalysts [J].React Kinet Catal Lett,1995,55(2):455-462.
    [7]刘希尧,王淑菊,郭俐聪,氧化铝基表层镁铝尖晶石的研究Ⅰ表层镁铝尖晶石的相结构、孔结构、表面酸性及负载钯的化学状态[J].催化学报,1994,15(1):1-7.
    [8]张兆斌,余长春,沈师孔,甲烷部分氧化制合成气的La2O3助Ni/MgAl2O4催化剂[J].催化学报,2000,21(1):14-18.
    [9]郭清松,沈岳年,刘志双,具有镁铝尖晶石表面覆盖层的Ni/γ-Al2O3催化剂[J].石油化工,1989,18(9):606-609.
    [10] Leofanti G,Padovan M,Garilli M,Carmello D,Marra G L,Zecchina A,Spoto G,Bordiga S,Palomino T G and Lamberti C,Alumina-supportedcopper chloride:1.characterization of freshly prepared catalyst [J].J Catal,2000,189:91-104.
    [11] Wang X Y,Zhao B Y,Jiang D E,Xie Y C,Monolayer dispersion of MoO3, NiOand their precursors on γ-Al2O3[J].Applied Catalysis A:General,1999,188:201–209.
    [12] Xu B,Dong L,Fan Y N,Chen Y,A Study on the Dispersion of NiO and/or WO3on Anatase [J].Journal of Catalysis,2000,193:88–95.
    [13] Randery S D,Warren J S,Dooley K M,Cerium oxide-based catalysts forproduction of ketones by acid condensation [J].Appl Catal A:General,2002,226:265–280.
    [14] Shyu J Z,Weber W H,Gandhi H S,[J].J Phys Chem,1988,92:4964-4970.
    [15] Yao H C,Yu Yao Y F,Ceria in automotive exhaust catalysts:I.Oxygen storage[J].J Catal,1984,86:254-265.
    [16] Yamaguchi T,Ikeda N,Hattori H,Tanabe K,Surface and catalytic propertiesof cerium oxide [J].J Catal,1981,67:324-330.
    [17] Santos A C S F,Damyanova S,Teixeira G N R,Mattos L V,Noronha F B,Passos F B,Bueno J M C,The effect of ceria content on the performance ofPt/CeO2/Al2O3catalysts in the partial oxidation of methane [J].Applied CatalysisA:General,2005,290:123–132.
    [18] Liu J,Lǚ X J,Zhou G D,Zhen K J,Zhang W X,Cheng T X,Effect of KClon CuCl2/γ-Al2O3catalyst for oxychlorination of ethane [J].React Kinet CatalLett,2006,88:315-323.
    [19] Yao H C,Yu Yao Y F,Ceria in automotive exhaust catalysts:I.Oxygen storage[J].J Catal,1984,86:254-265.
    [20] Yamaguchi T,Ikeda N,Hattori H,Tanabe K,Surface and catalytic propertiesof cerium oxide [J].J Catal,1981,67:324-330.
    [21] Santos A C S F,Damyanova S,Teixeira G N R,Mattos L V,Noronha F B,Passos F B,Bueno J M C,The effect of ceria content on the performance ofPt/CeO2/Al2O3catalysts in the partial oxidation of methane [J].Applied CatalysisA:General,2005,290:123–132.
    [22] Takeshi M,Ogawa T,Haneda M,Kakuta N,Ueno A,Tateishi S,MatsuuraS,Sato M,Enhanced oxygen storage capacity of cerium oxides in cerium dioxide/lanthanum sesquioxide/alumina containing precious metals [J].J Phys Chem,1990,94:6464-6368.
    [23] Damyanova S,Bueno J M C,Effect of CeO2loading on the surface and catalyticbehaviors of CeO2-Al2O3-supported Pt catalysts [J]. Applied Catalysis A:General,2003,253:135–150.
    [24] Salasc S,Perrichon V,Primet M,Chevrier M,Mathis F,Moral N,Magneticstudy of the interaction of hydrogen with a Pt/CeO2–Al2O3catalyst: influence ofthe presence of chlorine [J].Catal Today,1999,50:227-235.
    [25] Hilaire L,Kili K,Grill G,Oxidation state of cerium in cerium-based catalystsinvestigated by spectroscopic probes [J].J Phys Chem,1988,92:2561-2568.
    [26] Liu J,Sui Y R,Zhou G D,Zhen K J,Zhang W X,Cheng T X,Modificationof the Acid-base and Catalytic Properties of CuCl2-KCl-LaCl3/γ-Al2O3byMgAl2O4in Ethane Oxychlorination [J].Polish J Chemistry,2007,81:95-101.
    [27] penkova A,Bobadilla L,Ivanova S,Dominguez M I,Sarria F R,Roger AC,Centeno M A,Odriozola J A, Hydrogen production by methanol steamreforming on NiSn/MgO–Al2O3catalysts:The role of MgO addition [J].AppliedCatalysis A:General.2011,392:184–191.
    [28] Choudhary RV,Rane H V,Chaudhari T S,Surface properties of rare earthpromoted MgO catalysts and their catalytic activity/selectivity in oxidativecoupling of methane [J].Applied Catalysis A:General.1997,158:121-136.
    [29] Moretti E,Storaro L,Talon A,Riell P,Frattini R,Lenarda M,Effect of thesynthetic parameters on the textural properties of one-pot mesoporous Al–Ce–Cusystems [J].Microporous and Mesoporous Materials,2008,116:575-580.
    [30] Turco M,Bagnasco G,Costantino U,Marmottini F,Montanari T,Ramis G,Busca G,Production of hydrogen from oxidative steam reforming of methanol: I.Preparation and characterization of Cu/ZnO/Al2O3catalysts from ahydrotalcite-like LDH precursor [J].J Catal,2004,228:43-55.
    [31] Liu H D,Wei L Q,Yue R L,Chen Y F,CrOx–CeO2binary oxide as a superiorcatalyst for NO reduction with NH3at low temperature in presence of CO[J].Catal Commun,2010,11:829-833.
    [32] Maria Suzana P F,Valmor R M,Activity and Characterization by XPS,HR-TEM,Raman Spectroscopy and BET Surface Area of CuO/CeO2-TiO2Catalysts [J].J Phys Chem B,2001,105:10515-10522.
    [33] Graham G W,Schmitz P J,Usmen R K,McCabe R W,Investigation ofLa3+-modified Al2O3supported CeO2[J].Catalysis Letters,1993,17:175-184.
    [34] Shelef M,Haack L P,Soltis R E,Devries J E,Logothetis E M,An XPS studyof interactions in thin films containing a noble metal with valence-invariant andreducible oxides [J].Journal of Catalysis,1992,137:114-126.
    [35] Damyanova S,Perez C A,Schmal M,Buenob J M C,Characterization ofceria-coated alumina carrier [J].Applied Catalysis A:General.2002,234:271–282.
    [36] Henderson M A, Perkins C L,Engelhard M H,Thevuthasan S,Peden C H F,Redox properties of water on the oxidized and reduced surfaces of CeO2(111)[J].Surf Sci,2003,526:1-18.
    [37] Holgado J P,Alvarez R,Munuera G,Study of CeO2XPS spectra by factoranalysis: reduction of CeO2[J].Appl Surf Sci,2000,161:301-315.
    [38] Holgado J P,Munuera G,Espinos J P,Gonzalez-Elipe A R,XPS study ofoxidation processes of CeOxdefective layers [J].Appl Surf Sci,2000,158:164-171.
    [39]李兴林,张瑞峰,铜的价态光电子能谱和X光引发的Auger谱分析[J].光谱学与光谱分析,1996,16(3):119-123.
    [40] Saiprasad P S,Prasad K B S,Kanta R P,Redistribution of copper inKCl-promoted CuCl2/γ-Al2O3catalyst during oxychlorination of ethylene[J].Jornal of material Science,1997,32(6):1479-1484.
    [41] Dai Q G,Wang X Y,Lu G Z,Low-temperature catalytic combustion oftrichloroethylene over cerium oxide and catalyst deactivation [J].AppliedCatalysis B:Environmental,2008,81:192-202.
    [42] Soria J,Conesa J C,Martínez-Arias A,Characterization of surface defects inCeO2modified by incorporation of precious metals from chloride saltsprecursors: an EPR study using oxygen as probe molecule [J].Collides andSurface A:Physicochemical and Engineering Aspects,1999,158:67-74.
    [1] Allen J A,and Clark A J,Oxychlorination catalysts [J].Rev Pure Appl Chem,1971,21:145-165.
    [2] Michael C I,Hardman R,Oxychlorination process:US,5763710[p].1998-06-09.
    [3] Michael C I, Hardman R, Oxychlorination Catalyst: WO,95/07250[p].1995-03-06.
    [4] Lǚ X J,Liu J,Zhou G D,Zhen K J,Li W X,Cheng T X,Ethane oxychlorinationover γ-Al2O3supported CuCl2-KCl-LaCl3[J].Catal Lett,2005,100:153-159.
    [5] Chen Z T,Han M H,Wang D Z,Wei F,Influence of Cerium on the Stability ofCopper-Based Oxychlorination Catalyst [J].Chin J Catal,2008,29:951-953.
    [6]朱洪法,催化剂载体(M),北京:化学工业出版社,1980.
    [7] Liu J,Lǚ X J,Zhou G D,Zhen K J,Zhang W X,Cheng T X,Effect of KCl onCuCl2/γ-Al2O3catalyst for oxychlorination of ethane [J].React Kinet Catal Lett,2006,88:315-323.
    [8]刘希尧,王淑菊,郭俐聪,氧化铝基表层镁铝尖晶石的研究Ⅰ表层镁铝尖晶石的相结构、孔结构、表面酸性及负载钯的化学状态,催化学报,1994,15(1):1-7
    [9]张兆斌,余长春,沈师孔,甲烷部分氧化制合成气的La2O3助Ni/MgAl2O4催化剂,催化学报,2000,21(1):14-18.
    [10]郭清松,沈岳年,刘志双,具有镁铝尖晶石表面覆盖层的Ni/γ-Al2O3催化剂,石油化工,1989,18(9):606-609
    [11] Yao H C,Yu Yao Y F,Ceria in automotive exhaust catalysts:I.Oxygen storage[J].J Catal,1984,86:254-265.
    [12] Flid M R, Kurlyandskaya I I,Treger Y A,The Proceeding of3rd world Congresson Oxidation Catalysis,San Diego:Elsevier Science B.V.(1997)305-313.
    [13] Shyu J Z, Weber W H, Gandhi H S, Surface characterization ofalumina-supported ceria [J].J Phys Chem,1988,92:4964-4970.
    [14] Takeshi M,Ogawa T,Haneda M,Kakuta N,Ueno A,Tateishi S,MatsuuraS,Sato M,Enhanced oxygen storage capacity of cerium oxides in cerium dioxide/lanthanum sesquioxide/alumina containing precious metals,J Phys Chem,1990,94:6464-6368
    [15] Garcia C L,Resasco D E,High-temperature oxychlorination catalysts: Role ofLaCl3as an inhibitor of the segregation of active species during heating/coolingcycles [J]. J Catal,1990,122:151-165.
    [16] Leofanti G,Padovan M,Garilli M,Carmello D,Marra G L,Zecchina A,Spoto G,Bordiga S,Lamberti C,Alumina-Supported Copper Chloride:2.Effectof Aging and Thermal Treatments [J].J Catal,2000,189:105-116.
    [17] Leofanti G,Padovan M,Garilli M,Carmello D,Marra G L,ZecchinaA,Spoto G,Bordiga S,Palomino T G and Lamberti C,Alumina-supportedcopper chloride:1.characterization of freshly prepared catalyst [J].JCatal,2000,189:91-104.
    [18] Lercher J A,Colombier C,Vinek H,Noller H,Acid and base strength ofalumina-magnesia mixed oxides [J].Stud Surf Sci Catal,1985,20:25-31.
    [19] Penkova A,Bobadilla L,Ivanova S,Dominguez M I,Sarria F R,Roger A C,Centeno M A,Odriozola J A,Hydrogen production by methanol steamreforming on NiSn/MgO–Al2O3catalysts:The role of MgO addition [J].ApplCatal A:Gen,2011,392:184-191.
    [20] Liu J,Sui Y R,Zhou G D,Zhen K J,Zhang W X,Cheng T X,Modificationof the Acid-base and Catalytic Properties of CuCl2-KCl-LaCl3/γ-Al2O3byMgAl2O4in Ethane Oxychlorination [J],Pol J Chem,2007,81:95-101.
    [21] Li C,Zhou G D,Wang L P,Dong S L,Li J,Cheng T X,Effect of ceria onthe MgO-γ-Al2O3supported CeO2/CuCl2/KCl catalysts for ethaneoxychlorination,[J].Appl Catal A:Gen,2011,400:104-110.
    [22] Choudhary R V,Rane H V,Chaudhari T S,Surface properties of rare earthpromoted MgO catalysts and their catalytic activity/selectivity in oxidativecoupling of methane [J].Appl Catal A:Gen,1997,158:121-136.
    [1] Villadsen J,Livberg H,Supported liquid-phase catalysts [J].Catal Rev Sci Eng,1978,17:203-214.
    [2] Allen J A and Clark A J,Oxychlorination catalysts [J].Rev Pure Appl Chem,1971,21:145-165.
    [3] Boccuzzi F,Chiorino A,Martra G,Gargano M,Ravasio N,Carrozzini B,Preparation, Characterization and Activity of Cu/TiO2Catalysts:I. Influence of thePreparation Method on the Dispersion of Copper in Cu/TiO2[J].J Catal,1997,165:129-139.
    [4] Kumaresan L,Prabhu A,Palanichamy M,Arumugam E,Murugesan V,Synthesisand Characterization of Zr4+, La3+and Ce3+doped mesoporous TiO2:Evaluation oftheir photocatalytic activity [J].Journal of Hazardous Materials,2011,186:1183-1192.
    [5]甄开吉,王国甲,毕颖丽,李荣生,阚秋斌,催化作用基础(M),北京:科学出版社:2005.
    [6] Coloma F,Marquez F,Rochester C H,Anderson J A,Determination of the natureand reactivity of copper sites in Cu–TiO2catalysts [J].Phys Chem Chem Phys,2000,2:5320-5327.
    [7] Luo M F,Ma J M,Lu J Q,Song Y P and Wang Y J,High-surface area CuO–CeO2catalysts prepared by a surfactant-templated method for low-temperature COoxidation [J].J Catal,2007,246:52-59.
    [8] Tang X L,Zhang B C,Li Y,Xu Y D,Xin Q,Shen W J,CuO/CeO2catalysts:Redox features and catalytic behaviors [J].Appl Catal A:General,2005,288:116-125.
    [9] Damyanova S,Perez C A,Schmal M,Buenob J M C,Characterization ofceria-coated alumina carrier [J].Applied Catalysis A:General,2002,234:271–282.
    [10] Xie C,Xu Z,Yang Q,Xue B,Du Y and Zhang J,Enhanced photocatalyticactivity of titania-silica mixed oxide prepared via basic hydrolyzation [J].MaterSci Eng B,1998,102:5094-5098.
    [11] Flid M R,Kurlyandskaya I I,Treger Yu A,The Proceeding of3rd worldCongress on Oxidation Catalysis, San Diego:Elsevier Science B.V.(1997)305-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700