基于GIS的井喷事故可视化应急演练系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石化产业是我国能源产业的基础,随着产业的快速发展,在生产过程中的安全事故也不断出现,这些事故通常都会带来严重的人员和财产损失。制定合理有效地应急预案,对人员进行紧急情况下的应急演练可以在面对突发事件时迅速做出处理决策,减少事故带来的损失,使得遇险人员能够合理地进行避险。建立应急演练系统可以很好地满足这一实际需求,由于应急演练的实施过程涉及大量的数据,包括属性数据和空间数据,利用GIS支持大数据量以及影像数据的处理,并且处理速度快,可靠性,稳定性都很高的特点可以对系统提供很好的支持。
     目前在我国, GIS(地理信息系统)技术已普遍应用于许多行业的安全生产管理当中,为生产的管理工作带来了极大的方便。在安全生产应急指挥领域中,仿真与虚拟现实技术、GIS技术走向集成已是必然。运用仿真与虚拟现实技术,借鉴GIS思想,实现三维可视化环境下的场景模拟、分析、查询等,才能满足各行业现场工作管理的日益增长的需求。三维G1S目前的研究重点集中在三维数据结构(如数字表面模型、断面、柱状实体等)的设计、优化与实现,以及体视化技术的运用、三维系统的功能和模块设计等方面。
     同时地理信息系统所描述的地理对象往往具有时间属性,即时态。随着时间的推移,地理对象的特征会发生变化,而这种变化司能是很大的,但目前大多数地理信息系统都不能很好地支持地理对象和组合事件时间维的处理。
     本文以重庆井喷事故为例,通过对事故应急演练过程的需求分析,进行了系统结构设计,功能分析与设计,数据库设计,开发方式和方法分析,根据实际条件选择C3D三维地理信息系统平台为核心,结合可视化编程软件VS2003以及三维图形开发工具DirectX,采用组件式开发方式,进行地理信息系统的二次开发,形成一套基于GIS的井喷事故应急演练可视化系统,基本上实现了演练过程的模拟,较为真实的场景渲染,以及相关信息的快速查询。
     本文以GIS技术为基础对井喷事故的应急演练可视化系统开发进行了研究,结合虚拟现实技术,对于三维模型和地形数据的制作和优化进行了处理,较好地实现了三维图像与数据的结合,为用户提供了直观的获取信息的可视化界面,为应急演练的有效实施以及准确决策提供了快速有效的信息支持。
Petrochemical industry is the foundation of China's energy industry, with the rapid development of industry in the production process is also emerging security incidents, these incidents usually cause serious human and property losses. Develop reasonable and effective contingency plans for emergency personnel in emergency drills in the face of unexpected events can make treatment decisions quickly, to reduce losses caused by the accident, making the distress to a reasonable hedge. The establishment of emergency drill system can satisfy the practical needs of the implementation process of the emergency exercise involving large amounts of data, including attribute data and spatial data, using GIS to support large data and image data processing, and processing speed, reliable and stability characteristics are very high the system can provide good support.
     At present in China, GIS (geographic information system) technology has been widely used in manyindustries safety management which, for the production of management has brought great convenience. Emergency command in the field of production safety, simulation and virtual reality technology, GIS technology to integrate is inevitable. The use of simulation and virtual reality technology, learn GIS thinking, to achieve three-dimensional scene visualization environment simulation, analysis, query, field work in order to meet the industry's growing demand management. G1S current research focused on the three-dimensional data structure (such as digital surface model, cross section, cylindrical entities, etc.) design, optimization and implementation, as well as the use of volume visualization techniques, three-dimensional function of the systemandmoduledesign and so on.
     Also described in geographic information systems often have time attributes of geographical objects,real state. Over time, the geographical characteristics of the object will change, and the Secretary will this change is great, but most of the geographic information system can not be a good combination of support for geographic objects and events handling time dimension.
     This blowout accident in Chongqing, for example, through the process of emergency exercise requirement analysis, system design, functional analysis and design, database design, develop ways and means of analysis, based on the actual conditions of choice C3D D geographic information system platform as the core , combined with visual programming software development tool VS2003 and three-dimensional graphics DirectX, with component development means, the secondary development of geographic information systems, forming a blow-based GIS visualization system emergency drill, basically realized process simulation exercise, a more realistic scene-rendering,andrelated information fast queries.
     In this paper, based on GIS technology blowout emergency drills carried out visualization systemdeveloped, in combination with virtual reality technology, and terrain data for three-dimensionalmodel of the production and optimization of the processing, the better to achieve the three-dimensional images and data combine to provide users with an intuitive visual interface to access information for the effective implementation of emergency drills and accurate decision-making provides a fast and effective information support.
引文
[1]黎静.基于GIS的煤矿应急救援系统研究.pdf.万方数据.2007,4.
    [2]商书元,张军等.基于DirectX的可视化仿真系统[J].军械工程学院学报,2002, 14(1).
    [3]周锐.基于GIS的施工导流三维动态可视化仿真研究.pdf.万方数据.2002,12:41-50.
    [4]管群,刘浩吾.基于VR-GIS地质景观的三维重建[J].岩土工程学报,2001, 23(4).
    [5]王敬国,徐彬彬等.大型油田城市城建规划信息管理系统建设[J].测绘与空间地理信息,2010, 33(4).
    [6]孙剑桥.地理信息系统(GIS)的技术分析.pdf.万方数据.2010,9.
    [7]赵明.基于GIS的平顶山市可视化交通管理平台设计研究.pdf.万方数据.2007,5.
    [8]史永忠,曹全龙.基于ArcEngine的三维地形可视化系统的研究与开发[J].现代测绘,2007, 30(3).
    [9]茅忠明,王行骏等.基于Directx软件包进行三维图形的开发应用[J].上海理工大学学报,2002, 24(1).
    [10]朱良峰.基于GIS的三维地质建模及可视化系统关键技术研究[J].岩土力学与工程学报,2005, 24(19).
    [11]张欣,钟耳顺.基于GIS的应急预案过程动态推演模拟技术研究[J].武汉大学学报-信息科学版,2008, 33(3).
    [12]张海平.基于GIS的水电站施工进度三维可视化模拟.pdf.万方数据.2006,6.
    [13]党倩.基于GIS三维可视化技术及其实现方法研究.pdf.万方数据.2008,1.
    [14]赵明.基于DirectX的三维游戏特效技术的研究与实现.pdf.万方数据.2009,1.
    [15]陈路. 3D游戏引擎技术—大规模场景实时图形渲染的研究与实现.pdf.万方数据.2005,5.
    [16]王德才等.精通DirectX 3D图形与动画程序设计.北京:人民邮电出版社.2007,5.
    [17] [韩]金容俊编,刘娟,马晓阳译.3D游戏编程.北京:电子工业出版社.2006,4.
    [18]齐敏,郝重阳,佟明安.三维地形生成及实时显示技术研究进展[J]中国图象图形学报(A版),2000,(4):270-275.
    [19]涂超,毋河海,王新生.大规模地形快速渲染算法的研究[J]l昆明理工大学学报,2002,27(1):1-5.
    [20] Fletcher Dunn,Ian Parberry.3D math primer for graphics and game development[M].Texas:Wordware Publishing,2002:1-67,83-193.
    [21] Greg Gnook, Real-Time 3D Terrain Engines Using C++ And DirectX9[M], U.S. A, CharlesRiver Media,Inc,2003: 104-107.
    [22] XiaoHong Bao and Renato Pajarola“LOD-based Clustering Techniques-Optimizing Large-scale Terrain Storage and Visualization”Department of Information & Computer Science University of Cali-fomia.Irvine.
    [23] Hugues Hoppe“Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Ren—dering”M icrosoft Research..
    [24] Lindstrom P,Koller D,Ribarsky Weta1.“Real-Time continuous level of detail render of heightfields”.In SIGGRAPH,96Proc,New Orleans.
    [25] Greg Gnook, Real-Time 3D Terrain Engines Using C++ And DirectX9[M], U.S. A, Charles River Media,Inc,2003: 104-107.
    [26] Joachim Harabasz. Rendering with Reparameterized Textures[R]. Joachim Terrain instituteof Commputer Scientc Computer Graphics Group,University of Bonn.2003.
    [27] David Koller , Peter Lindstrom .Real-Time Continuous LOD Rendering of HeightFields[C]. Siggraph Dallas: ACM, 1996: 207-214.
    [28] Mark Duchaineauy,Murray Wolinsky,et a1.ROAMing Terrain:Real-time Optimally AdaptingMeshes[A].In: Proc.IEEE Visualization[C],Phoenix,AZ,USA,l997,81-88.
    [29] Bryan Turner.Real—Time Dynamic Level of Detail Terain Rendering with ROAM [EB/OL].http://www.gamasutra.com/features/2000-04-03.
    [30] Andreas Ogren Continuous Level of Detail In Real-Time Terrain Rendering[D].Master Thesis,Umefi University,Sweden,2000.
    [31]Al Gore.The Digital Eafm: Understanding our planet in n”2l Century.hUp://159.226.117.45/Digitalearth/,1998.
    [32] Geoffrey M J,Dunrie A G, Andrew M K. Design and Implementation o f a Space T ime Intelligence System for Disease Surveillance[ J].Journal of Geographical Systems, 2005( 7) : 7-23
    [33] Bak P.R.G., Mill A.J.B., 3-D Representation in a Geo-scientific Resources Management System for The Minerals Industry , InRaper J.(eds.) , Three Dimensional Applications in GIS ,PA: Taylor and Francis , 1989 , P155~182
    [34] Egenhofer, M.J. and Herring , J.R. , High-level spatial data structures for GIS , in Maguire D.J. ,Goodchild M.F. and Rhind D.W.(eds.) , Geographical Information Systems: Principles and Applications , Longman , 1991, P227~237.
    [35] Gunther , O. , Efficient for Geometric Data Management , Lecture Notes in Computer Science ,Berlin: Springer-Verlag , 1988.
    [36] Jun Li , Ning Jing , Mao yin Sun , Visualization with Level of Detail at Multi-Scale in 3D GIS ,Proceedings of International Symposium on Digital Earth , Beijing , 1999:134-143.
    [37] Peuquet, D.J. , Representation of Geographic Space: Toward A Conceptual Synthesis , Annals of the Association of American Geographers , 1988 :375-391.
    [38]肖乐斌,钟耳顺,刘纪远,三维GIS的基本问题探讨,中国图像图形学报.2001,6(9):842-848.
    [39]李军,景宁,孙茂印,“数字地球”中的三维GIS技术,电子科技导报,1999,(5):20-26.
    [40]史文中,吴立新,李清泉等,三维空间信息系统模型与算法,北京,电子工业出版社,2007:3-5.
    [41]李军,三维GIS空间数据模型及可视化技术研究,[博士学位论文],哈尔滨,国防科学技术大学,2000年。
    [42]翟巍,三维GIS中大规模场景数据获取组织及调度方法的研究与实现,[博士学位论文],大连,大连理工大学,2003年。
    [43]吕成姝,三维场景中查询功能的设计与实现,[博士学位论文],大连,大连理工大学,2003年。
    [44]黄铎,三维城市模型的数据内容,[博士学位论文],武汉,武汉大学,2004年。
    [45]杨丽,李光耀,城市仿真建模工具—Creator软件教程,上海,同济大学出版社,2007 .
    [46]朱长青,史文中,空间分析建模与原理,北京,科学出版社,2006 :168-188.
    [47]刘湘南,黄方,王平,佟志军,GIS空间分析原理与方法,北京,科学出版社,2005:235-239.
    [48]汤国安,杨昕,ArcGIS地理信息系统空间分析实验教程,北京,科学出版,2006 :118-119.
    [49]王月,机场地理信息系统及三维可视化的研究与实现,[硕士学位论文],北京,北京交通大学,2006年。
    [50]阎耀军.社会预警的概念及概念体系.理论与现代化,2002,(5).
    [51]李德仁等.空间信息系统的集成与实现.武汉:武汉测绘科技大学出版社, 2000.
    [52] I.Wienand,U.Nothing ,T.Kistemann, Using Geographical Information Systems (GIS) as aninstrument of water resource management: a case studyfrom a GIS-based Water Safety Plan in Germany, Water Science and Technology, 2009, 60(7).
    [53]Seda Salap,Mahmut Onur Karslioglu ,Nuray Demirel, Development of a GIS-based monitoring and management system for underground coal mining safety, International Journal of Coal Geology, 2009, 80(2).
    [54]Ding.ZW,Liu.XP,Tian.LX, ESS, NIS and GIS for multi-player matrix game in single population, Mathematical Methods in the Applied Sciences, 2010, 33(3).
    [55]Hejun.kang,Darren M.Scott, An integrated spatio-temporal GIS toolkit for exploring intra-household interactions, Transportation, 2008, 35(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700