浅水方程高分辨率有限差分方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路交通污染主要是汽车尾气对大气污染和个别交通事故对江河等水环境污染。将浅水方程和污染物迁移方程耦合,可以模拟由交通污染事故所导致的有毒有害物质在重要水域的迁移过程,对下游水质进行预测,为交通污染事故应急处置提供指导。浅水方程在水利、海岸、海洋和环境工程等领域都具有重要的应用。处理间断是数值求解浅水方程的关键之一,也是困难所在。高分辨率方法就是为更好地处理间断问题而设计的。本文重点研究浅水方程的高分辨率有限差分方法,并在交通污染事故应急处置中进行了分析应用。论文的主要工作包括以下几个方面:
     1.提出了一种具有四阶精度的松弛格式。对一维问题,该格式以四阶中心WENO重构为基础;对二维问题,用逐维计算的方法将四阶中心WENO重构进行了推广。时间的离散采用具有较大稳定区域的Runge-Kutta类解算器Rock4。该格式保持了松弛格式简单的优点,即不用求解Riemann问题和计算通量函数的雅可比矩阵。运用本文格式对一维、二维浅水方程,以及一维气动力学Euler方程组和二维Burgers方程进行了大量的数值试验,并与三阶松弛格式的计算结果进行了比较,结果表明本文所提出的格式具有更低的数值耗散和更高的分辨率。
     2.以三阶WENO重构和三阶显隐式Runge-Kutta方法为基础,提出了一种新的三阶松弛格式,其形式更简单、计算量更小。通过数值算例对新的三阶松弛格式和原三阶格式进行了比较研究。
     3.将二维全离散中心格式推广于浅水方程,给出了一种计算二维浅水方程的高分辨率数值方法。应用该方法对圆柱溃坝等问题进行了数值模拟,计算结果与用其它方法所得结果吻合,表明了方法的有效性和稳定性。通过数值试验对不同限制器在数值性能上的差异进行了比较,据此确定了较优的限制器,为二维浅水方程的计算提供了良好的数值手段。
     4.将三阶和五阶WENO重构方法和半离散中心迎风通量相结合,给出了计算一维浅水方程的两种高分辨率、高精度数值方法。对底坡项的离散保证了计算格式的和谐性,离散摩阻项的方法简单有效。用一维浅水方程的典型算例验证了方法的有效性和和谐性。
     5.以三阶紧凑中心WENO重构方法为基础,提出了一种求解双曲型守恒律组的三阶半离散中心迎风格式,并将该格式推广于浅水方程,建立了计算二维浅水方程的和谐方法。数值算例的结果表明该方法健全、通用且具有很高的
The impact of highway traffic for environment is mainly induced by vehicle emissions on atmospheric and pollution traffic accidents for water quality of a river. A model for coupling the shallow water equations with transport equation can be used to simulate the transport of toxic and hazardous materials in water regions and predict water quality caused by traffic pollution accidents on freeway. It can provide the guidance for dealing with traffic pollution accidents. The shallow water equations have important applications in hydraulic, coastal ocean and environmental engineering. A key and difficult problem of numerical methods for such equations is that they can resolve discontinuities. The high-resolution numerical methods are designed for problems containing discontinuities. This thesis concerns with the high-resolution finite-difference methods for the shallow water equations. The application of the present method to dealing with traffic pollution accidents is discussed. The most distinctive parts can be described as following:
    1. A fourth-order relaxation scheme for the shallow water equations is proposed. The scheme is based on central weighted essentially non-oscillatory(WENO) reconstruction for one space dimension. In the two-dimensional cases, this reconstruction is generalized by dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver R0CK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The presented scheme is tested on a variety of numerical experiments with one-dimensional Euler equations of gas dynamics, the two-dimensional Burgers equation and the shallow water equation in both one and two dimensions. To illustrate the improvement of our method, the results are compared with numerical solutions computed by the third-order relaxation scheme. The numerical experiments demonstrate that the present method has the higher shock resolution and smaller numerical dissipation than the third-order relaxation scheme.
    2. A new third-order relaxation scheme is proposed. The scheme combines with third-order WENO reconstruction for spatial discretization and third-order implicit-explicit method for time discretization. The new scheme is much simpler and less computationally expensive than the original one. The new scheme is test on
引文
[1] Fennema R J, Chaudhry M H. Implicit methods for two-dimensional unsteady free-surface flows[J]. J. Hydraulic. Res., 1989, 27: 321-332.
    [2] Fennema R J, Chaudhry M H. Explicit methods for 2-D transient free-surface flows[J]. J. Hydraulic. Eng., 1990, 116(8): 1013-1034.
    [3] Glaister P. Flux difference splitting for open channel flows[J]. Inter. J. Numer. Meth. in Fluids, 1993, 16: 629-654.
    [4] Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equation[J]. Int. J. Numer. Meth. Fluids, 1993, 16: 489-505.
    [5] Fraccarollo L, Toro E F. Experimental and numerical assessment of the shallow water model for two dimensional dam break type problem[J]. J. Hydr. Res., 1995, 33(6): 843-863.
    [6] Toro E F. Shock capturing methods for free surface shallow flows[M]. Chichester: John Wiley & Sons, 2001.
    [7] 谭维炎.计算浅水动力学—有限体积法的应用[M].北京:清华大学出版社,1998.
    [8] Zhao D H, Shen H W, etc. Finite-volume two-dimensional unsteady flow model for river basins[J]. J. Hydraulic. Eng., 1994, 120: 864-883.
    [9] Harten A. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phys., 1983, 49: 357-393.
    [10] 刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [11] Garcia-Navarro P, Alcrudo F, Saviron J M. 1-D open-channel flow simulation using TVD-McCormack scheme[J]. J. Hydr. Engrg., 1992, 118: 1359-1372.
    [12] Yang J Y, Hsu C A, Chang S H. Computations of free surface flows, part 1: ID dam-break flow[J]. J. Hydr. Res., 1993, 31: 19-34.
    [13] Yang J Y, Hsu C A. Computations of free surface flows, part 2: 2D unsteady bore diffraction[J]. J. Hydr. Res., 1993, 31: 403-412.
    [14] Delis A I, Skeels C P. TVD schemes for open channel flow[J]. Inter. J. Numer. Meth. in Fluids, 1998, 26: 791-809.
    [15] Wang J S, Ni H G, He Y S. Finite-difference TVD scheme for computation of dam-break problems[J]. J. Hydr. Engrg., 2000, 126(4): 253-262.
    [16] Tseng M H. Improved treatment of source terms in TVD scheme for shallow water equations[J]. Advances in Water Resources, 2000, 23: 637-643.
    [17] 陶建华,张卫东.总变差不增格式计算一维、二维溃坝波[J].天津大学学报,1993,26(1):7-15.
    [18] 王嘉松,倪汉根,金生,等.用TVD显隐格式模拟溃坝波的演进与反射[J].水利学报,1998,5:7-11.
    [19] 王嘉松,倪汉根,金生.二维溃坝坡传播和绕流特性的高精度数值模拟[J].水利学报,1998,10:1-6.
    [20] 王如云,张东生,张长宽,等.曲线坐标网格下二维涌波数值模拟的TVD型格式[J].水利学报,2002,10:72-77.
    [21] 魏文礼,沈永明,孙广才,等.二维溃坝洪水波演进的数值模拟[J].水利学报,2003.9:43-47.
    [22] Goodman J B, Leveque R J. On the accuracy of stable schemes for 2D scalar conservation laws[J]. Math. Comput., 1985, 45: 15-21.
    [23] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory scheme. Ⅲ[J]. J. Comput. Phys., 1987, 71: 231-303.
    [24] Harten A, Osher S. Uniformly high order accurate essentially non-oscillatory schemes Ⅰ[J]. SIAM J. Sci. Comput., 1987, 24: 279-309.
    [25] Harten A. ENO schemes with subcell resolution[J]. J. Comput. Phys., 1989, 83: 148-184.
    [26] Harten A, Engquist B, Osher S, et al. Some results on uniformly high order accurate essentially non-oscillatory schemes[J]. Appl. Numer. Math., 1986, 2: 347-377.
    [27] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J. Comput. Phys., 1988, 77: 439-478.
    [28] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J]. J. Comput. Phys., 1989, 83: 23-78.
    [29] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. J. Comput. Phys., 1994, 115: 200-212.
    [30] Jiang G S, Shu C W. Efficient implementation of WENO schemes[J]. J. Comput. phys., 1996, 147: 202-228.
    [31] Shu C-W. Essentially non-oscillatory and weighted essentially nonoscillatory schemes for hyperbolic conservation laws[C]. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697. Berlin: Springer, 1998, 325-432.
    [32] 徐振礼.高阶精度的数值格式研究[D].合肥:中国科技大学,2003.
    [33] Crnjaric-Zic N, Vukovic S, Sopta L. Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations[J]. J. Comput. Phys., 2004, 200: 512-548.
    [34] Vukovic S, Sopta L. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations[J]. J. Comput. Phys., 2002, 179: 593-621.
    [35] Vukovic S, Crnjaric-Zic N, Sopta L. WENO schemes for balance laws with spatially varying flux[J]. J. Comput. Phys., 2004, 199: 87-109.
    [36] Xing Y L, Shu C W. High order finite difference WENO schemes with the exact conservation property for the shallow water equations[J]. J. Comput. Phys., 2005, 208: 206-227.
    [37] Van Leer B. Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method[J]. J. Comput. Phys., 1979, 32: 101-136.
    [38] Colella P, Woodward P. The piecewise parabolic method (PPM) for gas dynamical simulations[J]. J. Comput. Phys., 1984, 54: 174-201.
    [39] Godunov S K. A finite difference method for the numerical computation of discontinuous solution of the fluid dynamics[J]. Mat. Sb., 1959, 47: 271-290.
    [40] Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Comm. Pure Appl. Math., 1954, 7: 159-193.
    [41] Friedrichs K O. Symmetric hyperbolic linear differential equations[J]. Comm. Pure Appl. Math., 1954, 7: 345-392.
    [42] Jiang G S, Levy D, Lin C T, et al. Non-oscillatory central schemes for multidimensional hyperbolic conservation laws[J]. SIAM J. Sci. Comp., 1998, 19: 1892-1917.
    [43] Nessyahu H, Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws[J]. J. Comput. Phys., 1990, 87: 408-448.
    [44] Liu X D, Tadmor E. Third order nonoscillatory central scheme for hyperbolic conservation laws[J]. Numer. Math., 1998, 79: 397-425.
    [45] Bianco F, Puppo G, Russo G High order central schemes for hyperbolic systems of conservation laws[J]. SIAM J. Sci. Comput., 1999, 21: 294-322.
    [46] Levy D, Puppo G, Russo G. Central WENO schemes for hyperbolic systems of conservation laws[J]. Math. Model. Numer. Anal., 1999, 33: 547-571.
    [47] Qiu J, Shu C W. On the construction, comparison, and local characteristic decomposition for high order central WENO schemes[J]. J. Comput. Phys., 2002, 183: 187-209.
    [48] Levy D, Puppo G, Russo G. A third-order central WENO scheme for 2D conservation laws[J]. Appl. Numer. Math., 2000, 33: 407-414.
    [49] Levy D, Puppo G, Russo G. Compact central WENO schemes for multidimensional conservation laws[J]. SIAM J. Sci. Comput., 2000, 22: 656-672.
    [50] Levy D, Puppo G, Russo G. A fourth-order central WENO schemes for multidimensional hyperbolic systems for conservation laws[J]. SIAM J. Sci. Comput., 2002, 24: 480-506.
    [51] Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations[J]. J. Comput. Phys., 2000, 160: 241-282.
    [52] Kurganov A, Levy D. A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations[J]. SIAM J. Sci. Comput., 2000, 22: 1461-1488.
    [53] Kurganov A, Petrova G. A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems[J]. Numer. Math., 2001, 88: 683-729.
    [54] Kurganov A, Nolle S, Petrova G. Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations[J]. SIAM J. Sci. Comput., 2001, 23: 707-740.
    [55] Kurganov A, Petrova G. Central schemes and contact discontinuities[J]. Math. Model. Numer. Anal., 2000, 34: 1259-1275.
    [56] Lin C T, Tadmor E. High-resolution non-oscillatory central scheme for Hamilton-Jacobi equations[J]. SIAM J. Sci. Comput., 2000, 21: 2163-2186.
    [57] Kurganov A, Tadmor E. New high-resolution semi-discrete schemes for Hamilton-Jacobi Equation[J]. J. Comput. Phys., 2000, 160: 720-742.
    [58] Bryson S, Kurganov A, Levy D, et al. Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations[J]. IMA J. Numer. Anal., 2005,25: 87-112.
    [59] Bryson S, Levy D. Central schemes for multidimensional Hamilton-Jacobi equations[J]. SIAM J. Sci. Comput., 2003,25: 767-791.
    [60] Bryson S, Levy D. High-order central WENO schemes for multi-dimensional Hamilton-Jacobi equations[J]. SIAM J. Numer. Anal., 2003,41: 1339-1369.
    [61] Bryson S, Levy D. High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton-Jacobi equations[J]. J. Comput. Phys., 2003, 189: 63-87.
    [62] Balbas J, Tadmor E, Wu C C. Non-oscillatory central schemes for one- and two-dimensional MHD equations: I[J]. J. Comput. Phys., 2004, 201: 261-285.
    [63] Kleimann J, Kopp A, Fichtner H, et al. Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement[J]. Computer Physics Communications, 2004,158: 47-56.
    [64] Karni S, Kirr E, Kurganov A, et al. Compressible two-phase flows by central and upwind schemes[J]. Math. Model. Numer. Anal., 2004, 38(3): 477-493.
    [65] Kupferman R. A central-difference scheme for a pure streamfunction formulation of incompressible viscous flow[J]. SIAM J. Sci. Comput., 2001, 23(1): 1-18.
    [66] Grauer R, Spanier F. A note on the use of central schemes for the incompressible Navier-Stokes flows[J]. J. Comput. Phys., 2003,192: 727-731.
    [67] Anile A M, Nikiforakis N, Pidatella R M. Assessment of a high resolution centered scheme for the solution of hydrodynamical semiconductor equations[J]. SIAM J. Sci. Comput., 2000,22: 1533-1548.
    [68] Gottardi G, Venutelli M. Central schemes for open-channel flow[J]. Int. J. Numer. Meth. Fluids, 2003,41: 841-861.
    [69] Gottardi G, Venutelli M. Central scheme for two-dimensional dam-break flow simulation[J]. Advances in Water Resources, 2004, 27: 259-268.
    [70] Jiang G S, Tadmor E. Non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws[J]. SIAM J. Numer. Anal., 1998, 35: 2147-2168.
    [71] Crnjaric-Zic N, Vukovic S, Sopta L. Improved non-staggered central NT schemes for balance laws with geometrical source terms[J]. Int. J. Numer. Meth. Fluids, 2004, 46(8): 849-876.
    [72] Kurganov A, Levy D. Central-upwind schemes for the Saint-Venant system[J]. Math. Model. Numer. Anal., 2002, 36: 397-425.
    [73] Jin S, Xin Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J]. Comm. Pure Appl. Math., 1995, 48: 235-276.
    [74] Jin S, Xin Z. Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, and relaxation schemes[J]. SIAM J. Num. Anal. 1998, 35(6): 2385-2404.
    [75] Jin S, Pareschi L, Toscani G. Diffusive relaxation schemes for discrete-velocity kinetic equations[J]. SIAM J. Numer. Anal., 1999, 35: 2405-2439.
    [76] Delis A I, Katsaounis Th. Relaxation schemes for the shallow water equations[J]. Int. J. Numer. Meth. Fluids, 2003, 41: 695-719.
    [77] Delis A I, Katsaounis Th. Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods[J]. Applied Mathematical Modelling, 2005, 29: 754-783.
    [78] Bao W Z, Jin S. The random projection method for hyperbolic conservation laws with stiff reaction terms[J]. J. Comp. Phys., 2000, 163: 216-248.
    [79] Evje S, Fjelde K K. Relaxation schemes for the calculation of two-phase flow in pipes[J]. Mathematical and Computer Modelling, 2002, 36: 535-567.
    [80] Seaid M. Non-oscillatory relaxation methods for the shallow water equations in one and two space dimensions[J]. Int. J. Numer. Meth. Fluids, 2004, 46(5): 1-28.
    [81] Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Spinger-Verlag, 1997.
    [82] 水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社,1998.
    [83] 余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2004.
    [84] Borthwick A G L, Cruz Le6n S, Jozsa J. The shallow flow equations solved on adaptive quadtree grids[J]. Int. J. Numer. Meth. Fluids, 2001, 37: 691-719.
    [85] Falconer R A. An introduction to nearly-horizontal flows[C]. London: E & FN Spon, 1994.
    [86] Molls T, Chaudhry M H. Depth-averaged open-channel model[J]. J. Hydraulic. Eng., 1995, 121(6): 453-465.
    [87] Anastasiou K, Chan C T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes[J]. Int. J. Numer. Meth. Fluids, 1997, 24: 1225-1245.
    [88] Zhao D H, Shen H W, Lai J S, et al. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling[J]. J. Hydr. Engrg., 1996, 122(12): 692-702.
    [89] Rogersa B, Fujiharab A, Borthwicka A G L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. Int. J. Numer. Meth. Fluids, 2001, 35: 247-280.
    [90] Cunge J A, Holly F M, Verwey A. Practical aspects of computational river hydraulics[M]. London: Pitman Advanced Publishing Ltd., 1980.
    [91] LeVeque R J, Pelanti M. A class of approximated Riemann solvers and their relation to relaxation schemes[J]. J. Comput. Phys., 2001, 172: 572-591.
    [92] Schroll H J. Relaxed high resolution schemes for hyperbolic conservation laws[J]. J. Sci. Comput., 2004,21(2): 251-279.
    [93] Banda M K. Variants of relaxed schemes and two-dimensional gas dynamics[J]. Journal of Computational and Applied Mathematics, 2005, 175: 41-62.
    [94] Lattanzio C, Serre D. Convergence of a relaxation scheme for hyperbolic systems of conservation laws[J]. Numer. Math., 2001,88: 121-134.
    [95] Liu H, Warnecke G. Convergence rates for relaxation schemes approximating conservation laws[J]. SIAM J. Numer. Anal., 2000, 37: 1316-1337.
    [96] Casper J, Atkins H. A finite-volume high order ENO scheme for two-dimensional hyperbolic systems[J]. J. Comp. Phys., 1993, 106: 62-76.
    [97] Titarev V A, Toro E F. Finite volume WENO schemes for three-dimensional conservation laws[J]. J. Comput. Phys., 2004,201: 238-260.
    [98] Hu C, Shu C W. Weighted essentially non-oscillatory schemes on triangular meshes[J]. J. Comput. Phys., 1999,150: 97-127.
    [99] Shi J, Hu C, Shu C W. A technique for treating negative weights in WENO schemes[J]. J. Comput. Phys., 2002,175: 108-127.
    [100] Abdulle A. Fourth order chebyshev methods with recurrence relation[J]. SIAM J. Sci. Comput., 2002, 23: 2041-2054.
    [101] Pareschi L, Russo G. Implicit-explicit Runge-Kutta schemes for stiff systems of differential Equations[C]. Recent Trends in Numerical Analysis, 2000: 269-289.
    [102] Jin S. Runge-Kutta methods for hyperbolic systems with stiff relaxation terms[J]. J. Comput. Phys., 1995, 122: 51-67.
    [103] Sod G. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. J. Comput. Phys., 1978, 22: 1-31.
    [104] Liska R, Wendroff B. Two-dimensional shallow water equations by composite schemes[J]. Int. J. Numer. Meth. Fluids, 1999, 30: 461-479.
    [105] Mingham C G, Causon D M. High-resolution finite-volume method for shallow water flows[J]. J. Hydraulic. Eng., 1998, 124(6), 605-614.
    [106] WANG Jiasong, HE Yousheng Finite volume TVD algorithm for dam-break flows in open channels[J]. Journal of Hydrodynamics, Ser. B, 2003, 15(3): 28-34.
    [107] Wang J W, Liu R X. The composite finite volume method on unstructured meshes for the two-dimensional shallow water equations[J]. Int. J. Numer. Meth. Fluids, 2001, 37: 833-843.
    [108] Zoppou C, Roberts S. Numerical solution of the two-dimensional unsteady dam break[J]. Applied Mathematical Modelling, 2000, 24: 457-475.
    [109] Russo G. Central schemes for balance laws, Hyperbolic problems: theory, numerics, applications[C], Vol. I, II Magdeburg, 2000, 821-829.
    [110] Lie K A, Noelle S. An improved quadrature rule for the flux computation in staggered central difference schemes in multi-dimensions[J]. Journal of Scientific Computing, 2003,18: 69-81.
    [111] Billett S F, Toro E F. On WAF-type schemes for multidimensional hyperbolic conservation laws[J]. J. Comput. Phys., 1997, 130(1): 1-24.
    [112] Quecedo M, Pasto M. A reappraisal of Taylor-Galerkin algorithm for drying-wetting areas in shallow water computations[J]. Int. J. Numer. Meth. Fluids, 2002, 38(6): 515-531.
    [113] Gottlieb S, Shu C W, Tadmor E. Strong stability-preserving high order time discretization methods[J]. SIAM Review, 2001, 43: 89-112.
    [114] Bryson S, Levy D. Balanced central schemes for the shallow water equations on unstructured grids[J]. SIAM J. Sci. Comput., 2005,27(2): 532-552.
    [115] Greenberg J M, Le Roux A Y. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[J]. SIAM J. Num. Anal., 1996, 33: 1-16.
    [116] Jin S. A steady-state capturing method for hyperbolic system with geometrical source terms[J]. Math. Model. Num. Anal., 2001, 35: 631-646.
    [117] Jin S, Wen X. An efficient method for computing hyperbolic systems with geometrical source terms having concentrations[J]. J. Comp. Math., 2004, 22: 230-249.
    [118] Zhou J G, Causon D M, Mingham C G, et al. The surface gradient method for the treatment of source terms in the shallow water equation[J]. J. Comput. Phys., 2001, 168: 1-25.
    [119] 潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解[J].水科学进展,2003,14(4):430-436.
    [120] 潘存鸿,林炳尧,毛献忠.求解二维浅水流动方程的Godunov格式.水动力学研究与进展,2003,A辑,18(1):16-23.
    [121] 许为厚,潘存鸿,林炳尧,等.钱塘江河口涌潮数值模拟方法研究[A].第十六届全国水动力学研讨会文集,北京:海洋出版社.
    [122] Shu C W. Total-variation-diminishing time discretizations[J]. SIAM J. Sci. Stat. Comput., 1988, 9: 1073-1084.
    [123] LeVeque R J. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm[J]. J. Comput. Phys., 1998, 146: 346-365.
    [124] Kurganov A, Lin C T. On the reduction of numerical dissipation in central-upwind schemes[J], http://cognac.math.human.nagoya-u.ac.jp/scicade05//submission/ms08/preview/LinChiTien20050319135338.pdf
    [125] Liu X D, Osher S. Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes[J]. SIAM J. Numer. Anal., 1996, 33: 760-779.
    [126] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. J. Comput. Phys., 1984, 54: 115-173.
    [127] Lax P, Liu X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM J. Sci. Comp., 1998, 19: 319-340.
    [128] Kurganov A, Tadmor E. Solution of two-dimensional Riemann problems of gas dynamics without Riemann problem solvers[J]. Numerical Methods for Partial Differential Equations, 2002, 18: 584-608.
    [129] Audusse E, Bristeau M O. A well-balanced positivity preserving "second-order" scheme for shallow water flows on unstructured meshes[J]. J. Comput. Phys., 2005, 206: 311-333.
    [130] 刘国东,宋国平,丁晶.高速公路交通污染事故对河流水质影响的风险评价方法探讨[J].环境科学学报,1999,19(5):572-575.
    [131] 胡二邦主编.环境风险评价实用技术和方法[M].北京:中国环境科学出版社,2000.
    [132] Chertock A, Kurganov A. On a hybrid finite-volume-particle method[J]. Math. Model. Num. Anal., 2004, 38(6): 1071-1091.
    [133] Bryson S, Levy D. On the total variation of high-order semi-discrete central schemes for conservation Laws[C]. International Conference On Spectral and High Order Methods, 2004.
    [134] Sweby P K. High resolution schemes using flux limiters for hyperbolic conservation laws[J]. SIAM J. Numer. Anal., 1984, 21: 995-1011.
    [135] Hu K, Mingham C G, Causon D M. A bore-capturing finite volume method for open-channel flows[J]. Int. J. Numer. Meth. Fluids, 1998, 28: 1241-1261.
    [136] Tseng M S. Explicit finite volume non-oscillatory schemes for 2D transient free-surface flows[J]. Int. J. Numer. Meth. Fluids, 1999, 30: 831-843.
    [137] Qiu J, Shu C-W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method Ⅱ: Two dimensional case[J]. Computers & Fluids, 2005, 34: 642-663.
    [138] 徐昆,潘存鸿.求解非平底一维浅水流动方程的KFVS格式[J].水动力学研究与进展,2002,A辑,17(2):140-147.
    [139] 宋志尧,李荣辉.一种适用于潜坝流场计算的全流模型[J].河海大学学报,2002,30(2):24-26.
    [140] 朱自强等.应用计算流体力学[M].北京:北京航空航天大学出版社.1998.
    [141] 中国人民解放军总装备部军事训练教材编辑工作委员会编.计算流体力学及应用[M].北京:国防工业出版社,2003.
    [142] 刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [143] 傅国伟.河流水质数学模型及其模拟计算[M].北京:中国环境科学出版社,1987.
    [144] W.金士博.水环境数学模型[M].北京:建筑工业出版社,1987.
    [145] 谢永明.环境水质模型概论[M].北京:中国环境科学出版社,1996.
    [146] 万本太主编.突发性环境污染事故应急监测与处理处置技术[M].北京:中国环境科学出版社,1996.
    [147] 金腊华,徐峰俊.水环境数值模拟与可视化技术[M].北京:化学工业出版社,2004.
    [148] 陈建忠.中心差分格式求解双曲型守恒律方法研究[D].西安:西北工业大学硕士学位论文,2003.
    [149] 李岳林,王生昌.交通运输环境污染与控制[M].北京:机械工业出版社,2003.
    [150] 吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700