Pt/分子筛催化剂上氢气选择催化还原NO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)是大气的主要污染物。选择催化还原法(SCR)是消除大气中NOx的有效方法。近年来,H2以其清洁、低温高活性的特点逐渐引起人们的研究兴趣。本文以ZSM-35分子筛为载体,考察了金属负载型ZSM-35催化剂在氢气选择催化还原NO(H2-SCR)反应中的活性,并通过金属助剂添加、共结晶载体使用、快速SCR反应等提高催化剂的活性和选择性。同时利用多种表征手段深入探讨H2-SCR反应机理、金属助剂的作用以及快速SCR反应的优势。
     在相同条件下比较了Pt基ZSM-35催化剂与ZSM-5、Beta催化剂的H2-SCR反应性能。120℃时,Pt/ZSM-35催化剂上的NO转化率达到80.8%,相应的N2选择性为68.5%,明显优于Pt/ZSM-5、Pt/Beta。XRD和NH3-TPD结果说明三种催化剂上均含有金属态的Pt物种;Pt引入未改变载体的骨架和晶体结构,但是降低了强酸中心数量。原位红外光谱结果说明反应条件下原位生成了吸附氨物种。进一步研究表明Pt负载量对Pt/ZSM-35催化剂H2-SCR反应活性有一定影响。XRD、TEM、XPS结果显示Pt/ZSM-35催化剂上80%的Pt物种以金属态存在,20%以Pt2+的氧化态存在;Pt含量的增加并未改变催化剂上Pt物种的组分,但使得金属态Pt物种发生团聚。不同气氛下的原位红外光谱结果表明吸附的硝酸盐物种和氨物种是H2-SCR反应的重要中间物种。
     通过多种不同金属对Pt/ZSM-35催化剂进行改性。Cr的引入表现出引人瞩目的促进作用:NO最高转化率由原来的80.5%提高至94.7%,相应的N2选择性由64.2%提高至67.6%。进一步研究显示Cr的最佳负载量为1 wt%,最佳引入方式为Pt、Cr共浸渍。H2-TPR结果显示与Cr/ZSM-35相比Pt-Cr/ZSM-35催化剂上Cr物种的主要还原峰明显向低温移动,说明Pt与Cr物种之间存在一定的相互作用。此外,Cr物种引入后明显增加了NO-O2在催化剂表面的吸附,形成了新的表面含氮物种,Pt-NO和Pt-NOδ+物种;原位H2-SCR反应过程中,Pt-Cr/ZSM-35催化剂上氨物种的数量明显多于Pt/ZSM-35。这说明Cr的促进作用源于增加NOx物种的吸附以及氨物种的原位生成。
     首次将共结晶分子筛作为催化剂载体应用于富氧条件下的氮氧化物消除反应。Pt基ZSM-35/MCM-49催化剂表现出较好的H2-SCR反应活性。进一步研究表明共结晶分子筛载体中ZSM-35与MCM-49比例的变化对催化剂的H2-SCR反应活性影响较小。XRD、H2-TPR、CO吸附红外结果显示Pt/35(x%)/49催化剂上的Pt物种主要以Pt0、Pt2+和Pt4+形式存在。原位漫反射红外光谱研究显示H2-SCR反应过程中Pt/35(x%)/49催化剂上形成的吸附物种基本相同;载体中ZSM-35与MCM-49的比例影响原位产生的氨物种的数量。
     首次将“快速SCR”概念引入到H2-SCR反应中。分别以0.5%Pt/ZSM-35和Pd/Al2O3、Pd/SiO2、Pd/MgO为催化剂,比较研究了催化剂的快速和常规H2-SCR反应活性和选择性。结果发现与常规H2-SCR反应相比,快速H2-SCR反应明显提高了氮氧化物的消除效率。Pd/Al2O3和Pd/Si02催化剂表现出极好的快速H2-SCR反应活性,200℃以上NOx的转化率一直保持在100%。原位DRIFT研究显示:(1)常规和快速H2-SCR反应中催化剂表面形成的物种基本相同;(2)与常规H2-SCR反应相比,快速H2-SCR反应中催化剂表面形成了更多的吸附氨物种。
Nitrogen oxides (NOx) are the main air pollutants. Selective catalytic reduction (SCR) is the most promising way of NOx abatement. Recently, hydrogen with the advantage of clean and high activity at relatively low temperature attracts much attention. In this study, ZSM-35 zeolite is used as support. Metal based ZSM-35 catalysts are investigated in selective catalytic reduction of NO by hydrogen (H2-SCR). Metal additives, composite zeolites and fast SCR reaction are introduced to improve the activity and selectivity. Many characterizations are used to get deep insight into the reaction mechanism, the effect of additives and the advantage of fast SCR reaction.
     The performance of Pt based ZSM-35, ZSM-5 and Beta in H2-SCR reaction is compared under the same reaction conditions. At 120℃, Pt/ZSM-35 catalyst exhibits attractive activity (80.8%) and selectivity (68.5%), which is better than those on Pt/ZSM-5 and Pt/Beta. XRD and NH3-TPD results suggest that metallic Pt species exist in all catalysts; the introduction of Pt does not influence the framework of zeolite support, but decreases the number of strong acid sites. Adsorbed ammonium species are formed during in situ H2-SCR reaction. The effect of Pt loading on catalytic activity is studied secondly. XRD、TEM、XPS results suggest that Pt species on Pt/ZSM-35 catalyst exist mainly in metallic (80%) and only 20% in+2 oxidation state, and the increase of Pt loading has no effect on the valance state of Pt, but causes the aggregation of metallic Pt. In situ IR results indicate that adsorbed nitrates and ammonia are key intermediates in H2-SCR reaction.
     Several metals are used to modify Pt/ZSM-35 catalyst. An attractive enhancement of NO conversion from 80.5% to 94.7% is obtained at 120℃on Cr modified sample. Further studies show that 1 wt% is the optimal loading of Cr, and co-impregnation is the optimal introducing way. H2-TPR results suggest that comparing with Cr/ZSM-35, the main reduction peak of Cr species on Pt-Cr/ZSM-35 shifted to low temperature. Moreover, the introduction of Cr enhances (1) the adsorption of NO-O2 by forming new Pt-NOδ+ and NO species adsorbed on Pt were detected upon NO+O2 adsorption; (2) the formation of ammonia species under reaction condition. It indicates that the enhanced adsorption of NOx and formation of surface NH4+ species is the origin of promotional effect of Cr on Pt/ZSM-35 for H2-SCR reaction.
     Composite zeolites are used firstly in NOx elimination under excess oxygen. Pt based ZSM-35/MCM-49 catalysts exhibit high activity in H2-SCR reaction. Further study suggests that the ratio of ZSM-35 and MCM-49 in composite zeolitic support has little influence on the catalytic activity. XRD and H2-TPR results, coupled with those in CO adsorption show that Pt species in Pt/35(x%)/49 catalysts are in metallic, +2 and+4 states. In situ IR results show that during H2-SCR reaction same surface species are formed on Pt/35(x%)/49 catalysts; the ratio of ZSM-35 and MCM-49 has some effect on the formation of ammonia species.
     Fast SCR is introduced to H2-SCR reaction for the first time. The performance of 0.5%Pt/ZSM-35 and Pd/Al2O3, Pd/SiO2, Pd/MgO in standard and fast H2-SCR reaction is compared respectively. Results show that compared with the normal H2-SCR process, a significant enhancement of deNOx efficiency is achieved in the fast H2-SCR process. Pd/Al2O3 and Pd/SiO2 catalysts exhibited attractive activity and gave 100%NOx conversion above 200℃. In situ DRIFT results show that same surface species are formed during standard and fast H2-SCR reaction, and much more ammonia species are formed during fast H2-SCR reaction than those in standard one.
引文
[1]于秀敏,杨世春,高莹.降低汽车发动机排放的技术.汽车工程,2002,24:445-450
    [2]吴忠标.大气污染控制技术.北京:化学工业出版社,2002,244-319
    [3]Schneider H, Scharf U, Wokaun A, et al. Chromia on Titania IV nature of active sites for selective catalytic reduction of NO by NH3. J Catal,1994,147:545-556
    [4]Fu L, Hao J, He D, et al. Assessme of vehicular pollution in China. J air Waste Manag Assoc, 2001,51:658-668.
    [5]Seinfeld J H. Urban air pollution:state of the science. Science,1989,243:745-752
    [6]Bosch H, Janssen F. Catalytic reduction of nitrogen oxides:a review on the fundamentals and technology. Catal Today,1988,2:369-521
    [7]Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO. Catal Today,1998,46: 233-316
    [8]张改莲,戚慧心.汽车排气污染物的形成及危害.生物学通报,2000,35:17-18
    [9]孙锦余.利用氮氧化物控制技术治理大气污染.节能,2004,5:41-44
    [10]李勤.现代内燃机排气污染物的测量与控制.北京:机械工业出版,1998.
    [11]李智森.燃烧中氮氧化物的形成和防治.环境保护,1994,11:6-7
    [12]任剑锋,王增长,牛志卿.大气中氮氧化物的污染与防治.科技情报开发与经济,2003,13:92-93
    [13]滕加伟,宋庆英,于岚等.催化法脱除NOx的研究进展.环境污染治理技术与设备,2000,1:38-45
    [14]Fritz A, Pitchon V. The current state of reacrch on autotive lean NOx catalysis. Appl Catal B,1997,13:1-25.
    [15]Bachman P W, Taylor G B. Decomposition of nitric oxide by platinum at elevated temperatures and its retardation by oxides. J Phys Chem,1929,33:447-455
    [16]Pancharatnum S, Lim K J, Manson D M. The decomposition of nitric oxide on a heated platinum wire. Chem Eng Sci,1975,30:781-787
    [17]Ishii M, Hayashi T, Matsumoto S. Adsorption, desorption and decomposition of nitrogen monoxide on Rh (100) studied by electron-stimulated desorption Auger electron spectroscopy and temperature-programmed desorption. Appl Catal A,2002,225:207-213
    [18]Sakaida R R, Rinker R G, Wang Y L, et al. Catalytic decomposition of nitric oxide. AIChE J, 1961,7:658-663
    [19]Amirnazmi A, Benson J E, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. J Catal,1973,30:55-61
    [20]Wang C B, Chang J G, Wu R C, et al. Promotion effect of coating alumina supported palladium with sodium hydroxide on the catalytic conversion of nitric oxide. Appl Catal B, 1998,17:51-62
    [21]Wu R J, Chou T Y, Yeh C T. Enhancement effect of gold and silver on nitric oxide decomposition over Pd/Al2O3 catalysts. Appl Catal B,1995,6:105-116
    [22]Tofan C, Klvana D, Kirchnerova J. Direct decomposition of nitric oxide over perovskite-type catalysts Part I. Activity when no oxygen is added to the feed. Appl Catal A,2002,223: 275-286
    [23]Meubus P. Catalytic decomposition of nitric oxide in the presence of alkaline earth oxides. J Electrochem Soc,1977,124:49-58
    [24]Hamada H, Kintaichi Y, Sasaki M, et al. Silver-promoted cobalt oxide catalysts for direct decomposition of nitrogen monoxide. Chem Lett,1990:1069-1070
    [25]Vannice M A, Waters A B, Zhang X. The kinetic of NOX decomposition and NO reduction by CH4over La2O3 and Sr/La2O3. J Catal,1996,159:119-126
    [26]Xie S B, Rosynek M P, Lunsford J H. Catalytic reactions of NO over 0-7mol% Ba/MgO Catalysts:I the direct decomposition of NO. J Catal,1999,188:24-31
    [27]Ishihara T, Anami K, Takiishi K, et al. Direct decomposition of NO on Cu-doped La(Ba)Mn(ln)O3 perovskite oxide under coexistence of O2, H2O, and SO2. Chem Lett,2003, 32:1176-1177
    [28]Shin K, Ogawa S, Shimomura K. Catalytic decomposition of nitric oxide over brownmillerite-like compounds, calcium ferrate(III) (Ca2Fe2O5) and strontium ferrate(Ⅲ) (Sr2Fe205). Mat Res Bull,1979,14:133-136
    [29]Tabata K, Fukuda F, Kohiki S. Uptake of NO gas by YBa2Cu30y. Chem Lett,1988:799-802
    [30]Li G J, Fujimoto T, Fukuoka A, et al. EXAFS and Fourier transform IR characterization of platinum carbonyl clusters [Pt3(CO)6]2-n (n=3,4) encapsulated in NaY zeolites and their effective catalysis in the CO+NO reaction. J Chem Soc Chem Commun,1991:1337-1339
    [31]Yasuda H, Mizuno N, Misono M. Role of valency of copper in the direct decomposition of nitrogen monoxide over well characterized La2xAxCu1-yByO4. J Chem Soc. Chem Commun, 1990:1094-1096
    [32]Teraoka Y, Fukuda H, Kagawa S. Catalytic activity of perovskite-Type oxides for the direct decomposition of nitrogen monoxide. Chem Lett,1990:1-4
    [33]Tofan C, Klvana D, Kirchnerova J. Direct decomposition of nitric oxide over perovskite-type catalysts Part Ⅰ. Activity when no oxygen is added to the feed. Appl Catal A,2002,223: 275-286
    [34]Tofan C, Klvana D, Kirchnerova J. Direct decomposition of nitric oxide over perovskite-type catalysts Part Ⅱ. Effect of oxygen in the feed on the activity of three selected compositions. Appl Catal A,2002,226:225-240
    [35]Winter E R S. The catalytic decomposition of nitric oxide by metallic oxides. J Catal,1971, 22:158-170
    [36]Iwamoto M, Maruyama K, Yamazoe N, et al. Temperature-programmed desorption spectra of oxygen from transition-metal ion-exchanged y-type zeolites. J Chem Soc Chem Commun, 1972:615-616
    [37]Iwamoto M, Yokoom S, Sakai K, et al. Catalytic decomposition of nitric oxide over copper(Ⅱ)-exchanged, Y-type zeolites. J Chem Sot, Faraday Trans 1,1981,77:1629-1638
    [38]Iwamoto M, Yahiro H, Mizuno N, et al. Removal of nitrogen monoxide through a novel catalytic process. J Phys Chem,1992,96:9360-9366
    [39]Eranen K, Kumar N, Lindfors L E. Enhancement of the catalytic activity of Cu-ZSM-5 for nitric oxide decomposition by introduction of copper during the zeolite synthesis. Appl Catal B,1994,4:213-223
    [40]Iwamoto M, Yahiro H, Mine Y, et al. Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide. Chem Lett,1989: 213-214
    [41]Li Y J, Hall W K. Decomposition of nitric oxide on platinum. J Catal,1991,129:202-215
    [42]Liu D J, Robota H J. In situ XANES characterization of the Cu oxidation state in Cu-ZSM-5 during NO decomposition catalysis. Catal Lett,1993,21:291-301
    [43]赫崇衡,汪任.汽车排气污染与治理的发展和动向.环境污染与防治,1996,18:17-21
    [44]Caraba R M, Masters S G, Eriksen K M, et al. TiO2-SiO2 and V205/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Appl Catal B,2005,60:173-179
    [45]Zhu Z P, Liu Z Y, Liu S J. NO Reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl Catal B,2000,26:25-35
    [46]Chooa S T, Yima S D, Nama I-S, et al. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3. Appl Catal B, 2003,44:237-252
    [47]Valdes-Sol'ys T, Fuertes M G. Kinetics and mechanism of low-temperature SCR of NOx with NH3 over vanadium oxide supported on carbon-ceramic cellular monoliths. Ind Eng Chem Res,43:2349-2355
    [48]Huang B C, Huang R, Jin D J, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catal Today,2007,126:279-283
    [49]Huang Y, Tong Z Q, Wu B, et al. Low temperature selective catalytic reduction of NO by ammonia over V205-Ce02/Ti02. J Fuel Chem Technol,2008,36:616-620
    [50]Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts. J Catal,2002,206:98-113
    [51]Schwidder M, Kumar M S, Bentrup U, et al. The role of Bransted acidity in the SCR of NO over Fe-MFI catalysts. Micropor Mesopor Mater,2008,111:124-133
    [52]Li Z, Shen L T, Huang W, et al. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst. J Environ Sci,2007,19:1516-1519
    [53]Carja G, Kameshima Y, Okada K, et al. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3. Appl Catal B,2007,73:60-64
    [54]Balle P, Geiger B, Kureti S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust. Appl Catal B,2009,85:109-119
    [55]Iwamoto M, YahiroH, Yuu Y et al. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites, shokubai (Catalyst).1990,32: 430-433
    [56]Held W, Koening A, Richter T, et al. Catalytic NOx reduction in net oxidizing exhaust gas. SAE paper.1990,900496
    [57]Armor J N. Review Environmental catalysis. Appl.Catal.B.1992,1:221-256
    [58]Li Y, Armor J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen. Appl Catal B,1992,1:L31-L40
    [59]Li Y, Armor J N. Catalytic reduction of NOx using methane in the presence of oxygen. US, invention, US5149512.1992
    [60]Li Y, Armor J N. in H.E. Curry-Hyde and R.F. Howe (Editors). Natural Gas Conversion Ⅱ. Elsevier. Amsterdam.1994:103-114
    [61]Wang X, Chen H, Sachtler W M H. Selective reduction of NOx with hydrocarbons over Co/MFI prepared by sublimation of CoBr2 and other methods. Appl Catal B,2001,29: 47-60
    [62]Li Y, Armor J N. The effect of SO2 on the catalytic performance of Co-ZSM-5 and Co-ferrierite for the selective reduction of NO by CH4 in the presence of O2. Appl Catal B, 1995,5:L257-L270
    [63]Lee T J, Nam I-S, Ham S-W, et al. Effect of Pd on the water tolerance of Co-ferrierite catalyst for NO reduction by CH4. Appl Catal B,2003,41:115-127
    [64]Gutierrez L B, Boix A V, Lombardo E A, et al. Study of the Co-Pt Synergism for the Selective Catalytic Reduction of NOx with CH4. J Catal,2001,199:60-72
    [65]Ren L, Zhang T, Liang D, et al. Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4. Appl Catal B,2002,35:317-321
    [66]Kikuchi E, Yogo K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere. Catal Today,1994,22:73-86
    [67]Tabata T, Kokitsu M, Okada O. Adsorption properties of oxygen and methane on Ga-ZSM-5: the origin of the selectivity of NOx reduction using methane. Catal Lett,1994,25:393-400
    [68]Kikuchi E, Ogura M, Aratani N et al. Promotive effect of additives to In/HZSM-5 catalyst for selective reduction of nitric oxide with methane in the presence of water vapor. Catal Today, 1996,27:35-40
    [69]Berndt H, Schiitze F-W, Richter M et al. Selective catalytic reduction of NO under lean conditions by methane and propane over indium/cerium-promoted zeolites. Appl Catal B, 2003,40:51-67
    [70]Ramallo-Lopez J M, Requejo F G, Gutierrez L B, et al. EXAFS, TDPAC and TPR characterization of PtInFerrierite The role of surface species in the SCR of NOx with CH4. Appl Catal B,2001,29:35-46
    [71]Ogura M, Hayashi M, Kikuchi E. Intrapore catalysis in reduction of nitric oxide with methane. Catal Today,1998,42:159-166
    [72]Ogura M, Hayashi M, Kikuchi E. Role of zeolite structure on reduction of NOx with methane over In-and Pd-based catalysts. Catal Today,1998,45:139-145
    [73]Zhou X, Xu Z, Zhang T, et al. The chemical status of indium in indium impregnated HZSM-5 catalysts for the SCR of NO with CH4. J Mol Cata A,1997,122:125-129
    [74]Wang X, Zhang T, Sun X, et al. Enhanced activity of an In-Fe2O3/H-ZSM-5 catalyst for NO reduction with methane. Appl Catal B,2000,24:169-173
    [75]Ren L, Zhang T, Tang J, et al. Promotional effect of colloidal alumina on the activity of the In/HZSM-5 catalyst for the selective reduction of NO with methane. Appl Catal B,2003,41: 129-136
    [76]Li Y, Armor J N. Selective Catalytic Reduction of NO with Methane on Gallium Catalysts. J Catal,1994,145:1-9
    [77]Li Y, Armor J N. Selective Reduction of NOx by Methane on Co-Ferrierites Ⅰ. Reaction and Kinetic Studies. J Catal,1994,150:376-387
    [78]Aylor A W, Lobree L J, Reimer J A, et al. NO Adsorption, Desorption, and Reduction by CH4 over Mn-ZSM-5. J Catal,1997,170:390-401
    [79]Campa M C, Pietrogiacomi D, Tuti S, et al. The selective catalytic reduction of NOx with CH4 on Mn-ZSM-5:A comparison with Co-ZSM-5 and Cu-ZSM-5. Appl Catal B,1998,18: 151-162
    [80]Sun Q, Sachtler W M H. Mn/MFI catalyzed reduction of NOx with alkanes. Appl Catal B, 2003,42:393-401
    [81]Tang J, Zhang T, Ma L, et al. Microwave discharge-assisted NO reduction by CH4 over Co/HZSM-5 and Ni/HZSM-5 under O2 excess. Catal Lett,2001,73:193-197
    [82]Mihaylov M, Hadjiivanov K, Panayotov D. FTIR mechanistic studies on the selective catalytic reduction of NOx with methane over Ni-containing zeolites:comparison between NiY and NiZSM-5. Appl Catal B,2004,51:33-42
    [83]张惠,方和良,施耀等.Ni/H-USY催化剂上甲烷选择性催化还原NOx的性能.化工学报,2006,57:306-310
    [84]Shi C, Cheng M, Qu Z, et al. On the selective catalytic reduction of NOx with methane over Ag-ZSM-5 catalyst. Appl Catal B,2002,36:173-182
    [85]Loughran C J, Resasco D E. Bifunctionality of palladium-based catalysts used in the reduction of nitric oxide by methane in the presence of oxygen. Appl Catal B,1995,7: 113-126
    [86]Wen B, Sun Q, Sachtler W M H. Function of Pdn0 Clusters, Pd2+(oxo-) Ions, and PdO Clusters in the Catalytic Reduction of NO with Methane over Pd/MFI Catalysts. J Catal, 2001,204:314-323
    [87]Shimizu K, Satsuma A, Hattori T. Selective catalytic reduction of NO by hygrocarbons on Ga2O3/Al2O3 catalyst. Appl Catal B,1998,16:319-320
    [88]Keshavaraja A, She X, Flytzani-Stephanopoulos M. Selective catalytic reduction of NO with methane over Ag-alumina catalysts. Appl Catal B,2000,27:L1-L9
    [89]Chin Y H, Alvarez W E, Resaco D E. Sulfated zirconia and tungstated zirconia as effective supports for Pd-based SCR catalysts. Catal Today,2000,62:159-161
    [90]Ohtsuka H. The selective catalytic reduction of nitrogen oxide by methane on noble metal-loaded sulfated zirconia. Appl Catal B,2001,33:325-333
    [91]Li N, Wang A, Zheng M, et al. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane. J Cata,2004,225:307-315
    [92]Mitome J, Aceves E, Ozkan U S. Role of Lanthanide elements on the catalytic behavior of supported Pd catalysts in the reduction of NO with methane. Catal Today,1999,53:597-606
    [93]Fokema M D, Ying J Y. The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide. Appl Catal B,1998,18:71-77
    [94]Fokema M D, Ying J Y. Mechanistic Study of the Selective Catalytic Reduction of Nitric Oxide with Methane over Yttrium Oxide. J Catal,2000,192:54-63
    [95]Li N, Wang A, Li L, et al. NO reduction by CH4 in the presence of excess O2 over Pd/sulfated alumina catalysts. Appl Catal B,2004,50:1-7
    [96]Li Y, Slager T L, Armor J N. Selective Reduction of NOx by Methane on Co-Ferrierites:Ⅱ. Catalyst Characterization. J Catal,1994,150:388-399
    [97]Cowan A D, Dumpelmann R, Cant N W. The Rate-Determining Step in the Selective Reduction of Nitric-Oxide by Methane over a Co-ZSM-5 Catalyst in the Presence of Oxygen. J Catal,1995,151:356-363
    [98]Vannice M A, Walters A B, Zhang X. The kinetics of NOx decomposition and NO reduction by CH4 over La2O3 and Sr/La2O3. J Catal,1996,159:119-126
    [99]Torre-Abreu C, Henriques C, Ribeiro F R, et al. Selective catalytic reduction of NO on copper-exchanged zeolites:the role of the structure of the zeolite in the nature of copper-active sites. Catal Today,1999,54:407-418
    [100]Li L D, Guan N J. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts. Micropor Mesopor Mater 2009,117:450-457
    [101]Jeon J Y, Kima H Y, Woo S I. Mechanistic study on the SCR of NO by C3H6 over Pt/V/MCM-41. Appl Catal B,2003,44:301-310
    [102]He H, Zhang C, Yu Y. A comparative study of Ag/Al2O3 and Cu/Al2O3 catalysts for the selective catalytic reduction of NO by C3H6. Catal Today,2004,90:191-197
    [103]Okazaki N, Shiina Y, Itoh H, et al. Marked difference in activity of alumina catalysts for selective catalytic reduction of nitrogen monoxide by ethene in excess oxygen. Catal Lett, 1997,49:169-174
    [104]Sullivan J A, Cunninghan J. Selective catalytic reduction of NO with C2H4 over Cu/ZSM-5: Influences of oxygen partial pressure and incorporated rhodia. Appl Catal B,1998,15: 275-289
    [105]Yu Q, Wang X P, Xing N, et al. The role of protons in the NO reduction by acetylene over ZSM-5. J Catal,2007,245:124-132
    [106]Burch R, Halpin E, Sullivan J A. A comparison of the selective catalytic reduction of NOx over Al2O3 and sulphated Al2O3 using CH3OH and C3H8 as reductants. Appl Catal B,1998, 17:115-129
    [107]Sumiya S, Saito M, He H, et al. Reduction of lean NOx by ethanol over Ag/A12O3 catalysts in the presence of H2O and SO2. Catal Lett,1998,50:87-91
    [108]Burch R, Breen J P, Meunier F C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolite oxide and platinum group metal catalysts. Appl Catal B,2002,39:283-303
    [109]Acke F, Skoglundh M. Differences in reaction mechanisms for the selective reduction of NO under oxygen excess over Pt based catalysts using propane or propene as the reducing agent. Appl Catal B,1999,22:L1-L3
    [110]Wogerbauer A, Maciejewski M, Baiker A. Reduction of nitrogen oxides over unsupported iridium:effect of reducing agent. Appl Catal B,2001,34:11-27
    [111]Ogura M, Kawamura A, Matsukata M, et al. Catalytic Activity of Ir for NO-CO Reaction in the Presence of SO2 and Excess Oxygen. Chem Lett,2000,29:146-147
    [112]Yoshinari T, Sato K, Haneda M, et al. Remarkable promoting effect of coexisting SO2 on the catalytic activity of Ir/SiO2 for NO reduction in the presence of oxygen. Catal Commun, 2001,2:155-158
    [113]Haneda M, Kudo H, Nagao Y, et al. Enhanced activity of Ba-doped Ir/SiO2 catalyst for NO reduction with CO in the presence of O2 and SO2. Catal Commun,2006,7:423-426
    [114]Haneda M, Pusparatu Y, Kintaichi I, et al. Promotional effect of SO2 on the activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions. J Catal,2005,229 197-205
    [115]Tamai T, Haneda M, Fujitani T, et al. Promotive effect of Nb2O5 on the catalytic activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions. Catal Commun,2007,8: 885-888
    [116]Jones J H, Kummer J T, Otto K, et al. Environ Sci Technol,1971,9:791
    [117]Ueda A, Nakao T, Azuma M, et al. Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd-TiO2 catalyst. Catal Today,1998, 45:135-138
    [118]Burch R, Coleman M D. An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions. Appl Catal B,1999,23:115-121
    [119]Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOx-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen. Applied Catalysis B,2001,35:107-116
    [120]Shibata J, Hashimoto M, Shimizu K, et al. Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. J Phys Chem B,2004,108: 18327-18335
    [121]Macleod N, Lambert R M. Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl Catal B,2002,35:269-279
    [122]Wildermann. PhD Thesis, University of Erlangen, Numberg,1994.
    [123]Yokota K, Fukui M, Tanaka T. Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen. Appl Surf Catal,1997,121/122:273-277
    [124]Li L D, Zhang F X, Guan N J, et al. NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catal Commun,2008,9:1827-1832
    [125]Burch R, Coleman M D. An Investigation of Promoter Effects in the Reduction of NO by H2 under Lean-Burn Conditions. J Catal,2002,208:435-447
    [126]Schott F J P, Balle P, Adler J, et al. Reduction of NOx by H2 on Pt/WO3/ZrO2 catalysts in oxygen-rich exhaust. Appl Catal B,2009,87:18-29
    [127]Nanba T, Kohno C, Masukawa S, et al. Improvements in the N2 selectivity of Pt catalysts in the NO-H2-O2 reaction at low temperatures. Appl Catal B,2003,46:353-364
    [128]Nanba T, Sugawara K, Masukawa S, et al. Optimization of Physical Mixtures of Pt/ZrO2 and H-Form Zeolites for Catalysis of the NO-H2-O2 Reaction. Ind Eng Chem Res,2005,44: 3426-3431
    [129]Costa N C, Efstathiou A M. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl Catal B,2007,72:240-252
    [130]Costa C N, Stathopoulos V N, Belessi V C, et al. An Investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/La0.5Ce0.5MnO3 Catalyst. J Catal,2001,197:350-364
    [131]Costa C N, Sawa P G, Andronikou C, et al. An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/Lao 7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures. J Catal,2002,209:456-471
    [132]Machida M, Watanabe T, Ikeda S, KijimaT. A dual-bed lean deNOx catalyst system consisting of NO-H2-O2 reaction and subsequent N2O decomposition. Catal Commun,2002, 3:233-238
    [133]Machida M, Watanabe T. Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO-H2-O2 reactions. Appl Catal B,2004,52:281-286
    [134]武鹏,刘运霞,章福祥等.Pt/SAPO-34在低温H2-SCR消除NO反应中的催化活性.催化学报,2008,29:191-196
    [135]Wu P, Liu Y X, Zhang F X, et al. Influences of Mesoporous Structure on the NO-H2-O2 Low Temperature Reaction over Pt/Si-MCM-41 Catalyst. Acta Phys.-Chim.Sin,2008,299: 369-374
    [136]Li L D, Wu P, Yu Q, et al. Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41. Appl Catal B,2009,94:254-262
    [137]Satsuma A, Hashimoto M, Shibata J, et al. Nitrous oxide free pathway for selective reduction of NO by hydrogen over supported Pt catalysts. Chem Commun,2003, 1698-1699
    [138]Burch R, Shestov A A, Sullivan J A. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O2/H2 Reaction over Pt/SiO2 Catalysts. J Catal,1999,188:69-82
    [139]Costa C N, Efstathiou A M. Transient Isotopic Kinetic Study of the NO/H2/O2 (Lean de-NOx) Reaction on Pt/SiO2 and Pt/La-Ce-Mn-O Catalysts. J Phys Chem B,2004,108: 2620-2630
    [140]Costa C N, Efstathiou A M. Mechanistic Aspects of the H2-SCR of NO on a Novel Pt/MgO-CeO2 Catalyst. J Phys Chem C,2007,111:3010-3020
    [141]Marina O A, Yentekakis I V, Vayenas C G, et al. In Situ Controlled Promotion of Catalyst Surfaces via NEMCA:The Effect of Na on the Pt-Catalyzed NO Reduction by H2. J Catal, 1997,166:218-228
    [142]Frank B, Emig G, Renken A. Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt-Mo-Co/a-Al2O3 catalyst. Appl Catal B,1998,19: 45-57
    [1]Plank C J, Rosinski E J, Rubin M K. US 4016245.1977
    [2]Baerlocher Ch, Meier W M, Olson D H. Altas of Zeolite Framework Types.5th Ed. Amsterdam:Elsevier,2001,134
    [3]谢素娟,彭建彪,徐龙伢等.以环己胺为模板剂的ZSM-35分子筛的合成及其催化性能.催化学报,2003,24:531-534
    [4]刘勇,张维萍,谢素娟等.用固体核磁共振研究HZSM-35分子筛的酸性.催化学报,2009,30:119-123
    [5]Houzvicka J, Ponec V. Skeletal Isomerization of n-Butene. Catal Rev Sci Eng,1997,39: 319-344
    [6]Lee S H, Shin C H, Hong S B. Investigations into the origin of the remarkable catalytic performance of aged H-ferrierite for the skeletal isomerization of 1-butene to isobutene. J Catal,2004.223:200-211
    [7]周伟正,林德吕,钟鹰等.THF-FER沸石的系列研究Ⅳ.固体酸性及C5烯烃骨架异构化催化性能.化学学报.2004,62:833-838
    [8]Resini C, Montanari T, Nappi L, et al. Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation and catalytic activity. J Catal, 2003,214:179-190
    [9]Li Y, Armor J N. Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane. Appl Catal B,1993,3:L1-L11
    [10]Lee T J, Nam I, Ham S. et al. Effect of Pd on the water tolerance of Co-ferrierite catalyst for NO reduction by CH4. Appl Catal B,2003,41:115-127
    [11]Park J, Park C H, Nam I. Characteristics of wet and solid ion exchanged Co-ferrierite catalysts for the reduction of NO using methane. Appl Catal A,2004,277:271-279
    [12]Ferreira A P, Capela S, Costa P D, et al. CH4-SCR of NO over Co and Pd ferrierite catalysts: Effect of preparation on catalytic performance. Catal. Today,2007,119:156-165
    [13]Mecarova M, Miller N A, Clark N C, et al. Selective catalytic reduction of NOx with ammonia on gallium-exchanged ferrierites. Appl Catal A,2005,282:267-272
    [14]Burch R, Shestov A A, Sullivan JbA. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O2/H2 Reaction over Pt/SiO2 Catalysts. J Catal,1999,188:69-82
    [15]Burch R, Coleman M D. An Investigation of Promoter Effects in the Reduction of NO by H2 under Lean-Burn Conditions. J Catal,2002,208:435-477
    [16]Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOX-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen. Appl Catal B,2001,35:107-116
    [17]Costa C N, Savva P G, Fierro J G, et al. Industrial H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl Catal B,2007,75:147-156
    [18]Costa C N, Stathopoulos V N, Belessi V C, et al. An Investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/Lao.5Ce0.5Mn03 Catalyst. J Catal, 2001,197:350-364
    [19]Shibata J, Hashimoto M, Shimizu K, et al. Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. J Phys Chem B,2004,108: 18327-18335
    [20]Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOx-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen. Applied Catalysis B,2001,35:107-116
    [21]Macleod N, Lambert R M. Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl Catal B,2002,35:269-279
    [22]Yokota K, Fukui M, Tanaka T. Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen. Appl Surf Catal,1997,121/122:273-277
    [23]Schott F J P, Balle P, Adler J, et al. Reduction of NOx by H2 on Pt/WO3/ZrO2 catalysts in oxygen-rich exhaust. Appl Catal B,2009,87:18-29
    [24]Nanba T, Kohno C, Masukawa S, et al. Improvements in the N2 selectivity of Pt catalysts in the NO-H2-O2 reaction at low temperatures. Appl Catal B,2003,46:353-364
    [25]Nanba T, Sugawara K, Masukawa S. et al. Optimization of Physical Mixtures of Pt/ZrO2 and H-Form Zeolites for Catalysis of the NO-H2-O2 Reaction. Ind Eng Chem Res,2005,44: 3426-3431
    [26]Costa N C, Efstathiou A M. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl Catal B,2007,72:240-252
    [27]Costa C N, Savva P G, Andronikou C, et al. An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures. J Catal,2002,209:456-471
    [28]Machida M, Watanabe T, Ikeda S, KijimaT. A dual-bed lean deNOx catalyst system consisting of NO-H2-O2 reaction and subsequent N2O decomposition. Catal Commun,2002, 3:233-238
    [29]Machida M, Watanabe T. Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO-H2-O2 reactions. Appl Catal B,2004,52:281-286
    [30]武鹏,刘运霞,章福祥等.Pt/SAPO-34在低温H2-SCR消除NO反应中的催化活性.催化学报,2008,29:191-196
    [31]Wu P, Liu Y X, Zhang F X, et al. Influences of Mesoporous Structure on the NO-H2-O2 Low Temperature Reaction over Pt/Si-MCM-41 Catalyst. Acta Phys.-Chim.Sin,2008,299: 369-374
    [32]Li L D, Wu P, Yu Q, et al. Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41. Appl Catal B,2009,94:254-262
    [33]Burch R, Shestov A A, Sullivan J A. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O2/H2 Reaction over Pt/SiO2 Catalysts. J Catal,1999,188:69-82
    [34]Costa C N, Efstathiou A M. Transient Isotopic Kinetic Study of the NO/H2/O2 (Lean de-NOx) Reaction on Pt/SiO2 and Pt/La-Ce-Mn-O Catalysts. J Phys Chem B,2004,108:2620-2630
    [35]Costa C N, Efstathiou A M. Mechanistic Aspects of the H2-SCR of NO on a Novel Pt/MgO-CeO2 Catalyst. J Phys Chem C,2007,111:3010-3020
    [36]Wen B. NO reduction with H2 in the presence of excess O2 over Pd/MFI catalyst. Fuel,2002, 81:1841-1846
    [37]Twagirashema I, Engelmann-Pirez M, Frere M, et al. An in situ study of the NO+H2+O2 reaction on Pd/LaCoO3 based catalysts. Catal Today,2007,19:100-105
    [38]Chiarello G L, Ferri D, Grunwaldt J D, et al. Flame-synthesized LaCoO3-supported Pd 2. Catalytic behavior in the reduction of NO by H2 under lean conditions. J Catal,2007,252: 137-147
    [39]Ueda A, Nakao T, Azuma M, et al. Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd/TiO2 catalyst. Catal Today,1998.45: 135-138
    [40]Hasegawa Y, Haneda M, Kintaichi Y, et al. Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2. Appl Catal B,2005,60:41-47
    [41]Baerlocher Ch, Meier W M, Olson D H. Atlas of zeolitic framework types. Elsevier,2001
    [42]Zou J J, Zhang Y P, Liu C J. Reduction of Supported Noble-Metal Ions Using Glow Discharge Plasma. Langmuir,2006,22:11388-11394
    [43]Bera P, Priolkar K R, Gayen A, et al. Ionic Dispersion of Pt over CeO2 by the Combustion Method:Structural Investigation by XRD, TEM, XPS, and EXAFS. Chem Mater,2003.15: 2049-2060
    [44]徐如人.分子筛与多孔材料化学.科学出版社,2004
    [45]Chien S, Kuo M, Lu C, et al. Spectroscopic studies of NO reduction on Pt/TiO2 catalysts. Catal Today,2004,97:121-127
    [46]Satsuma A, Hashimoto M, Shibata J, et al. Nitrous oxide free pathway for selective reduction of NO by hydrogen over supported Pt catalysts. Chem Commun,2003,14:1698-1699
    [47]Capek L, Novoveska K, Sobalik Z, et al. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence:Comparison of decane. propane and propene by in situ FTIR. Appl Catal B,2005,60:201-210
    [48]Hadjiivanov K, Saussey J, Freysz J L, et al. FT-IR study of NO+O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1band to NO+species. Catal Lett,1998,52: 103-108
    [49]Yu Q, Wang X P, Xing N, et al. The role of protons in the NO reduction by acetylene over ZSM-5. J Catal,2007,245:124-132
    [50]Poignant F, Freysz J L, Daturi M, et al. Mechanism of the selective catalytic reduction of NO in oxygen excess by propane on H-Cu-ZSM-5:Formation of isocyanide species via acrylonitrile intermediate. Catal Today,2001,70:197-211
    [51]Li L D, Guan N J. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts. Micropor Mesopor Mater,2005,117:450-457
    [52]Richter M, Trunschke A, Bentrup U, et al. Selective Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts. J Catal,2002,206:98-113
    [53]Long R Q, Yang R T. Pt/MCM-41 catalyst for selective catalytic reduction of nitric oxide with hydrocarbons in the presence of excess oxygen. Catal Lett,1998,52:91-96
    [54]Xie S, Liu S, Liu Y, et al. Synthesis and characterization of MCM-49/ZSM-35 composite zeolites in the hexamethyleneimine and cyclohexamine system. Micropor Mesopor Mater, 2009,121:166-172
    [55]Novakova J, Kubelkova L, Brabec L, et al. Pt0 in alkali faujasites.1. Preparation by thermal decomposition of [Pt(NH3)4]2+in vacuum. Zeolites,1996,16:173-183
    [56]Zou J J, Zhang Y P, Liu C J. Reduction of Supported Noble-Metal Ions Using Glow Discharge Plasma. Langmuir,2006,22:11388-11394
    [57]Li L D, Shen Q, Cheng J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. Appl Catal B,2009,93: 259-266
    [58]王静,傅立新,李俊华.预处理条件对Pt/Al2O3催化还原NO的活性影响.高等学校化学学报,2004,25:1090-1095
    [59]于秀敏,杨世春,高莹.降低汽车发动机排放的技术.汽车工程,2002,24:445-450
    [60]Topsee H. Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal,2003,216:155-164
    [61]Savva P G, Efstathiou A M. The influence of reaction temperature on the chemical structure and surface concentration of active NOx in H2-SCR over Pt/MgO-CeO2:SSITKA-DRIFTS and transient mass spectrometry studies. J Catal,2008,257,324-333.
    [62]Hirano T, Ozawa Y, Sekido T, et al. The role of additives in the catalytic reduction of NO by CO over Pd-In/SiO2 and Pd-Pb/SiO2 catalysts. Appl Catal A,2007,320:91-97.
    [63]Li L D, Zhang F X., Guan N J, Richter M, Fricke R. Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. Catal Commun,2007,8:583-588
    [64]Costa C N, Efstathiou A M. Transient Isotopic Kinetic Study of the NO/H2/O2 (Lean de-NOx) Reaction on Pt/SiO2 and Pt/La-Ce-Mn-O Catalysts. J Phys Chem B,2004,108:2620-2630
    [65]Santhosh Kumar M, Schwidder M, Grunert W. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content:Part Ⅱ. Assessing the function of different Fe sites by spectroscopic in situ studies. J Catal,2006,239:173-186
    [66]Macleod N, Lambert R M. Selective NOx Reduction During the H2+NO+O2 Reaction Under Oxygen-Rich Conditions Over Pd/V205/Al2O3:Evidence for In Situ Ammonia Generation. Catal Lett,2003,90:111-115
    [67]Qi G S, Yang R T, Rinaldi F C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. J Catal,2006,237:381-392
    [68]Hadjiivanov K, Saussey J, Freysz J L, et al. FT-IR study of NO+O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+species. Catal Lett,1998,52: 103-108
    [69]Bentrup U, Bruckner A, Richter M, et al. NOx adsorption on MnO2/NaY composite:an in situ FTIR and EPR study. Appl Catal B,2001,32:229-241
    [70]Kotsifa A, Kondarides D I, Verykios X E. Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene. Appl Catal B,2007,72:136-148
    [71]Ivanova E, Mihaylov M, Thibault-Starzyk F. FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. J Mol Catal A,2007,274:179-184
    [72]Macleod N, Lambert R M. An in situ DRIFTS study of efficient lean NOx reduction with H2 +CO over Pd/Al2O3:the key role of transient NCO formation in the subsequent generation of ammonia. Appl Catal B,2003,46:483-495
    [73]Macleod N, Cropley R, Lambert R M. Efficient Reduction of NOx by H2 Under Oxygen-Rich Conditions over Pd/TiO2 Catalysts:An in situ DRIFTS Study. Catal Lett,2003,86:69-75
    [74]Yang J B, Fu O Z, Wu D Y, et al. DRIFTS study of NO-H2 reaction over Pd/Al2O3 with excess oxygen. Appl Catal B,2004,49:61-65
    [75]Macleod N, Lambert R M. Selective NOx Reduction During the H2+NO+O2 Reaction Under Oxygen-Rich Conditions Over Pd/V2O5/Al2O3:Evidence for In Situ Ammonia Generation. Catal Lett,2003,90:111-115
    [76]Qi G S, Yang R T, Rinaldi F C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. J Catal,2006,237:381-392
    [77]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B,2004,51: 93-106
    [78]Richter M, Eckelt R, Parlitz B, et al. Low-temperature conversion of NOX to N2 by zeolite-fixed ammonium ions. Appl Catal B,1998,15:129-146.
    [1]Shelef M. Selective Catalytic Reduction of NOx with N-Free Reductants. Chem Rev,1995.95: 209-225
    [2]Li L D, Chen J X, Zhang S J, et al. Study on Metal-MFI/Cordierite as Promising Catalysts for Selective Catalytic Reduction of Nitric Oxide By Propane In Excess Oxygen. J Catal,2004, 228:12-22
    [3]Li L D, Zhang F X, Guan N J,et al. Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. Catal Commun,2007,8:583-588
    [4]Yu Q, Wang X P, Xing N, et al. The role of protons in the NO reduction by acetylene over ZSM-5. J Catal,2007,245:124-132
    [5]Richter M, Trunschke A, Bentrup U, et al. Selective Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts. J Catal,2002,206:98-113
    [6]Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. J Catal,2004,217:434-441
    [7]Wang A Q, Ma L, Cong Y, et al. Unique properties of Ir/ZSM-5 catalyst for NO reduction with CO in the presence of excess oxygen. Appl Catal B,2003,40:319-329
    [8]Inomata H, Shimokawabe M, Kuwana A, et al. Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts:Influence of preparation variables on the catalytic performance. Appl Catal B,2008,84:783-789
    [9]Burch R, Coleman M D. An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions. Appl Catal B,1999,23:115-121
    [10]Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOx-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen. Appl Catal B,2001.35:107-116
    [11]Costa C N, Savva P G, Fierro J G, et al. Industrial H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl Catal B,2007,75:149-158
    [12]Costa C N, Stathopoulos V N, Belessi V C, et al. An Investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/Lao.sCe0.5MnO3 Catalyst. J Catal, 2001,197:350-364
    [13]Macleod N, Lambert R M. Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl Catal B,2002,35:269-279
    [14]Yokota K, Fukui M, Tanaka T. Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen. Appl Surf Catal,1997,121/122:273-277
    [15]Schott F J P, Balle P, Adler J, et al. Reduction of NOx by H2 on Pt/WO3/ZrO2 catalysts in oxygen-rich exhaust. Appl Catal B,2009,87:18-29
    [16]Nanba T, Kohno C, Masukawa S, et al. Improvements in the N2 selectivity of Pt catalysts in the NO-H2-O2 reaction at low temperatures. Appl Catal B,2003,46:353-364
    [17]Nanba T, Sugawara K, Masukawa S, et al. Optimization of Physical Mixtures of Pt/ZrO2 and H-Form Zeolites for Catalysis of the NO-H2-O2 Reaction. Ind Eng Chem Res,2005,44: 3426-3431
    [18]Costa N C, Efstathiou A M. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl Catal B,2007,72:240-252
    [19]Costa C N, Savva P G, Andronikou C, et al. An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/Lao.7Sro.2Ce0.1Fe03 Catalyst at Low Temperatures. J Catal,2002,209:456-471
    [20]Machida M, Watanabe T, Ikeda S, KijimaT. A dual-bed lean deNOx catalyst system consisting of NO-H2-O2 reaction and subsequent N2O decomposition. Catal Commun,2002, 3:233-238
    [21]Machida M, Watanabe T. Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO-H2-O2 reactions. Appl Catal B,2004,52:281-286
    [22]武鹏,刘运霞,章福祥等.Pt/SAPO-34在低温H2-SCR消除NO反应中的催化活性.催化学报,2008,29:191-196
    [23]Wu P, Liu Y X. Zhang F X, et al. Influences of Mesoporous Structure on the NO-H2-O2 Low Temperature Reaction over Pt/Si-MCM-41 Catalyst. Acta Phys.-Chim.Sin,2008,299: 369-374
    [24]Li L D, Wu P, Yu Q, et al. Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41. Appl Catal B,2009,94:254-262
    [25]Burch R, Shestov A A, Sullivan J A. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O2/H2 Reaction over Pt/SiO2 Catalysts. J Catal,1999,188:69-82
    [26]Costa C N, Efstathiou A M. Transient Isotopic Kinetic Study of the NO/H2/O2 (Lean de-NOx) Reaction on Pt/SiO2 and Pt/La-Ce-Mn-0 Catalysts. J Phys Chem B,2004,108:2620-2630
    [27]Costa C N, Efstathiou A M. Mechanistic Aspects of the H2-SCR of NO on a Novel Pt/MgO-CeO2 Catalyst. J Phys Chem C,2007,111:3010-3020
    [28]Yang J B, Fu O Z, Wu D Y, et al. DRIFTS study of NO-H2 reaction over Pd/Al2O3 with excess oxygen. Appl Catal B,2004,49:61-65
    [29]Li L D, Zhang F X, Guan N J, et al. NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catal Commun,2008,9:1827-1832
    [30]Wen B. NO reduction with H2 in the presence of excess O2 over Pd/MFI catalyst. Fuel,2002, 81:1841-1846
    [31]Twagirashema I, Engelmann-Pirez M, Frere M, et al. An in situ study of the NO+H2+O2 reaction on Pd/LaCoO3 based catalysts. Catal Today,2007,19:100-105
    [32]Chiarello G L, Ferri D, Grunwaldt J D, et al. Flame-synthesized LaCoO3-supported Pd 2. Catalytic behavior in the reduction of NO by H2 under lean conditions. J Catal,2007,252: 137-147
    [33]Ueda A, Nakao T, Azuma M, et al. Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd/TiO2 catalyst. Catal Today,1998,45: 135-138
    [34]Germain J E.多相催化.郑绳按,高滋译.上海:上海科学技术出版社,1961
    [35]Burch R, Coleman M D. An Investigation of Promoter Effects in the Reduction of NO by H2 under Lean-Burn Conditions. J Catal,2002,208:435-447
    [36]Wu P, PhD. Thesis, NanKai University,2008
    [37]Hadjiivanov K, Penkova A, Kefirov R, et al. Influence of dealumination and treatments on the chromium speciation in zeolite CrBEA. Micropor Mesopor Mater,2009,124:59-69
    [38]Kotsifa A, Kondarides D I, Verykios X E. Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene. Appl Catal B,2007,72:136-148
    [39]Ivanova E, Mihaylov M, Thibault-Starzyk F, et al. FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. J Mol Catal A,2007,274:179-184
    [40]Hadjiivanov K, Saussey J, Freysz J L, et al. FT-IR study of NO+O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+species. Catal Lett,1998,52: 103-108
    [41]Savva P G, Efstathiou A M. The influence of reaction temperature on the chemical structure and surface concentration of active NOx in H2-SCR over Pt/MgO-CeO2:SSITKA-DRIFTS and transient mass spectrometry studies. J Catal,2008,257:324-333
    [42]Hirano T, Ozawa Y, Sekido T, et al. The role of additives in the catalytic reduction of NO by CO over Pd-In/SiO2 and Pd-Pb/SiO2 catalysts. Appl Catal A,2007,320:91-97
    [43]Macleod N, Lambert R M. Selective NOx Reduction During the H2+NO+O2 Reaction Under Oxygen-Rich Conditions Over Pd/V205/Al203:Evidence for In Situ Ammonia Generation. Catal Lett,2003,90:111-115
    [44]Qi G S, Yang R T, Rinaldi F C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. J Catal,2006,237:381-392
    [45]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B,2004,51: 93-106
    [46]Bentrup U, Bruckner A, Richter M, et al. NOx adsorption on MnO2/NaY composite:an in situ FTlR and EPR study. Appl Catal B,2001,32:229-241
    [47]Shibata J, Hashimoto M, Shimizu K, et al. Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. J Phys Chem B,2004,108: 18327-18335
    [48]Richter M, Eckelt R, Parlitz B, et al. Low-temperature conversion of NOx to N2 by zeolite-fixed ammonium ions. Appl Catal B,1998,15:129-146
    n赵雪松,刘盛林,陈福存等.ZSM5/ZSM11共结晶分子筛上二乙苯气相烷基转移.黑龙江大学自然科学学报,2006,23:336-340
    [2]Francesconi M Sofia, Lopez Z E, Uzcategui D, et al. MFI/MEL intergrowth and its effect on n-decane cracking. Catal Today,2005,107-108:809-815
    [3]Wang P, Shen B J, Gao J S. Synthesis of MAZ/ZSM-5 composite zeolite and its catalytic performance in FCC gasoline aromatization. Catal Commun,2007,8:1161-1166
    [4]Fan Y, Lei D, Shi G. Synthesis of ZSM-5/SAPO-11 composite and its application in FCC gasoline hydro-upgrading catalyst. Catal Today,2006,114:388-396
    [5]刘盛林,牛雄雷,谢素娟等.MCM22/ZSM35共结晶分子筛上催化裂化汽油改质.石油化工,2005,34:319-323
    [6]谢素娟,刘盛林,张玲等.MCM-49与ZSM-35的共结晶及混合物的芳构化性能比较.石油学报(石油加工),2009,增刊:37-40
    [7]Xie S J, Liu S L, Liu Y, et al. Synthesis and characterization of MCM-49/ZSM-35 composite zeolites in the hexamethyleneimine and cyclohexamine system. Micropor Mesopor Mater, 2009,121:166-172
    [8]Zou J J, Zhang Y P, Liu C J. Reduction of supported noble-metal ions using glow discharge plasma. Langmuir,2006,22:11388-11394
    [9]Bera P, Priolkar K R, Gayen A, et al. Ionic Dispersion of Pt over CeO2 by the Combustion Method:Structural Investigation by XRD, TEM, XPS, and EXAFS. Chem Mater,2003,15: 2049-2060
    [10]Shibata J, Hashimoto M, Shimizu K, et al. Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. J Phys Chem B,2004,108: 18327-18335
    [11]Jang J H, Lee S C, Kim D J, et al. Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx. Appl Catal A,2005,286:36-43
    [12]Hadjiivanov K 1. IR study of CO and H2O coadsorption on Ptn+/TiO2 and Pt/TiO2 samples. J Chem Soc Faraday Trans,1998,94:1901-1904
    [13]Hadjiivanov K, Saint-Just J, Che M, et al. Preparation and characterization of multiple ion-exchanged Pt/TiO2 catalysts. J Chem Soc Faraday Trans,1994,90,2277
    [14]Anderson J A, Rochester C H. FTIR study of CO/O2 reaction over Pt-Rh/Al2O3 catalysts. Catal Today,1991,10:275-282
    [15]Mariscal R, Rojas S, Gomez-Cortes A, et al. Support effects in Pt/TiO2-ZrO2 catalysts for NO reduction with CH4. Catal Today,2002,75:385-391
    [16]Shibata J, Hashimoto M, Shimizu K, et al. Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. J Phys Chem B,2004,108: 18327-18335
    [17]Capek L, Novoveska K, Sobalik Z, et al. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence:Comparison of decane, propane and propene by in situ FTIR. Appl Catal B,2005,60:201-210
    [18]Hadjiivanov K, Saussey J, Freysz J L, et al. FT-IR study of NO+O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+species. Catal Lett,1998,52: 103-108
    [19]Ivanova E, Mihaylov M, Thibault-Starzyk F, et al. FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2.J Mol Catal A,2007,274:179-184
    [20]Bentrup U, Bruckner A, Richter M, et al. NOx adsorption on MnO2/NaY composite:an in situ FTIR and EPR study. Appl Catal B,2001,32:229-241
    [21]Salama T M, Mohamed M M, Othman I, et al. Structural and textural characteristics of Ce-containing mordenite and ZSM-5 solids and FT-IR spectroscopic investigation of the reactivity of NO gas adsorbed on them. Appl Catal A,2005,286:85-95
    [1]Koebel M, Elsener M, Kleemann M. Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today,2000,59:335-345
    [2]Koebel M, Elsener M, Madia G. Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures. Ind Eng Chem Res,2001,40:52-59
    [3]Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2 at low temperatures. Catal Today,2002,73:239-247
    [4]Koebel M, Madia G, Raimondi F, et al. Enhanced Reoxidation of Vanadia by NO2 in the Fast SCR Reaction. J Catal,2002,209:159-165
    [5]Madia G, Koebel M, Elsener M, et al. The Effect of an Oxidation Precatalyst on the NOx Reduction by Ammonia SCR. Ind Eng Chem Res,2002,41:3512-3517
    [6]Grossale A, Nova I, Tronconi En, et al. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM-5 investigated by transient reaction analysis. J Catal,2008,256: 312-322
    [7]Macleod N, Lambert R M. Selective NOx Reduction During the H2+NO+O2 Reaction Under Oxygen-Rich Conditions Over Pd/V205/Al2O3:Evidence for In Situ Ammonia Generatio.n Catal Lett,2003,90:111-115
    [8]Qi G S, Yang R T, Rinaldi F C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. J Catal,2006,237:381-392
    [9]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B,2004,51: 93-106
    [10]Hadjiivanov K, Saussey J, Freysz J L, et al. FT-IR study of NO+O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+species. Catal Lett,1998,52: 103-108
    [11]Bentrup U, Bruckner A, Richter M, et al. NOx adsorption on MnO2/NaY composite:an in situ FTIR and EPR study. Appl Catal B,2001,32:229-241
    [12]Marina O A, Yentekakis I V, Vayenas C G, et al. In Situ Controlled Promotion of Catalyst Surfaces via NEMCA:The Effect of Na on the Pt-Catalyzed NO Reduction by H2. J Catal, 1997,166:218-228
    [13]Frank B, Emig G, Renken A. Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt-Mo-Co/a-Al2O3 catalyst. Appl Catal B,1998,19:45-57
    [14]Ueda A, Nakao T, Azuma M, et al. Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd-TiO2 catalyst. Catal Today,1998,45: 135-138
    [15]Li L D, Zhang F X, Guan N J, et al. NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catal Commun,2008,9:1827-1832
    [16]Karakas G, Watson J M, Ozkan U S. In situ DRIFTS characterization of wet-impregnated and sol-gel Pd/TiO2 for NO reduction with CH4. Catal Commun,2002,3:199-206
    [17]Capek L, Novoveska K, Sobalik Z, et al. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence:Comparison of decane, propane and propene by in situ FTIR. Appl Catal B,2005,60:201-210
    [18]Yang J B, Fu O Z, Wu D Y, et al. DRIFTS study of NO-H2 reaction over Pd/Al2O3 with excess oxygen. Appl Catal B,2004,49:61-65
    [19]Silletti B A, Adams R T, Sigmon S M, et al. A novel Pd/MgAlOx catalyst for NOx storage-reduction. Catal Today,2006,114:64-71
    [20]Macleod N, Lambert R M. An in situ DRIFTS study of efficient lean NOx reduction with H2 +CO over Pd/Al2O3:the key role of transient NCO formation in the subsequent generation of ammonia Appl Catal B,2003,46:483-495
    [21]Neyertz C, Volpe M, Perez D, Costilla I, Sanchez M, Gigola C. NO reduction with CO in the presence and absence of H2O over Pd/γ-Al2O3 and Pd-VOx/γ-Al2O3 catalysts:The formation of HNCO, NH3 and stable surface species. Appl Catal A,2009,368:146-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700