胰腺癌BxPC-3细胞上清液通过上调树突状细胞miRNA-146a的表达抑制其成熟及免疫功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是一种高度恶性的肿瘤,其死亡率位居全部恶性肿瘤的第四位,在我国其发病率呈现出逐年上升的趋势。由于手术治疗及传统的放化疗并不能明显提高患者的5年生存率,因此肿瘤免疫治疗逐渐成为胰腺癌治疗研究的热点。然而,因为肿瘤免疫逃避机制的存在,肿瘤免疫治疗往往不能达到令人满意的效果。因此,以肿瘤免疫及相关机制为对象的研究成为目前攻克肿瘤免疫耐受及免疫逃避,实现有效治疗的重要手段。
     树突状细胞(dendritic cell DC)是目前发现的功能最强大的抗原递呈细胞,在抗原递呈、T细胞活化及免疫耐受方面发挥着重要的作用。研究发现,肿瘤细胞可逃避免疫系统而存活,同时建立肿瘤微环境来抑制DC的成熟及相关的免疫功能;胰腺癌细胞上清液可明显抑制DC的分化和抗原递呈功能;胰腺癌患者血清中的DC数量和功能亦明显受抑,但其中详细的机制仍然不十分明了。综上所述,明确胰腺癌微环境下DC的受损机制成为克服肿瘤免疫逃避、提高免疫治疗的重要前提条件。
     微小RNA(miRNA)是一类由20-23个核苷酸组成的内源性非编码小分子单链RNA,能够识别特定的目标mRNA,参与转录后水平的基因调控,在机体的正常生理活动和各种疾病的发生、发展过程中都起着重要的调节作用。研究表明,miRNA-146a在免疫反应、炎症反应以及细胞的增殖、分化、成熟过程中都起着十分重要的调节作用。最新的研究显示,miRNA-146a对DC的增殖分化及成熟也起着重要的调控作用。
     基于上述理论,本实验采用恶性程度较高的胰腺癌BxPC-3细胞系为研究对象,探讨在胰腺癌BxPC-3细胞上清液(BxPC-3-conditioned medium, BxCM)的作用下,DC内miRNA-146a的变化及其对DC成熟和功能的影响,以揭示胰腺癌微环境抑制DC的相关分子机制。
     第一部分人外周血来源DC的制备及BxCM对其分化成熟抑制作用的研究
     目的:体外分离培养人外周血来源的DC,观察BxCM对DC分化成熟的抑制作用。
     方法:取健康志愿者外周血,使用淋巴细胞分离液分离获得CD14+单核细胞。体外联合应用重组人粒细胞集落刺激因子(GM-CSF)及白细胞介素4(IL-4)诱导其分化为DC,应用肿瘤坏死因子α(TNF-α)促进其成熟。利用人胰腺癌BxPC-3细胞系提取BxCM,与上述细胞因子共同诱导CD14+单核细胞。流式细胞仪检测DC分化成熟相关抗原分子的表达情况,观察BxCM对DC分化成熟的抑制作用。
     结果:体外成功分离培养出人CD14+单核细胞,并诱导其分化成为成熟的DC;与常规培养组相比,BxCM干预下诱导的DC,其CD14仍维持在高水平(P<0.05),而CD1a、CD80、CD83、CD86及HLA-DR等DC成熟相关表面抗原的表达则显著降低(P<0.05)。
     结论:BxCM能够显著抑制DC表面抗原的表达,进而阻碍CD14+单核细胞向DC的分化及DC的成熟。
     第二部分BxCM对DC内miRNA-146a及Smad4蛋白表达的影响
     目的:研究BxCM干预下DC内miRNA-146a及Smad4蛋白表达水平的变化,探讨miRNA-146a与Smad4蛋白表达之间的关系,为进一步阐明DC受抑机制提供理论依据。
     方法:通过QRT-PCR法比较常规培养组与BxCM干预组中DC内miRNA-146a表达水平的变化;通过QRT-PCR及Western-blot法比较两组DC内Smad4基因mRNA与蛋白表达变化。同时应用脂质体2000(Lip2000)将anti-miRNA-146a寡核苷酸或非特异性寡核苷酸片段转染至DC内沉默miRNA-146a的表达,以探讨miRNA-146a与Smad4蛋白表达之间的关系。
     结果:与常规培养组中DC相比,BxCM干预组中DC内miRNA-146a的表达均显著增高(P<0.05);与此相反,Smad4的mRNA与蛋白表达则明显低于常规培养组(P<0.05)。同时,当miRNA-146a的表达被有效沉默后,常规组及BxCM干预组中DC内Smad4的mRNA与蛋白表达的水平均明显上调(P<0.05)。
     结论:DC内miRNA-146a可负向调节Smad4蛋白的表达。BxCM在抑制DC分化成熟的同时,能够显著上调DC内miRNA-146a的表达水平;而作为miRNA-146a负向调控的靶基因之一,Smad4的表达水平则明显降低。因此,BxCM有可能通过miRNA-146a-Smad4介导的信号通路抑制DC分化成熟。
     第三部分下调BxCM诱导的DC内异常增高的miRNA-146a水平对DC成熟及免疫功能的影响
     目的:研究下调BxCM干预组中DC内miRNA-146a的表达水平对DC分化成熟及免疫功能的影响,探讨胰腺癌微环境下DC成熟及免疫功能受抑制的详细机制,为DC介导的抗胰腺癌免疫治疗提供必要的理论及实验依据。
     方法:应用Lip2000将anti-miRNA-146a寡核苷酸转染至BxCM干预组的DC内,以沉默miRNA-146a的表达。流式细胞仪检测各组DC分化成熟相关抗原的表达变化情况;酶联免疫吸附实验(ELISA)测定各组DC的IL-12分泌水平。利用胰腺癌BxPC-3细胞的裂解物制备全肿瘤特异性抗原并负载DC,各组致敏的DC按DC:T淋巴细胞为1:10的比例混合培养(混合淋巴细胞反应, MLR)。24小时后ELISPOT法测定各组干扰素-γ(IFN-γ)分泌水平,ELISA测定各组T淋巴细胞IL-12的分泌水平。5天后MTS法测定各组淋巴细胞增殖情况;乳酸脱氢酶(LDH)释放实验观察各组DC体外诱导的主动特异性细胞毒T淋巴细胞(CTL)反应对BxPC-3细胞的杀伤作用。
     结果:与BxCM干预组中DC相比,下调DC内miRNA-146a的表达水平能显著增加DC表面分子CD1a、CD80、CD83、CD86及HLA-DR的表达(P<0.05),但仍低于正常水平。同样,抑制DC内miRNA-146a的过度表达虽然不能完全恢复其刺激T细胞增殖及激活CTL的能力,但是与BxCM干预组中DC相比,其免疫功能显著提高(P<0.05)。
     结论:体外BxCM对DC成熟及免疫功能的抑制作用在一定程度上是通过上调DC内miRNA-146a的表达水平来实现的。
Pancreatic cancer is one of the most fatal malignant tumors and the fourthcause of cancer-related death. The incidence of pancreatic cancer in China is rising year by year. Like other solid tumors, surgery alone is not the ultimate treatment for this disease. The limited effect and toxicity of standard chemotherapy and radiotherapy make immunotherapy an attractive alternative. However, the immunotherapy is not successful due to the existence of mechanisms of tumor immunologic escape. So the study of the mechanism regarding tumor immunologic escape is of importance.
     Dendritic cells are the most potent professional antigen-presenting cells (APCs) in the immune system, and they can activate intensive T lymphocyte response against tumors. Tumor cells can evade immune surveillance and establish an immunosuppressive environment that inhibits maturation and function of DC in vitro. Previous studies have found that differentiation and antigen presentation function of DCs are suppressed by pancreatic cancer cell-conditioned medium in vitro;
     moreover, the number and function of circulating DCs are also impaired in pancreatic cancer patients. But, the detailed mechanisms involved in the effect of pancreatic cancer on DCs remain unclear.
     MicroRNA (miRNA) is a class of small (20–23nucleotides) endogenous non-coding RNA, which negatively regulates gene expression by inhibiting translation or degradation of mRNA. Furthermore, bioinformatics studies have demonstrated that one miRNA can regulate hundreds of mRNA targets, which could be implicated in almost all physiological and pathological pathways. More recently, studies have indicated that miRNA-146a, a miRNA, can play an important role in m ediating a wide spectrum of biological processes, such as immune and inflammatory response, cell proliferation, differentiation, apoptosis as well as tumorigenesis.
     Moreover, miRNA-146a has been suggested to be associated with DC differentiation and maturation.
     As BxPC-3is an extremely metastatic human pancreatic cancer cell line,BxPC-3-conditioned medium (BxCM) was used as pancreatic cancer-conditionedmedium. The aim of this study was to investigate the expression of miRNA-146a inDCs induced by pancreatic cancer cell conditioned medium and its effect on DCmaturation and function.
     Part1The generation of peripheral blood monocyte-derived DC andthe inhibition of BxCM on the phenotypic maturation of DC
     Objective: To generate the human peripheral blood monocyte-derived DC. Toinvestigate the inhibitory effect of BxCM on the differentiation and maturation of DC.
     Methods: Peripheral blood mononuclear cells were obtained from healthy donorsusing lymphoprep. The monocytes were cultured with GM-CSF and IL-4or GM-CSFplus IL-4plus BxCM in vitro. For mature DC, Human TNF-α was added. To study theinhibitory effect of BxCM on the differentiation and maturation of DC, cell surfacemarkers for DC differentiation and maturation were analyzed using flow cytometry.
     Results: Human CD14+monocytes and DC were successfully generated in vitro.The expression of CD14+in BxCM-treated group were still higher than that in normalgroup (P<0.05). On the country, the expression of mature phenotypes, such as CD1a,CD80, CD83, CD86and HLA-DR in BxCM-treated group were significantly lowerthan those in normal group (P<0.05).
     Conclusion: BxCM could inhibit the differentiation of DC from CD14+monocytesand DC maturation by suppressing the expression of typical phenotype.
     Part2The effect of BxCM on the expression of miRNA-146a andSmad4protein in DC
     Objective: To investigate whether the expression of miRNA-146a and Smad4were changed in BxCM-treated DCs. To further determine the role of miRNA-146a onthe expression of Smad4protein. To offer the basic theory for the explaining the mechanism that how DC were inhibited.
     Methods: QRT-PCR and Western-blot assay were used to investigate the changeof miRNA-146a and Smad4expression in BxCM-treated DCs. To further determine therole of miRNA-146a on Smad4expression, BxCM-treated DCs and DCs weretransfected with miRNA-146a inhibitor or negative control miRNA inhibitor (NCinhibitor) using Lip2000and the expression of Smad4was assessed using QRT-PCRand Western blot assays.
     Results: The expression levels of miRNA-146a were notably up-regulated byBxCM in DCs compared with normal ones (P<0.05). However, the protein level ofSmad4in BxCM-treated DCs was significantly lower than those in normal DCs (P<0.05). Meanwhile, decreased expression of miRNA-146a caused by miRNA-146ainhibitor recovered the reduced expression of Smad4in BxCM-treated DCs and normalDCs (P<0.05).
     Conclusion: miRNA-146a negatively regulates the Smad4gene expression both inBxCM-treated DCs and normal DCs. BxCM enhanced the expression level ofmiRNA-146a and inhibited the expression of Smad4, which may contribute to its abilityto suppress maturation and function of DCs.
     Part3The effects of blocking elevated miRNA-146a in BxCM-inducedDC on the maturation and immune function of DC
     Objective: To investigate the role of miRNA-146a on BxCM-mediated DCphenotype and immune function change. To study the detailed mechanisms involved inthe effect of pancreatic cancer on DCs and offer the necessary theory forimmunotherapy.
     Methods: miRNA-146a inhibitor or NC inhibitor were transfected in theBxCM-treated mDCs. The expressions of cell surface markers and IL-12were testedusing flow cytometry and ELISA assay. DCs were loaded with whole tumor cell antigenof BxPC-3cells. The antigen-loaded mDCs were incubated with T lymphocyte cells at aDC/T cell ratio of1:10. Interferon (INF)-γ and IL-12secretion levels were examined at24h after cell mixing using Human IFN-γ ELISPOT Kit and Human IL-12ELISAassay Kit. T lymphocyte proliferation was determined using the MTS assay afterincubation for5days. CTL response was used to investigate the effect of DCs on theactivity of tumor specific CTLs induced in vitro.
     Results: Inhibition of elevated miRNA-146a significantly increased the expressionof CD1a, CD86, CD80, CD83, and HLA-DR on BxCM-treated DCs (P<0.05),although still less than untreated DCs. There was a notably increased T cell proliferationrate and stronger CTL response in miRNA-146a inhibitor group compared with that inBxCM-treated group, although still lower than that in normal group (P<0.05).
     Conclusion: BxCM reduced phenotypic maturation and the ability of the DCs toactivate the immune response, which is partly through up-regulating miRNA-146aexpression in DCs.
引文
1. Loos M, Kleeff J, Friess H, Bu¨chler MW. Surgical treatment of pancreatic cancer. Ann NYAcad Sci.2008;1138:169–180.
    2. Buchler MW, Kleeff J, Friess H. Surgical treatment of pancreatic cancer. J Am Coll Surg.2007;205: S81-86.
    3. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin.2007;57:43–66.
    4. Cameron JL, Riall TS, Coleman J, Belcher KA. One thousand consecutivepancreaticoduodenectomies. Ann Surg.2006;244:10–15.
    5. Kleeff J, Michalski C, Friess H, Bu¨chler MW. Pancreatic cancer: from bench to five-yearsurvival. Pancreas.2006;33:111–118.
    6. Wong HH, Lemoine NR. Biological approaches to therapy of pancreatic cancer. Pancreatology.2008;8:431–61.
    7. Patrizia Rovere-Querini, Angelo A Manfredi. Tumor Destruction and In Situ Delivery ofAntigen Presenting Cells Promote Anti-Neoplastic Immune Responses: Implications for theImmunotherapy of Pancreatic Cancer. J Pancreas.2004;5:308-314.
    8. Wilczyn′ski JR, Duechler M. How do tumors actively escape from host immunosurveillance?Arch Immunol Ther Exp.2010;58:435–448.
    9. Hurwitz AA, Watkins SK. Immune suppression in the tumor microenvironment: a role fordendritic cell-mediated tolerization of T cell. Cancer Immunol Immmunother.2012;61:289-293.
    10. Ralph M, Steinman MD. Dendritic cell and vaccines. Bayl Univ Med Cent.2008;21:3-8.
    11. Theresa L, Whiteside, Christine Odoux. Dendritic cell biology and cancer therapy. CancerImmunol Immmunother.2004;53:240-248.
    12. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A,Lebecque S, Caux C. Selective recruitment of immature and mature dendritic cells by distinctchemokines expressed in different anatomic sites. J Exp Med.1998;188:373–386.
    13. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A.Rapid and coordinated switch in chemokine receptor expression during dendritic cellmaturation. Eur J Immunol.1998;28:2760–2769.
    14. Yanagihara S, Komura E, Nagafune J, Watarai H, Yamaguchi Y. EBI1/CCR7is a new memberof dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol1998;161:3096–3102.
    15. Pinzon-Charry A, Maxwell T, Lopez JA. Dendritic cell dysfunction in cancer: a mechanism forimmunosuppression. Immunol Cell Biol.2005;83:451–461.
    16. Yanagimoto H, Takai S, Satoi S, Toyokawa H, Takahashi K, Terakawa N, Kwon AH,Kamiyama Y. Impaired function of circulating dendritic cells in patients with pancreatic cancer.Clin Immunol.2005;114:52–60.
    17. Zeng Y, Sun QM, Liu NN, Dong GH, Chen J, Yang L, Wang B. Correlation betweenpre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World JGastroenterol.2010;16:3578–3583.
    18. Ambros V. The functions of animal microRNAs. Nature.2004;431:350–355.
    19. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalianmicroRNA targets. Cell.2003;115:787–798.
    20. Alma Zernecke. MicroRNAs in the regulation of immune cell functions-implications foratherosclerotic vascular disease. Thromb Haemost.2012;107:626-633.
    21. Li L, Chen XP, Li YJ. MicroRNA-146a and human disease. Scand J Immunol.2010;71:227–231.
    22. Pacifico F, Crescenzi E, Mellone S, Iannetti A, Porrino N, Liguoro D, Moscato F, Grieco M,Formisano S. Nuclear factor-{kappa}B contributes to anaplastic thyroid carcinomas throughup-regulation of miR-146a. J Clin Endocrinol Metab.2010;95:1421–1430.
    23. Hung PS, Chen FC, Kuang SH, Kao SY, Lin SC, Chang KW. miRNA-146a inducesdifferentiation of periodontal ligament cells. J Dent Res.2010;89:252–257.
    24. Holmstr m K, Pedersen AW, Claesson MH, Zocca MB, Jensen SS. Identification of amicroRNA signature in dendritic cell vaccines for cancer immunotherapy. Hum Immunol.2010;71:67–73.
    25. Lescher J, Paap F, Schultz V, Redenbach L, Scheidt U, Rosewich H, Nessler S, Fuchs E,Gartner J, Bruck W, Junker A. MicroRNA regulation in experimental autoimmuneencephalomyelitis in mice and marmosets resembles regulation in human multiple sclerosislesions. J Neuroimmunol.2012; Epub ahead of print.
    26. Bharadwaj U, Li M, Zhang R, Chen C, Yao Q. Elevated interleukin-6and G-CSF in humanpancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation.Cancer Res.2007;67:5479–5488.
    27. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature.2007;449:419–426.
    28. Tan G, Wang Z, Zhang X, Cai Z, Zhang J. Induction of CTLs by DCs pulsed with K-ras mutantpeptide on the surface of nanoparticles in the treatment of pancreatic cancer. Oncol Rep.2011;26:215–221.
    29. Rowley DA, Fitch FW. The road to the discovery of dendritic cell, a tribute to Ralph Steinman.Cell Immunol.2012;273:95-98.
    30. Lipscomb MF, Masten BJ. Dendritic cells: immune regulations in health and disease. PhysiolRev.2002;82:97.
    31. Hilkens CM, Kalinski P, de Boer M, Kapsenberg ML. Human dendritic cells require exogenousinterleukin-12-inducing factors to direct the development of naive T-helper cells toward theTh1phenotype. Blood.1997;90:1920.
    32. McRae BL, Semnani RT, Hayes MP, van Seventer GA. Type I IFNs inhibit human dendriticcell IL-12production and Th1cell development. J Immunol.1998;160:4298.
    33. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function ofdendritic cells. Curr Opin Immunol.1997;9:10–16.
    34. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Palucka K. Immunobiology ofdendritic cells. Annu Rev Immunol2000;18:767–811.
    35. Angel CE, George E, Brooks AE, Ostrovsky LL, Brown TL, Dunbar PR. Cutting edge: CD1a+antigen-presenting cells in human dermis respond rapidly to CCR7ligands. J Immunol2006;176:5730–5734.
    36. Angel CE, Lala A, Chen CJ, Edgar SG, Ostrovsky LL, Dunbar PR. CD14+antigen-presentingcells in human dermis are less mature than their CD1a+counterparts. Int Immunol2007;19:1271–1279.
    37. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured humandendritic cells is maintained by granulocyte/macrophage colony stimulating factor plusinterleukin4and downregulated by tumor necrosis factor alpha. J Exp Med.1994;179:1109.
    38. Coventry B, Heinzel S. CD1a in human cancers: a new role for an old molecule. TrendsImmunol.2004;25:242–248.
    39. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH.Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatorydendritic cells under fetal calf serum-free conditions. Eur J Immunol.1997;27:3135.
    40. Stockwin LH, McGonagle, D, Martin IG, Blair GE. Dendritic cells: immunological sentinelswith a central role in health and disease. Immunol Cell Biol.2000;78:91.
    41. Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of theimmunoglobulin superfamily. J Immunol.1995;154:3821-3835.
    42. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induceaccumulation of MHC class II complexes on dendritic cells. Nature.1997;388:782-787.
    43. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, Zimmermann VS, DavoustJ, Ricciardi-Castagnoli P. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med.1997;185:317-328.
    44. Satthaporn S, Eremin O. Dendritic cells (I): Biological functions. J R Cell Surg Edinb.2011;46:9.
    45. Merad M, Manz MG. Dendritic cell homeostasis. Blood2009;113:3418–3427.
    46. Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H,Yamaki S, Yui R, Inoue K,Michiura T, Kwon AH. The role of circulating dendritic cells in patients with unresectablepancreatic cancer. Anticancer Res.2011;31:3827–3834.
    47. Bellone G, Carbone A, Smirne C, Scirelli T, Buffolino A, Novarino A, Stacchini A, Bertetto O,Palestro G, Sorio C, Scarpa A, Emanuelli G, Rodeck U. Cooperative induction of a tolerogenicdendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol.2006;177:3448–3460.
    48. He X, Yan YL, Eberhart JK, Herpin A, Wagner TU, Schartl M, Postlethwait JH. MiR-196regulates axial patterning and pectoral appendage initiation. Dev Biol.2011;357:463–477.
    49. Jiang L, Huang Q, Chang J, Wang E, Qiu X. MicroRNA HSA-miR-125a-5p induces apoptosisby activating p53in lung cancer cells. Exp Lung Res.2011;37:387–398.
    50. Salaun B, Yamamoto T, Badran B, Tsunetsugu-Yokota Y, Roux A, Baitsch L, Rouas R,Fayyad-Kazan H, Baumgaertner P, Devevre E Ramesh A, Braun M, Speiser D, Autran B,Martiat P, Appay V, Romero P. Differentiation associated regulation of micro-RNA expressionin vivo in human CD8+T cell subsets. J Transl Med.2011;9:44.
    51. Thomas M, Lange-Grunweller K, Weirauch U, Gutsch D, Aigner A, Grunweller A, HartmannRK. The proto-oncogene Pim-1is a target of miR-33a. Oncogene.2012;31:918-928.
    52. Wu WH, Hu CP, Chen XP, Zhang WF, Li XW, Xiong XM, Li YJ. MicroRNA-130a mediatesproliferation of vascular smooth muscle cells in hypertension. Am J Hypertens.2011;24:1087–1093.
    53. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulationby microRNAs: are the answers in sight? Nat Rev Genet2008;9:102–114.
    54. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs.Nat Rev Mol Cell Biol2007;8:23–36.
    55. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol.2007;23:175–205.
    56. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development.2005;132:4645–4652.
    57. Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, TaskesenE, Stern P, de Ru AH, van Adrichem AJ. Demmers J. Jongen-Lavrencic M. Lowenberg B.Touw IP. Sharp PA. Erkeland SJ. MiR-17/20/93/106promote hematopoietic cell expansion bytargeting sequestosome1-regulated pathways in mice. Blood.2011;118:916–925.
    58. Martin Bush, Alma Zernecke. MicroRNAs in the regulation of dendritic cell functions ininflammation and atherosclerosis. J Mol Med.2012. Epub ahead of print.
    59. Williams AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA. Role ofmiRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans.2008;36:1211–1215.
    60. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X. MicroRNA-146a feedback inhibitsRIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, andIRAK2. J Immunol.2009;183:2150–2158.
    61. Nahid MA, Satoh M, Chan EK. Mechanistic role of MicroRNA-146a in endotoxin-induceddifferential cross-regulation of TLR signaling. J Immunol.2011;186:1723–1734.
    62. Ghani S, Riemke P, Schonheit J, Lenze D, Stumm J, Hoogenkamp M, Lagendijk A, Heinz S,Bonifer C, Bakkers J, Abdelilah-Seyfried S, Hummel M, Rosenbauer F. Macrophagedevelopment from HSCs requires PU.1-coordinated microRNA expression. Blood.2011;118:2275–2284.
    63. Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B, Strobl H.miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells toTLR2-dependent activation. J Immunol.2011;184:4955–4965.
    64. Jansen BJ, Sama IE, Eleveld-Trancikova D, van Hout-Kuijer MA, Jansen JH, Huynen MA,Adema GJ. MicroRNA genes preferentially expressed in dendritic cells contain sites forconserved transcription factor binding motifs in their promoters. BMC Genomics.2011;12:
    330.
    65. Tserel L, Runnel T, Kisand K, Pihlap M, Bakhoff L, Kolde R, Peterson H, Vilo J, Peterson P,Rebane A. microRNA expression profiles of human blood monocyte derived dendritic cells andmacrophages reveal miR-511as putative positive regulator of TLR4. J Biol Chem.2011;286:26487–26495.
    66. Chen T, Li Z, Jing T, Zhu W, Ge J, Zheng X, Pan X, Yan H, Zhu J. MicroRNA-146a regulatesthe maturation process and proinflammatory cytokine secretion by targeting CD40L in oxLDLstimulated dendritic cells. FEBS Lett.2011;585:567–573.
    67. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, Kamimura D, Ueda N,Iwakura Y, Ishihara K. Murakami M, Hirano T. IL-6regulates in vivo dendritic celldifferentiation through STAT3activation. J Immunol.2004;173:3844–3854.
    68. McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, Link DC.STAT-3activation is required for normal G-CSF-dependent proliferation and granulocyticdifferentiation. Immunity.2001;14:193–204.
    69. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, GabrilovichD. Hyperactivation of STAT3is involved in abnormal differentiation of dendritic cells incancer. J Immunol.2004;172:464–474.
    70. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets.PLoS Biol.2004;2: e363.
    71. Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of DrosophilamicroRNA genes. Genome Biol.2003;4: R42.
    72. Bonnet E, Wuyts J, Rouze P, Peer VY. Detection of91potential in plant conserved plantmicroRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. ProcNatl Acad Sci.2004;101:11511–11516.
    73. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plantmicroRNA targets. Cell.2002;110:513–520.
    74. Song CN, Jia QD, Fang JG, Li F, Wang C, Zhang Z. Computational identification of citrusmicroRNAs and target analysis in citrus expressed sequence tags. Plant Biology.2009;12:927–934.
    75. Kuipers H, Schnorfeil FM, Brocker T. Differentially expressed microRNAs regulateplasmacytoid vs. conventional dendritic cell development. Mol Immunol.2010;48:333–340.
    76. Sun Y, Varambally S, Maher CA, Cao Q, Chockley P, Toubai T, Malter C, Nieves E, Tawara I,Wang Y, Ward PA, Chinnaiyan A, Reddy P. Targeting of microRNA-142-3p in dendritic cellsregulates endotoxin-induced mortality. Blood.2011;117:6172–6183.
    77. Zhong H, Wang HR, Yang S, Zhong JH, Wang T, Wang C, Chen FY. Targeting Smad4linksmicroRNA-146a to the TGF-beta pathway during retinoid acid induction in acutepromyelocytic leukemia cell line. Int J Hematol.2010;92:129–35.
    78. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signaltransduction. J Biochem.2010;147:35–51.
    79. Rodeek U, Nishiyama T, Mauviel A. Independent regulation of growth andSMAD-mediated transcription by transforming growth factor beta in humanmelanoma cell. Cancer Res.1999;59:547-550.
    80. Savage C, Das P, Finell AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditiselegans genes sma-2, sma-3, and sma-4define a conserved family of transforming growthfactor beta pathway components. Proc Natl Acad.1996;93:790-794.
    81. Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulationof signals, and signaling cross-talk. Cytokine Growth Factor Rev.2005;16:251–263.
    82. Detmer K, Walker AN. Bone morphogenetic proteins act synergistically with haematopoieticcytokines in the differentiation of haematopoietic progenitors. Cytokine.2002;17:36–42.
    83. Sivertsen EA, Huse K, Hystad ME, Kersten C, Smeland EB, Myklebust JH. Inhibitory effectsand target genes of bone morphogenetic protein6in Jurkat TAg cells. Eur J Immunol2007;37:2937–2948.
    84. Fuchs O, Simakova O, Klener P, Cmejlova J, Zivny J, Zavadil J. Stopka T. Inhibition of Smad5in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. BloodCells Mol Dis.2002;28:221–233.
    85. Martínez VG, Hernández-López C, Valencia J, Hidalgo L, Entrena A, Zapata AG,Vicente A, Sacedón R, Varas A. The canonical BMP signaling pathway is involved inhuman monocyte-derived dendritic cell maturation. Immunol Cell Biol.2011;89:610-618.
    86. Robson NC, Phillips DJ, McAlpine T, Shin A, Svobodova S, Toy T et al. Activin-A: a noveldendritic cell-derived cytokine that potently attenuates CD40ligand-specific cytokine andchemokine production. Blood.2008;111:2733–2743.
    87. Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD. Human dendritic cells produceTGF-beta1under the influence of lung carcinoma cells and prime the differentiation ofCD4+CD25+Foxp3+regulatory T cells. J Immunol.2009;182:2795–2807.
    88. Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N, Amigorena S, Hermine O,Durandy A. TGF-beta1prevents the noncognate maturation of human dendritic Langerhanscells. J Immunol.1999;162:4567–4575.
    89. Mou HB, Lin MF, Cen H, Yu J, Meng XJ. TGF-beta1treated murine dendritic cells arematuration resistant and down-regulate Toll-like receptor4expression. J Zhejiang Univ Sci.2004;5:1239–1244.
    1. Rinsho Ketsueki. Control of immune responses by regulatory dendritic cells.2011;52:514–520.
    2. Hurwitz AA, Watkins SK. Immune suppression in the tumor microenvironment: a role fordendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother.2012;61:289–293.
    3. Manicassamy S, Pulendran B. Dendritic cell control of tolerogenic responses. Immunol Rev.2011;241:206–227.
    4. Fares J, Koller R, Humeniuk R, Wolff L, Bies J. The tumor suppressor p151nk4b regulatesdifferentiation and maturation of conventional dendritic cells. Blood.2012; Epub ahead ofprint.
    5. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: thetolerogenic function of immature dendritic cells. Immunol Cell Biol.2002;80:477–483.
    6. Reizis B, Colonna M, Trinchieri G, Barrat F, Gilliet M. Plasmacytoid dendritic cells: one-trickponies or workhorses of the immune system? Nat Rev Immunol.2011;11:558–565.
    7. Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F. Plasmacytoid dendritic cells andcancer. J Leukoc Biol.2011;90:681–690.
    8. Bjorck P, Leong HX, Engleman EG. Plasmacytoid dendritic cell dichotomy: identification ofIFN-alpha producing cells as a phenotypically and functionally distinct subset. J Immunol.2011;186:1477–1485.
    9. Lin A, Schildknecht A, Nguyen LT, Ohashi PS. Dendritic cells integrate signals from the tumormicroenvironment to modulate immunity and tumor growth. Immunol Lett.2010;127:77–84.
    10. Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z, Egeblad M,Krummel MF. Marginating dendritic cells of the tumor microenvironment cross-present tumorantigens and stably engage tumor-specific T cells. Cancer Cell.2012;21:402–417.
    11. Xu H, Cao X. Dendritic cells avaccines in cancer immunotherapy: from biology to translationalmedicine. Front Med.2011;5:323–332.
    12. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, SlingluffCL Jr. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells areassociated with clinical outcome in metastatic melanoma. Cancer Res.2012;72:1070-1080.
    13. Park MH, Lee JS, Yoon JH. High expression of CX3CL1by tumor cells correlates with a goodprognosis and increased tumor-infiltrating CD8+T cells, natural killer cells, and dendritic cellsin breast carcinoma. J Surg Oncol.2012; Epub ahead of print.
    14. Picaud S, Bardot B, De Maeyer E, Seif I. Enhanced tumor development in mice lacking afunctional type I interferon receptor. J Interferon Cytokine Res.2002;22:457–462.
    15. Bekeredjian-Ding I, Sch fer M, Hartmann E, Pries R, Parcina M, Schneider P, Giese T, EndresS, Wollenberg B, Hartmann G. Tumour-derived prostaglandin E and transforming growthfactor-beta synergize to inhibit plasmacytoid dendritic cell-derived interferon-alpha.Immunology.2009;128:439-450.
    16. Cao W, Bover L, Cho M, Wen X, Hanabuchi S, Bao M, Rosen DB, Wang YH, Shaw JL, Du Q,Li C, Arai N, Yao Z, Lanier LL, Liu YJ. Regulation of TLR7/9responses in plasmacytoiddendritic cells by BST2and ILT7receptor interaction. J Exp Med.2009;206:1603–1614.
    17. Cao W, Bover L, Bao M. Signaling and ligand interaction of ILT7: receptor-mediatedregulatory mechanism for plasmacytoid dendritic cells. Immunol Rev.2010;234:163–176.
    18. Tsukamoto N, Okada S, Onami Y, Sasaki Y, Umezawa K, Kawakami Y. Impairment ofplasmacytoid dendritic cells for IFN production by the ligand for immunoglobulin-liketranscript7expressed on human cancer cells. Clin Cancer Res.2009;15:5733-5743.
    19. Iwata-Kajihara T, Sumimoto H, Kawamura N, Ueda R, Takahashi T, Mizuguchi H, MiyagishiM, Takeda K, Kawakami Y. Enhanced cancer immunotherapy using STAT3-depleted dendriticcells with high Th1-inducing ability and resisitance to cancer cell-derived inhibitory factors. JImmunol.2011;187:27-36.
    20. Dominguez-Soto A, Sierra-Filardi E, Puig-Kroger A, Perez-Maceda B, Gomez-Aguado F,Corcuera MT, Sanchez-Mateos P, Corbi AL. Dendritic cell-specific ICAM-3-grabbingnoningtegrin expression on M2-polarized and tumor-associated macrophages ismacrophage-CSF dependent and enhanced by tumor-derived IL-6and IL-10. J Immunol.2011,186:2192-2200.
    21. Alshamsan A, Haddadi A, Hamdy S, Samuel J, El-Kadi AO, Uluda H, Lavasanifar A. STAT3Silencing in Dendritic Cells by siRNA Polyplexes Encapsulated in PLGA Nanoparticles for theModulation of Anticancer Immune Response. Mol Pharm.2010; Epub ahead of print.
    22. Sheng KC, Wright MD, Apostolopoulos V. Inflammatory mediators hold the key to dendriticcell suppression and tumor progression. Curr Med Chem.2011;18:5507-5518.
    23. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, Shyr Y, Boothby M,Joyce S, Carbone DP, Breyer RM. Cancer-associated immunodeficiency and dendritic cellabnormalities mediated by the prostaglandin EP2receptor. J Clin Invest.2003;111:727–735.
    24. Wobser M, Voigt H, Houben R, Eggert AO, Freiwald M, Kaemmerer U, Kaempgen E,Schrama D, Becker JC. Dendritic cell based antitumor vaccination: impact of functionalindoleamine2,3-dioxygenase expression. Cancer Immunol Immunother.2007;56:1017-1024.
    25. Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, Greten TF, KorangyF. S100A9a new marker for monocytic human myeloid derived suppressor cells. Immunology.2012; Epub ahead of print.
    26. van Cruijsen H, Ruiz MG, van der Valk P, de Gruijl TD, Giaccone G. Tissue micro arrayanalysis of ganglioside N-glycolyl GM3expression and signal transducer and activator oftranscription (STAT)-3activation in relation to dendritic cell infiltration and microvesseldensity in non-small cell lung cancer. BMC Cancer.2009;9:180.
    27. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, Ponzoni M,Valentinis B, Bregni M, Prinetti A, Steffensen KR, Sonnino S, Gustafsson JA, Doglioni C,Bordignon C, Traversari C. Tumor-mediated liver X receptor-alpha activation inhibits CCchemokine receptor-7expression on dendritic cells and dampens antitumor responses. Nat Med.2010;16:98–105.
    28. Tyurin VA, Cao W, Tyurina YY, Gabrilovich DI, Kagan VE. Mass-spectrometiccharacterization of peroxidized and hydrolyzed lipids in plasma and dendritic cells oftumor-bearing animals. Biochem Biophys Res Commun.2011;413:149-153.
    29. GeurtsvanKessel CH, Willart MA, Bergen IM, van Rijt LS, Muskens F, Elewaut D, OsterhausAD, Hendriks R, Rimmelzwaaan GF, Lambrecht BN. Dendritic cells are crucial formaintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J ExpMed.2009;206:2339–2349.
    30. Sautès-Fridman C, Dieu-Nosjean MC, Damotte D, Fisson S, Fridman WH. The immunemicroenvironments of lung and intraocular tumors. Bull Cancer.2011;98:58-61.
    31. Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX.Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptordependenttertiary lymphoid structure. Immunity.2006;25:499–509.
    32. Thompson ED, Enriquez HL, Fu YX, Engelhard VH. Tumor masses support naive T cellinfiltration, activation, and differentiation into effectors. J Exp Med.2010;207:1791–1804.
    33. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, PardollDM, Topalian SL, Chen L. Colocalization of inflammatory response with b7-h1expression inhuman melanocytic lesions supports an adaptive resistance mechanism of immune escape. SciTransl Med.2012;28:127ra37.
    34. Guimont-Desrochers F, Boucher G, Dong Z, Dupuis M, Veillette A, Lesage S. Redefininginterferon-producing killer dendritic cells as a novel intermediate in NK cell differentiation.Blood.2012; Epub ahead of print.
    35. Krebs P, Barnes MJ, Lampe K, Whitley K, Bahjat KS, Beutler B,Janssen E, Hoebe K.NK-cell-mediated killing of target cells triggers robust antigen-specific T-cellmediated andhumoral responses. Blood.2009;113:6593–6602.
    36. Cheng M, Zhang J, Jiang W, Chen Y, Tian Z. Natural killer cell lines in tumor immunotherapy.Front Med.2012;6:56-66.
    37. Tsuchida T, Yamane H, Ochi N, Tabayashi T, Hiraki A, Nogami N, Takigawa N, Kiura K,Tanimoto M. Cytotoxicity of activated natural killer cells and expression of hesion molecules insmall-cell lung cancer. Anticancer Res.2012;32:887-892.
    38. Okita R, Mougiakakos D, Ando T, Mao Y, Sarhan D, Wennerberg E, Seliger B, Lundqvist A,Mimura K, Kiessling R. HER2/HER3signaling regulates NK cell-mediated cytotoxicity viaMHC class I chain-related molecule A and B expression in human breast cancer cell lines. JImmunol.2012;188:2136-2145.
    39. Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, Balsamo M, Conte R, BenelliR, Minghelli S, Solari N, Gualco M, Queirolo P, Moretta L, Mingari MC. Melanoma cellsinhibit natural killer cell function by modulating the expression of activating receptors andcytolytic activity. Cancer Res.2012;72:1407-1415.
    40. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T,Chabannon C, Moreetta A, West R, Xu W, Vivier E, Levin SD. The B7family member B7-H6is a tumor cell ligand for the activating natural killer cell receptor NKp30in humans. J ExpMed.2009;206:1495–1503.
    41. Jacobs B, Ullrich E. The Interaction of NK Cells and Dendritic Cells in the Tumor Environment:How to Enforce NK Cell&DC Action under Immunosuppressive Conditions? Curr Med Chem.2012;19:1771-1779.
    42. Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D, Ragni N, Moretta L, MingariMC. Crosstalk between decidual NK and CD14+myelomonocytic cells results in induction ofTregs and immunosuppression. Proc Natl Acad Sci.2010;107:11918-11923.
    43. Yang L, Du C, Chen T, Li S, Nie W, Zhu W, Fan F, Zhu J, Yan H. Distinct MAPK pathwaysare involved in IL-23production in dendritic cells cocultured with NK cells in the absence orpresence of angiotensin II. Mol Immunol.2012;51:51-56.
    44. Pahl JH, Verhoeven DH, Kwappenberg KM, Vellinga J, Lankester AC, van Tol MJ, SchilhamMW. Adenovirus type35, but not type5, stimulates NK cell activation via plasmacytoiddendritic cells and TLR9signaling. Mol Immunol.2012;51:91-100.
    45. Park CS, Lee PH, Yamada T, Burns A, Shen Y, Puppi M, Lacorazza HD. Kruppel-like factor4(KLF4) promotes the survival of natural killer cells and maintains the number of conventionaldendritic cells in the spleen. J Leukoc Biol.2012; Epub ahead of print.
    46. Okazaki A, Hiraga N, Imamura M, Nelson Hayes C, Tsuge M, Takahashi S, Aikata H, Abe H,Miki D, Ochi H, Tateno C, Yoshizato K, Ohdan H, Chayama K. Severe necroinflammatoryreaction caused by natural killer by Fas/FasL interaction and dendritic cells in humanhepatocyte chimeric mouse. Hepatology.2012; Epub ahead of print.
    47. Rao P, Pham HT, Kulkarni A, Yang Y, Liu X, Knipe DM, Cresswell P, Yuan W. Herpessimplex virus1glycoprotein B and US3collaborate to inhibit CD1d antigen presentation andNKT cell function. J Virol.2011;85:8093-8104.
    48. Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, Rossjohn J,Perlmutter P, Cao J, Godfrey DI, Savage PB, Knolle PA, Kolanus W, Forster I, Kurts C.Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKTcell-licensed DCs. Nat Immunol.2010;11:313–320.
    49. Castillo EF, Stonier SW, Frasca L, Schluns KS. Dendritic cells support the in vivo developmentand maintenance of NK cells via IL-15transpresentation. J Immunol.2009;183:4948-4956.
    50. Kim JH, Chung DH. CD1d-restricted IFN-γ-secreting NKT cells promote immunecomplex-induced acute lung injury by regulating macrophage-inflammatory protein-1αproduction and activation of macrophages and dendritic cells. J Immunol.2011;186:1432-1441.
    51. Pletneva M, Fan H, Park JJ, Radojcic V, Jie C, Yu Y, Chan C, Redwood A, Pardoll D,Housseau F. IFN-producing killer dendritic cells are antigen-presenting cells endowed withT-cell cross-priming capacity. Cancer Res.2009;69:6607-6614.
    52. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, KoebelCM, Arthur C, White JM, Schreiber RD. A critical function for type I interferons in cancerimmunoediting. Nat Immunol.2005;6:722-729.
    53. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy:equilibrium with cancer. J Leukoc Biol.2008;84:988-993.
    54. Satthaporn S, Eremin O. Dendritic cells (I): Biological functions. J R Cell Surg Edinb.2011;46:9.
    55. Na N, Chen K, Zhang J, He S, Fu Q, Zhu B, Cao K, Xu L. Tumor antigen-pulsed CD8α (+)dendritic cells induce T cell-mediated graft-versus-tumor effect in vitro. J Huazhong Univ SciTechnolog Med Sci.2011;31:728-734.
    56. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B,Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM. Batf3deficiency reveals a critical role for CD8alpha+dendritic cells in cytotoxic T cell immunity.Science.2008;322:1097–1100.
    57. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, Rosewell I, Reise Sousa C. Identification of a dendritic cell receptor that couples sensing of necrosis toimmunity. Nature.2009;458:899–903.
    58. Gao X, Bai H, Cheng J, Fan Y, Wang S, Jiao L, Xiu N, Yang X. CD8α+and CD8α-DC subsetsfrom BCG-infected mice inhibit allergic Th2-cell responses by enhancing Th1-cell andTreg-cell activity respectively. Eur J Immunol.2012;42:165-175.
    59. Enomoto K, Sho M, Wakatsuki K, Takayama T, Matsumoto S, Nakamura S, Akahori T,Tanaka T, Migita K, Ito M, Nakajima Y. Prognostic importance of tumour-infiltrating memoryT cells in oesophageal squamous cell carcinoma. Clin Exp Immunol.2012;168:186-191.
    60. Kohlhapp FJ, Zloza A, O'Sullivan JA, Moore TV, Lacek AT, Jagoda MC, McCracken J, ColeDJ, Guevara-Pati o JA. CD8+T Cells Sabotage Their Own Memory Potential through IFN-γ-Dependent Modification of the IL-12/IL-15Receptor α Axis on endritic Cells. J Immunol.2012;188:3639-3647.
    61. Tietze JK, Wilkins DE, Sckisel GD, Bouchlaka MN, Alderson KL, Weiss JM, Ames E, BruhnKW, Craft N, Wiltrout RH, Longo DL, Lanier LL, Blazar BR, Redelman D, Murphy WJ.Delineation of antigen-specific and antigen-nonspecific CD8+memory T-cell responses aftercytokine-based cancer immunotherapy. Bood.2012;119:3073-3083.
    62. Coquerelle C, Moser M. DC subsets in positive and negative regulation of immunity. ImmunolRev.2010;234:317-334.
    63. Belz GT, Bedoui S, Kupresanin F, Carbone FR, Heath WR. Minimal activation of memoryCD8+T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+T cells. NatImmunol.2007;8:1060–1066.
    64. Nagaraj S, Ziske C, Strehl J, Messmer D, Sauerbruch T, Schmidt-Wolf IG. Dendritic cellspulsed with alpha-galactosylceramide induce anti-tumor immunity against pancreatic cancer invivo. Int Immunol.2006;18:1279-1283.
    65. Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ, Laheru DA,Goggins M, Hruban RH, Jaffee EM. Mesothelin-specific CD8(+) T cell responses provideevidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancerpatients. J Exp Med.2004;200:297-306.
    66. Bontkes HJ, Kramer D, Ruizendaal JJ, Meijer CJ, Hooijberg E. Tumor associated antigen andinterleukin-12mRNA transfected dendritic cells enhance effector function of natural killer cellsand antigen specific T-cells. Clin Immunol.2008;127:375-384.
    67. Nagoshi M, Sadanaga N, Joo HG, Goedegebuure PS, Eberlein TJ. Tumor-specific cytokinerelease by donor T cells induces an effective host anti-tumor response through recruitment ofhost naive antigen presenting cells. Int J Cancer.1999;80:308-314.
    68. Kanamori M, Tasumi Y, Iyoda T, Ushida M, Inaba K. Sulfatide inhibits α-galactosylceramidepresentation by dendritic cells. Int Immunol.2012;24:129-136.
    69. Ali OA, Emerich D, Dranoff G, Mooney DJ. In situ regulation of DC subsets and T cellsmediates tumor regression in mice. Sci Transl Med.2009;1: ra19.
    70. Chauvin C, Philippeau JM, Hémont C, Hubert FX, Wittrant Y, Lamoureux F, Trinité B,Heymann D, Rédini F, Josien R. Killer dendritic cells link innate and adaptive immunityagainst established osteosarcoma in rats. Cancer Res.2008;68:9433-9440.
    71. Voisine C, Hubert FX, Trinité B, Heslan M, Josien R. Two phenotypically distinct subsets ofspleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity.J Immunol.2002;169:2284-2291.
    72. Zhang C, Zhang J, Niu J, Zhou Z, Zhang J, Tian Z. Interleukin-12improves cytotoxicity ofnatural killer cells via upregulated expression of NKG2D. Hum Immunol.2008;69:490-500.
    73. Roux S, Apetoh L, Chalmin F, Ladoire S, Mignot G, Puig PE, Lauvau G, Zitvogel L, Martin F,Chauffert B, Yagita H, Solary E, Ghiringhelli F. CD4+CD25+Tregs control theTRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. JClin Invest.2008;118:3751–3761.
    74. Malhotra P, Farber BF. Isoniazid resistance among Bacillus Calmette Guerin strains:implications on bladder cancer immunotherapy related infections. Can J Urol.2011;18:5671-5675.
    75. de la Cruz-Merino L, Henao Carrasco F, Vicente Baz D, Nogales Fernández E, Reina Zoilo JJ,Codes Manuel de Villena M, Pulido EG. Immune microenvironment in colorectal cancer: a newhallmark to change old paradigms. Clin Dev Immunol.2011;2011:174149.
    76. Xu L, Xu W, Wen Z, Xiong S. In situ prior proliferation of CD4+CCR6+regulatory T cellsfacilitated by TGF-β secreting DCs is crucial for their enrichment and suppression in tumorimmunity. PLoS One.2011;6: e20282.
    77. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K,Zavala F, Pamer EG, Littman DR, Lang RA. In vivo depletion of CD11c+dendritic cellsabrogates priming of CD8+T cells by exogenous cell-associated antigens. Immunity.2002;17:211–220.
    78. Leao IC, Ganesan P, Armstrong TD, Jaffee EM. Effective depletion of regulatory T cells allowsthe recruitment of mesothelin-specific CD8T cells to the antitumor immune response against amesothelin-expressing mouse pancreatic adenocarcinoma. Clin Transl Sci.2008;1:228-239.
    79. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, FirczukM, Mathieu C, Roebroek AJ, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P. Anovel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer celldeath. EMBO J.2012;31:1062-1079.
    80. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Mignot G, Ullrich E, Kroemer G, Zitvogel L.Cancer is not just a disease of a tissue: it is a host disease. How to reactivate host defenseagainst tumors using conventional therapies of cancer? Ann Endocrinol.2008;69:151-152.
    81. Apetoh L, Tesniere A, Ghiringhelli F, Kroemer G, Zitvogel L. Molecular interactions betweendying tumor cells and the innate immune system determine the efficacy of conventionalanticancer therapies. Cancer Res.2008;68:4026-4030.
    82. Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L.Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity.Cancer Res.2010;70:855-858.
    83. Wiley JS, Sluyter R, GU BJ, Stokes L, Fuller SJ. The human P2X7receptor and its role ininnate immunity. Tissue Antigens.2011;78:321-332.
    84. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E,Gabrilovich DI. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killingduring cancer immunotherapy in mice. J Clin Invest.2009;120:1111–1124.
    85. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C, Ghiringhelli F, Terme M,Carpentier AF, Darrasse-Jèze G, Lemonnier F, Zitvogel L. Chemoimmunotherapy of tumors:cyclophosphamide synergizes with exosome based vaccines. J Immunol.2006;176:2722–2729.
    86. Ishizaki H, Manuel ER, Song GY, Srivastava T, Sun S, Diamond DJ, Ellenhorn JD. Modifiedvaccinia Ankara expressing survivin combined with gemcitabine generates specific antitumoreffects in a murine pancreatic carcinoma model. Cancer Immunol Immunother.2011;60:99-109.
    87. Apetoh L, Végran F, Ladoire S, Ghiringhelli F. Restoration of antitumor immunity throughselective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med.2011;11:365-372.
    88. Kim J, Kim DW, Chang W, Choe J, Kim J, Park CS, Song K, Lee I. Wnt5a is secreted byfollicular dendritic cells to protect germinal center B cells via Wnt/Ca2+/NFAT/NF-κB-B celllymphoma6signaling. J Immunol.2012;188:182-189.
    89. Ge Y, Xi H, Zhang XG. Vaccination with immature dendritic cells combined with CD40mAbinduces protective immunity against B lymphoma in hu-SCID mice. Biomed Pharmacother.2010;64:487-492.
    90. Pincha M, Sai Sundarasetty B, Salguero G, Gutzmer R, Garritsen H, Macke L, Schneider A,Lenz D, Figueiredo C, Blasczyk R, Ruggiero E, Schmidt M, von Kalle C, Puff C, Modlich U,von der Leyen H, Wicke DC, Ganser A, Stripecke R. Identity, potency, in vivo viability, andscaling up production of iviral vector-induced dendritic cells for melanoma immunotherapy.Hum Gene Ther Methods.2012;23:38-55.
    91. Ellebaek E, Engell-Noerregaard L, Iversen TZ, Froesig TM, Munir S, Hadrup SR, AndersenMH, Svane IM. Metastatic melanoma patients treated with dendritic cell vaccination,Interleukin-2and metronomic cyclophosphamide: results from a phase II trial. Cancer ImmunolImmuother.2012; Epub ahead of print.
    92. Gulubova MV, Ananiev JR, Vlaykova TI, Yovchev Y, Tsoneva V, Manolova IM. Role ofdendritic cells in progression and clinical outcome of colon cancer. Int J Colorectal Dis.2012;27:159-169.
    93. Winter H, van den Engel NK, Rusan M, Schupp N, Poehlein CH, Hu HM, Hatz RA, Urba WJ,Jauch KW, Fox BA, Rüttinger D. Active-specific immunotherapy for non-small cell lungcancer. J Thorac Dis.2011;3:105-114.
    94. Sinnathamby G, Lauer P, Zerfass J, Hanson B, Karabudak A, Krakover J, Secord AA, Clay TM,Morse MA, Dubensky TW Jr, Brockstedt DG, Philip R, Giedlin M. Priming and activation ofhuman ovarian and breast cancer-specific CD8+T cells by polyvalent Listeriamonocytogenes-based vaccines. J Immunother.2009;32:856-869.
    95. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ,Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A,Figdor CG. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoringof cellular therapy. Nat Biotechnol.2005;23:1407–1413.
    96. Turitto G, Di Bisceglie M, Moraca L, Sasso N, Sepede C, Suriano A, Romito S. Abirateroneacetate: a novel therapeutic option in hormonorefractory prostate cancer. Recenti Prog Med.2012;103:74-78.
    97. Sartorius R, Bettua C, D'Apice L, Caivano A, Trovato M, Russo D, Zanoni I, Granucci F,Mascolo D, Barba P, Del Pozzo G, De Berardinis P. Vaccination with filamentousbacteriophages targeting DEC-205induces DC maturation and potent anti-tumor T-cellresponses in the absence of adjuvants. Eur J Immunol.2011;41:2573-2584.
    98. Tel J, Benitez-Ribas D, Hoosemans S, Cambi A, Adema GJ, Figdor CG, Tacken PJ, de Vries IJ.DEC-205mediates antigen uptake and presentation by both resting and activated humanplasmacytoid dendritic cells. Eur J Immunol.2011.41:1014-1023.
    99. Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM. The human cancerantigen mesothelin is more efficiently presented to the mouse immune system when targeted tothe DEC-205/CD205receptor on dendritic cells. Ann N Y Acad Sci.2009;1174:6-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700