含酰亚胺稠环芳烃类有机电子传输材料的设计、合成和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电子传输材料是构建有机半导体器件的基础。随着对有机太阳能电池(OPVs)、有机场效应晶体管(OFETs)、互补逻辑电路(complementary logic circuits)等有机半导体器件的深入研究,开发具有高迁移率、高稳定性和易溶液加工的有机电子传输材料对该领域发展具有至关重要的意义。含酰亚胺的稠环芳烃类(rylene diimides)电子传输材料,如花酰亚胺(PBIs)和萘酰亚胺(NDIs),因其具有高电子亲和势、高迁移率和良好的稳定性,作为有机电子传输材料显示出了良好的应用前景。本文以有机半导体的理论为指导设计合成了一系列含酰亚胺稠环芳烃类有机电子传输材料,并对它们的光谱性能、电化学性能、热稳定性和电子传输性能进行了研究。
     通过光环化反应将邻苯二胺引入到花酰亚胺1,6,7,12位(港湾位)设计并合成了含有二氨基和四氨基的花酰亚胺多官能团单体8和9。在关键的光环化反应中发现了独特的区域选择性,即光照闭环反应选择性地发生在硝基的邻位;通过多官能团单体8和9构建了3个具有大平面的梯形共轭大分子12、13和15,并且分别研究了3个梯形共轭分子的光谱性质、电化学性质和热稳定性;使用空间电荷限制电流(space charge limited current, SCLC)的方法测试了化合物12、13和15的电子迁移率。梯形共轭分子共轭平面的增大有利于提高其在薄膜上排列的有序性,进而可以提高分子间的电荷传输。其中化合物15表现出较高的SCLC迁移率,可以达到3.34×10-3cm2v-1s-1;以P3HT为供体材料分别与化合物12、13和15构建有机薄膜太阳能电池,其太阳能电池效率均高于参比化合物PBI。
     设计并合成了一类新型的电子传输材料:三苯二嗯嗪酰亚胺梯形共轭分子33、34、35、36和37。相对于参比化合物PBIref.,化合物33、34、35、36和37具有更大的吸光范围、更长的吸收波长和更大的摩尔消光系数:这一类化合物具有光稳定性和热稳定性,通过调节N端侧链结构还可以将液晶性引入其中;SCLC电子迁移率测试表明:对于具有相同侧链结构的参比化合物PBI ref.,三苯二噁嗪酰亚胺梯形共轭分子因其分子间作用力更强,形成的薄膜更加有序,表现出更高的迁移率。其中化合物37的迁移率最高,达到3.90×10-3cm2V-1s-1。这些数据表明化合物33、34、35、36和37显示出良好的作为有机电子传输材料的应用前景。。
     使用催化剂[Ir(COD)(μ-OMe)]2催化活化花酰亚胺邻位C-H,再经过取代反应和偶联反应合成了苝酰亚胺的2,5,8,11位(邻位)含有取代基的化合物40、41、42、43和44。通过在花酰亚胺的邻位引入卤原子,化合物40和41的光谱发生蓝移,LUMO能级明显降低,电子亲和势增大,分子问作用力变强,在薄膜上的排列更加紧密,薄膜变得更加有序,进而提高SCLC电子迁移率。通过在花酰亚胺邻位偶联具有供电子性质的芳香基团,化合物42、43和44在氯仿中光谱发生红移,能隙变窄,LUMO能级升高,扩大了化合物吸光范围,提高了吸光能力,有利于其在有机薄膜太阳能电池(OPV)方面的应用
     以3,4,9,10-花四羧酸二酐(PTCDA)和L-丙氨酸为原料以水为溶剂,通过酯化的方法高效合成7个不同侧链长度花酰亚胺L-丙氨酸酯衍生物46、47、48、49、50、51和52。运用差示扫描量热法(DSC)、偏光显微镜(POM)及和热重分析(TGA)对这7个化合物进行研究。化合物46、47、48、49、50、51和52表现出良好的热稳定性,其失重5%时的温度大于3500C。其中化合物50、51和52表现出液晶性并且液晶相范围大于100℃。随着茈酰亚胺L-丙氨酸酯侧链的变长,液晶熔点升高,液晶相温度范围变窄。SCLC迁移率测试表明:随着侧链长度的增加,化合物在薄膜上的有序性降低;具有液晶性的苝酰亚胺衍生物50、51和52在其液晶相温度范围内退火后可以得到较高的SCLC电子迁移率,其中化合物51的电子迁移率可以达到1.90×10。cm2V-1s-1。
Organic electron-transporting materials are the bases for the fabrication of organic semiconductor devices. With investigation of organic optoelectronic devices, such as Organic photovoltaic cells (OPVs), organic field-effect transistors (OFETs) and complementary logic circuits, et al., the developments of organic electron-transporting materials with high mobility, good stability and facile processability are the key factor to restricted the development of organic semiconductors. Rylene diimides such as perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs) and naphthalene-1,8,4,5-tetracarboxylic diimides (NDIs), are a robust, versatile class of polycyclic aromatic electron-transporting materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities. In this dissertation, we designed and synthesized a series of rylene diimides based on PBIs and triphenodioxazine, and carried on a research on optical properties, electrochemical properties, thermal stabilities and electron-transporting properties.
     Multifunctional building blocks8and9were efficiently synthesized by fusing a perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs) core with o-phenylenediamine. In the key photocyclization step, an unusual regioselectivity at the position ortho to the nitro group was discovered in the coupling of the o-nitroaniline functional units at the bay sites of PBI. Multifunctional building blocks8and9were condensed with a pyrenedione, a pyrenetetraone and a hexaketocyclohexane octahydrate respectively, to construct novel ladder-type conjugated compounds12,13and15, and their optical properties, electrochemical properties and thermal stabilities have been investigated. Space charge limited current (SCLC) indicated that the enlargement of conjugated planar can enhance the intermolecular charge transport by improving molecular arrangement in the thin films. These ladder conjugated molecules were preliminarily applied as electron acceptors and blended with P3HT as the donor to fabricate BHJ solar cells, which exhibited better performance than their reference compound PBI.
     Ladder conjugated molecules based on triphenodioxazine diimides33,34,35,36and37were synthesized by a facile method and their optical properties, electrochemical properties and thermal properties were also investigated. Compared with PBI ref., these compounds exhibited intensive absorption in the range of200-600nm. Photodecomposition experiments and thermal gravimetric analysis (TGA) indicated that these compounds have good photostabilities and thermal stabilities, and compounds33and36exhibit liquid-crystalline behavior. The space-charge-limited current (SCLC) devices fabricated via spin coating, they exhibited n-type semiconductor performances with intrinsic electron mobilities considerably higher than that of the PBI ref., and compound37showed the best electron mobility with3.9x10-3cm2V-1s-1. These characteristics qualified compounds33,34,35,36and37as attractive electron-transporting materials applicable in organic electronics.
     Perylene bisimides derivatives40,41,42,43and44were synthesized by introducing substituents at the2,5,8,11-positions of the perylene core under Ir-catalysis and their optical properties, electrochemical properties and thermal stabilities have been discussed. Compared to reference compound38, hypsochromic shifts in the absorption and emission were observed for the derivatives40and41and the tetrachloro derivative40shows a greater shift than the tetrabromo one41. Their LUMO values are-4.18eV and-4.16eV, which are significant low than reference compound38. By introducing phenyl, thienyl and carbazolyl at the2,5,8,11-positions, the absorption bands show a bathochromic shift and the energy gaps become narrow when compared to the reference compound38. Their electron-transporting mobilities were investigated by SCLC method and compound43show the best result which reaches4.88×10-4cm2V-1s-1.
     Seven perylene bisimide derivatives46,47,48,49,50,51and52with side chains of L-aminopropanoic acid ester were designed and synthesized. Their liquid-crystal characters and thermal stabilities were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and thermal gravimetric analysis (TGA). The results indicated that all of the seven compounds have good thermal stability with5%decomposition temperatures (Td) higher than350℃, Compounds50,51and52exhibit liquid-crystalline behaviors with wide temperature range. Their melting points would rise as the side chains grow, but the temperature ranges of their liquid-crystalline become narrow. SCLC measurement indicated that compounds50,51and52which exhibit liquid-crystalline behaviors, showed better charge-transporting mobilities, which was up to1.90×10-3cm2V-1s-1for compound51.
引文
[1]刘云圻,朱道本.有机固体[M].北京:科学出版社,1997.
    [2]Heeger A. J., Sariciftci N. S., and Namdas E. B.半导性与金属性聚合物[M].北京:科学出版社,2010.
    [3]贺庆国,胡文平,白凤莲.分子材料与薄膜器件[M].化学工业出版社,2011.
    [4]Mishra A., Ma C. Q., and Bauerle P. Functional oligothiophenes:molecular design for multi-dimensional nanoarchitectures and their applications [J]. Chem. Rev.,2009,109:1141-1276.
    [5]Murphy A. R., and Frechet J. M. J. Organic semiconducting oligomers for use in thin film transistors [J]. Chem. Rev.,2007,107:1066-1096.
    [6]Zaumseil J., and Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors [J]. Chem. Rev.,2007,107:1296-1323.
    [7]Dimitrakopoulos C. D. and Malenfant P. R. L., Organic thin film transistors for large area electronics [J]. Adv. Mater.,2002,14:99-117.
    [8]Facchetti A., Semiconductors for organic transistors Mater [J]. Today 2007,10:28-37.
    [9]Anthony J. E. The larger acenes:versatile organic semiconduct [J]. Angew. Chem., Int. Ed.,2008,47: 452-483.
    [10]Mitschke U., and Bauerle P. The electroluminescence of organic materials [J]. J. Mater. Chem.,2000, 10:1471-1507.
    [11]Kraft A, Grimsdale A C, and Holmes A B. Electroluminescent conjugated polymers—seeing polymers in a new light [J]. Angew. Chem., Int. Ed.,1998,37:402-428.
    [12]Robinson M R, Wang S, Bazan G C, et al. Electroluminescence from Well-Defined Tetrahedral Oligophenylenevinylene Tetramers [J]. Adv. Mater.,2000,12:1701-1704.
    [13]Bendikov M, Wudl F and Perepichka D F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives:The brick and mortar of organic electronics [J]. Chem. Rev..2004,104: 4891-4945.
    [14]马峰,王世荣,郭俊杰,李祥高.有机薄膜晶体管半导体材料的研究进展[J].有机化学,2012,32:497-510.
    [15]Yan X, Wang J, Wang H, et al. Improved n-type organic transistors by introducing organic heterojunction buffer layer under source/drain electrodes [J]. Appl. Phys. Lett.,2006,89(5):053510
    [16]Ye R, Baba M, Suzuki K, et al. Improved performance of fluorinated copper phthalocyanine thin film transistors using an organic pn junction:Effect of copper phthalocyanine film thickness [J]. Thin Solid Films.2009,517:3001-3004.
    [17]Ye R., Bara M., Ohta K., et al. Effects of thermal annealing on structure, morphology and electrical properties of F16CuPc/a6T heterojunction thin films [J]. Solid-state electron.2010,54:710-714.
    [18]Wang J., Wang H., Yan X., et al. Air stable ambipolar organic field-effect transistors based on phthalocyanince composites heterojunction [J]. Chem. Phys. Lett.2005,407:87-90.
    [19]Tang C, and Van Slyke S, Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987,51:913.
    [20]周莹.新型含氮杂环荧光分子的设计、合成及性质研究[D].(博士学位论文).大连:大连理工大学,2008
    [21]Li C., Wonneberger H. Perylene imides for organic photovoltaics:yesterday, today, and tomorrow [J]. Adv. Mater.,2012,24:613-636.
    [22]徐业伟,朱方华,张林.花酰亚胺衍生物的合成及其应用进展[J].材料导报:综述篇,2010,24(11):79.
    [23]Huang C., Barlow S., and Marder S. R. Perylene-3,4,9,10-tetracarboxylic acid diimides:synthesis, physical properties, and use in organic electronics [J]. J. Org. Chem.,2011,76:2386-2407.
    [24]Schmidt-Mende L., Fechtenkotter A., and Mullen K., et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics [J]. Science,2001,293:1119-1122.
    [25]Jones B. A., Ahrens M. J., Yoon M. H., et al. High-mobility air-stable n-type semiconductors with processing versatility:dicyanoperylene-3,4:9,10-bis(dicarboximides) [J]. Angew. Chem. Int. Ed.,2004,43: 6363-6366.
    [26]Weitz R. T., Amsharov K., Zschieschang U., et al. Anic n-channel transistors based on core-cyanated perylene carboxylic diimide derivatives [J]. J. Am. Chem. Soc.,2008,130:4637-4645.
    [27]Schmidt R., Ling M. M., Oh J. H., et al. Core-fluorinated rerylene bisimide dyes:air stable n-channel organic semiconductors for thin film transistors with exceptionally high on-to-off current ratios [J]. Adv. Mater.,2007,19:3692-3695.
    [28]Langhals H., Karolinb J., and Johansson L. B. Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields [J]. J. Chem. Soc. Faraday Trans.,1998,94: 2919-2922.
    [29]Kardos M. Vat dye [P]. Deutsches Reichs patent. No.276357,1913.
    [30]Smith H. High performance pigments [M]. Wiley-VCH Verlag, Weinheim,2003.
    [31]Herbst W., Hunger K., Industrial organic pigments,3rd ed. [M]. Wiley-VCH Verlag, Weinheim, 2006.
    [32]Langhals H. Cyclic carboxylic imide structures as structure elements of high-stability-novel developments in perylene dye chemistry [J]. Heterocycles,1995,40:477-500.
    [33]Kus M., Demic S., Zafer C., et al. Spectrophotochemical and electrochemical characterization of perylene derivatives adsorbed on nanoporous metaloxide films [J]. European Physical Journal:Applied Physics,2007,37(3):277-281.
    [34]Wicklein A., Lang A., Muth M., et al. Swallow-Tail Substituted liquid crystalline perylene bisimides: synthesis and thermotropic properties [J]. J. Am. Chem. Soc.,2009,131:14442-14453.
    [35]Chen Z., Zheng Y., Yan H., et al. Naphthalenedicarboximide-vs. perylenedicarboximide-based copolymers. synthesis and semiconducting properties in bottom-gate n-channel transistors [J]. J. Am. Chem. Soc.,2009,131:8-9.
    [36]Rademacher A., Markle S., and Langhals H. Soluble perylene fluorescent dyes with high photostability [J]. Chem. Ber.,1982,115:2927-2934.
    [37]Wescott L. D., and Mattern D. L. Donor-n-acceptor molecules incorporating a nonadecyl-swallowtailed perylenediimide acceptor [J]. J. Org. Chem.,2003,68:10058-10066.
    [38]Wurthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures [J]. Chem. Commun.,2004:1564-1579.
    [39]Nagao Y. Synthesis and properties of perylene pigments [J]. Prog. Org. Coat.,1997,31:43-49.
    [40]Maki T., Hashimoto H. Vat dyes of acenaphthene series. Ⅳ. Condensation of 3,4,9, 10-perylenetetracarboxylic acid anhydride with o-phenylenediamine [J]. Bull. Chem. Soc. Jpn.,1952,25: 411-413.
    [41]Maki T., Hashimoto H. Vat dyes of the acenaphthene series. vi. derivatives of acenaphthene violet [J]. Bull. Chem. Soc. Jpn.,1954,27:602-605.
    [42]Malenfant P. R. L., Dimitrakopoulos C. D., Gelorme J. D., et al. N-type organic thin-film transistor with high field-effect mobility based on a N, N'- dialkyl-3,4,9,10-Perylene tetracarboxylic diimide derivative[J]. Appl. Phys. Lett.,2009,80:2517-2519.
    [43]Chesterfield R. J., McKeen J. C., Newman C. R., et al. Organic thin film transistors based on n-alkyl perylene diimides:charge transport kinetics as a function of gate voltage and temperature [J]. J. Phys. Chem. B,2004,108(50):19281-19292.
    [44]Tatemichi S., Ichikawa M., Koyama T., et al. High mobility n-type thin-film transistors based on N,N'-ditridecyl perylene diimide with thermal treatments [J]. Appl. Phys. Lett.,2006,89(11): 112108/1-112108/3.
    [45]Shi M., Chen H., Sun J., et al. Fluoroperylene diimide:a soluble and air-stable electron acceptor [J]. Chem. Commun.,2003, (14):1710-1711.
    [46]Chen H., Ling M., Mo X., et al. Air stable n-channel organic semiconductors for thin film transistors based on fluorinated derivatives of perylene diimides [J]. Chem. Mater.,2007,19:816-824.
    [47]施敏敏,陈红征,汪茫.不同氟取代基对苝酰亚胺电子迁移率的影响[J].化学学报.2006,64(8):721-726.
    [48]Schmidt R., Oh J. H., Sun Y., et al. High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors [J]. J. Am. Chem. Soc.,2009,131(17): 6215-6228.
    [49]Li J., Dierschke F., Wu J., et al. Poly(2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells [J]. J. Mater. Chem.,2006,16:96-100.
    [50]Shin W., Jeong H., Kim M., et al. Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application [J]. J. Mater. Chem.,2006,16:384-390.
    [51]Howard I., Laquai F., Keivanidis P., et al. Perylene tetracarboxydiimide as an electron acceptor in organic solar cells:a study of charge generation and recombination [J].J Phys. Chem. C,2009,113: 21225-21232.
    [52]Kim I., Haverinen H., Wang Z., et al. Effect of molecular packing on interfacial recombination of organic solar cells based on palladium phthalocyanine and perylene derivatives [J]. Appl. Phys. Lett.,2009, 95:023305.
    [53]Tang C. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.,1986,48(2):183-185.
    [54]Peumans P., Bulovic V., and Forrest S. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes [J]. Appl. Phys. Lett.,2000,76(19): 2650-2652.
    [55]Takahashi K., Kuraya N., Yamaguchi T., et al. Three-layer organic solar cell with high-power conversion efficiency of 3.5%[J]. Solar Energy Materials & Solar Cells,2000,61(4):403-416.
    [56]Gebeyehu D., Pfeiffer M., Maennig B., et al. Highly efficient p-i-n type organic photovoltaic devices [J]. Thin Solid Films,2004:451-452,29-32.
    [57]Nolde F., Pisula W., Mueller S., et al. Synthesis and self-organization of core-extended perylene tetracarboxdiimides with branched alkyl substituents [J]. Chem. Mater.,2006,18(16):3715-3725.
    [58]Nolde F., Qu J., Kohl C., et al. Synthesis and modification of terrylenediimides as high-performance fluorescent dyes [J]. Chem.-Eur. J.,2005,11(13):3959-3967.
    [59]Petit M., Hayakawa R., Shirai Y., et al. Growth and electrical properties of N,N'-bis(n-pentyl)terrylene-3,4:11,12-tetracarboximide thin films [J]. Appl. Phys. Lett.,2008,92(16): 163301/1-163301/3.
    [60]Oh J., Lee W., Noe T., et al. Solution-shear-processed quaterrylene diimide thin-film transistors prepared by pressure-assisted thermal cleavage of swallow tails [J]. J. Am. Chem. Soc.,2011,133: 4204-4207.
    [61]Struijk C., Sieval A., Dakhorst J., et al. Liquid crystalline perylene diimides:architecture and charge carrier mobilities [J]. J. Am. Chem. Soc.,2000,122:11057-11066.
    [62]Wicklein A., Muth M-A., and Thelakkat M. Room temperature liquid crystalline perylene diester benzimidazoles with extended absorption [J]. J. Mater. Chem.,2010,20:8646-8652.
    [63]Xu Y., Leng S., Xue C., et al. A room-temperature liquid-crystalline phase with crystalline stack [J]. Angew. Chem. Int. Ed.,2007,46:3896-3899.
    [64]An Z., Yu J., Jones S., et al. High electron mobility in room-temperature discotic liquid-crystalline perylene diimides [J]. Adv. Mater.,2005,17(21):2580-2583.
    [65]Rogovik V., and Gutnik L., Chemistry of perylene. halo derivatives of 3,4,9,10-perylenetetra-carboxylic acid [J]. Zh. Org. Khim.,1988,24:635-639.
    [66]Seybold G., and Wagenblast G., New perylene and violanthrone dyestuffs for fluorescent collectors [J]. Dyes Pigm.,1989,11:303-317.
    [67]Iden R., Seybold G., Perylene-3,4,9,10-tetracarboxylic acid diimides and their use as fluorescence centers in polymeric plates [P]. Ger. Pat. Appl.,1985, DE 3434059 A1.
    [68]Wurthner F., Osswald P., Schmidt R., et al. Synthesis and optical and electrochemical properties of core-fluorinated perylene bisimides [J]. Org. Lett.,2006,8(17):3765-3768.
    [69]Wurthner F., Stepanenko V., Chen Z., et al. Preparation and characterization of regioisomerically pure 1,7-disubstituted perylene bisimide eyes [J]. J. Org. Chem.,2004,69(23):7933-7939.
    [70]Heinz L., and Susanne K., Novel fluorescent dyes by the extension of the core of perylenetetracarboxylic bisimides [J]. Eur. J. Org. Chem.,2000, (2):365-380.
    [71]Rajasingh P., Cohen R., and Shirman E. Selective bromination of perylene diimides under mild conditions [J]. J. Org. Chem.,2007,72(16):5973-5979.
    [72]Yuan Z., Xiao Y., Li Z., et al. Efficient synthesis of regioisomerically pure bis(trifluoro-methyl)-substituted 3,4,9,10-perylene tetracarboxylic bis(benzimidazole) [J]. Org.Lett.,2009,11(13): 2808-2811.
    [73]Ahrens M., Fuller M., and Wasielewski M. Cyanated perylene-3,4-dicarboximides and perylene-3,4:9,10-bis(dicarboximide):facile chromophoric oxidants for organic photonics and electronics [J]. Chem. Mater.,2003,15(14):2684-2686.
    [74]Jones B., Facchetti A., Wasielewski M., et al. Effects of arylene diimide thin film growth conditions on n-channel OFET performance [J]. Adv. Funct. Mater.,2008,18(8):1329-1339.
    [75]Molinari A., Alves H., Chen Z., et al. High electron mobility in vacuum and ambient for pdif-cn2 single-crystal transistors [J]. J. Am. Chem. Soc.,2009,131(7):2462-2463.
    [76]Gsanger M., Oh J., Konemann M., et al. A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core:an n-channel organic semiconductor [J]. Angew. Chem. Int. Ed.,2010,49(4): 740-743.
    [77]Yoo B., Jones B., Basu D., et al. High-performance solution-deposited n-channel organic transistors and their complementary circuits [J]. Adv. Mater.,2007,19(22):4028-4032.
    [78]Yan H., Zheng Y., Blache R., et al. Solution processed top-gate n-channel transistors and complementary circuits on plastics operating in ambient conditions [J]. Adv. Mater.,2008,20(18): 3393-3398.
    [79]Piliego C., Jarzab D., Gigli G., et al. High electron mobility and ambient stability in solution-processed perylene-based organic field-effect transistors [J]. Adv. Mater.,2009,21(16): 1573-1576.
    [80]Piliego C., Cordella F., Jarzab D., et al. Functionalized perylenes:origin of the enhanced electrical performances [J]. Appl. Phys. A,2009,95(1):303-308.
    [81]Ng T., Sambandan S., Lujan R., et al. Electrical stability of ink-jet patterned organic complementary inverters measured in ambient conditions [J]. Appl. Phys. Lett.,2009,94(23):233307/1-233307/3.
    [82]Rivnay J., Jimison L., Northrup J., et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films [J]. Nat. Mater.,2009,8(12):952-958.
    [83]Mikroyannidis J., Stylianakis M., Suresh P., Sharma G., Efficient hybrid bulk heterojunction solar cells based on phenylenevinylene copolymer, perylene bisimide and TiO2 [J]. Solar Energy Materials & Solar Cells,2009,93(10):1792-1800.
    [84]Sharma G., Balraju P., Mikroyannidis J., Stylianakis M., Bulk heterojunction organic photovoltaic devices based on low band gap small molecule BTD-TNP and perylene-anthracene diimide [J]. Solar Energy Materials & Solar Cells,2009,93(11):2025-2028.
    [85]Sharma G., Suresh P., Mikroyannidis J. and Stylianakis M., Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene-pyrene bisimide [J]. J. Mater. Chem.,2010,20(3): 561-567.
    [86]Mikroyannidis J., Suresh P. and Sharma G. D. Synthesis of a perylene bisimide with acetonaphthopyrazine dicarbonitrile terminal moieties for photovoltaic applications [J]. Synth. Met.,2010, 160(9-10):932-938.
    [87]Sharma G., Roy M., Mikroyannidis J., et al. Synthesis and characterization of a new perylene bisimide (PBI) derivative and its application as electron acceptor for bulk heterojunction polymer solar cells [J]. Organic Electronics,2012,13:3118-3129.
    [88]Zhang X., Lu Z., Ye L., et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency [J]. Adv. Mater.,2013, DOI:10.1002/adma.201300897.
    [89]Li Y., Zheng H., Li Y., et al. Photonic logic gates based on control of fret by a solvatochromic perylene bisimide [J]. J. Org. Chem.,2007,72(8):2878-2885.
    [90]Rohr U., Kohl C, Mullen K., et al. Liquid crystalline coronene derivatives [J]. J. Mater. Chem.,2001, 11(7):1789-1799.
    [91]An Z., Yu J., Domercq B., et al. Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air [J]. J. Mater. Chem.,2009,19(37):6688-6698.
    [92]Yue W., Lv A., Gao J., et al. Hybrid rylene arrays via combination of stille coupling and c-h transformation as high-performance electron transport materials [J]. J. Am. Chem. Soc.,2012,134(13): 5770-5773.
    [93]Zhang Z., Lei T., Yan Q., et al. Electron-transporting PAHs with dual perylenediimides:syntheses and semiconductive characterizations [J]. Chem. Commun.,2013,49(28):2882-2884.
    [94]Choi H., Paek S., Song J., et al. Synthesis of annulated thiophene perylene bisimide analogues:their applications to bulk heterojunction organic solar cells [J]. Chem. Commun.,2011,47:5509-5511.
    [95]Xu L., Liu C., Qin Z., et al. Core expansion of perylenetetracarboxdiimide dyes with anthraquinone units for electron-accepting materials [J]. Eur. J. Org. Chem.,2013,300-306.
    [96]Cremer J.and Bauerle P., Star-shaped perylene-oligothiophene-triphenylamine hybrid systems for photovoltaic applications [J]. J. Mater. Chem.,2006,16(9):874-884.
    [97]Cremer J., Mena-Osteritz E., Pschierer N., et al. Dye-functionalized head-to-tail coupled oligo(3-hexylthiophenes)-perylene-oligothiophene dyads for photovoltaic applications [J]. Org. Biomol. Chem.,2005,3(6):985-995.
    [98]Cremer J., and Bauerle P. Perylene-oligothiophene-perylene triads for photovoltaic applications [J]. Eur. J. Org. Chem.,2005, (17),3715-3723.
    [99]Wonneberger H., Ma C., Gatys M., et al. Terthiophene-Perylene diimides:Color Tuning via Architecture Variation [J]. J. Phys. Chem. B,2010,114(45):14343-14347.
    [100]Palermo V., Otten M., Liscio A, et al. The relationship between nanoscale architecture and function in photovoltaic multichromophoric arrays as visualized by kelvin probe force microscopy [J]. J. Am. Chem. Soc.,2008,130(44):14605-14614.
    [101]Lee S., Zu Y., Herrmann A., et al. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution [J]. J. Am. Chem. Soc.,1999,121(14):3513-3520.
    [102]Yuan Z., Li J, Xiao Y., et al. Core-perfluoroalkylated perylene diimides and naphthalene diimides: versatile synthesis, solubility, electrochemistry, and optical properties [J]. J. Org. Chem.,2010,75, 3007-3016.
    [103]Yuan Z., Xiao Y., and Qian X. A design concept of planar conjugated ladder oligomers of perylene bisimides and efficient synthetic strategy via regioselective photocyclization [J]. Chem. Commun.,2010, 46,2772-2774.
    [104]Yuan Z., Xiao Y., Yang Y., Soluble ladder conjugated polymer composed of perylenediimides and thieno[3,2-b]thiophene (LCPT):a highly efficient synthesis via photocyclization with the sunlight [J]. Macromolecules,2011,44:1788-1791.
    [105]Yang Y., Wang Y., Xie Y., et al. Fused perylenebisimide-carbazole:new ladder chromophores with enhanced third-order nonlinear optical activities [J]. Chem. Commun.,2011,47(38):10749-17051.
    [106]Xie Y., Zhang X., Xiao Y., et al. Fusing three perylenebisimide branches and a truxene core into a star-shaped chromophore with strong two-photon excited fluorescence and high photostability [J]. Chem. Commun.,2012,48,4338-4340.
    [107]Zhang Y., Zhao Z., Huang X., et al. N-type organic semiconductor bisazacoronene diimides efficiently synthesized by a new type of photocyclization involving a Schiff base [J]. RSC Advances,2012, 2(33):12644-12647.
    [108]Nakazono S., Imazaki Y., Yoo H., et al. Regioselective Ru-catalyzed direct 2,5,8,11-alkylation of perylene bisimides [J]. Chem. Eur. J.,2009,15(31):7530-7533.
    [109]Teraoka T., Hiroto S., and Shinokubo H. Iridium-catalyzed direct tetraborylation of perylene bisimides [J]. Org. Lett.,2011,13(10):2532-2535.
    [110]Battagliarin G., Li C., Enkelmann V., and Mullen K.,2,5.8,11-Tetraboronic ester perylenediimides: a next generation building block for dye-stuff synthesis [J]. Org. Lett.,2011,13(12):3012-3015.
    [111]Battagliarin G., Zhao Y., Li C. and Mullen K. Efficient tuning of lumo levels of 2,5,8,11-substituted perylenediimides via copper catalyzed reactions [J]. Org. Lett.,2011,13(13):3399-3401.
    [112]Bullock J., Vagnini M., Ramanan C., et al. Photophysics and redox properties of rylene imide and diimide dyes alkylated ortho to the imide groups [J]. J. Phys. Chem. B,2010,114(5):1794-1802.
    [113]Ito S., Hiroto S., and Shinokubo H. Synthesis of pyridine-fused perylene imides with an amidine moiety for hydrogen bonding [J]. Org. Lett.,2013,15:3110-3113.
    [114]Kamm V., Battagliarin G., Howard I., et al. Polythiophene:perylene diimide solar cells- the impact of alkyl-substitution on the photovoltaic performance [J]. Adv. Energy Mater.,2011,1(2):297-302.
    [115]Jones B., Facchetti A., and Marks T. Cyanonaphthalene diimide semiconductors for air-stable, flexible, and optically transparent n-channel field-effect transistors [J]. Chem. Mater.,2007,19(11): 2703-2705.
    [116]Chang J., Ye Q., Huang K... et al. Stepwise cyanation of naphthalene diimide for n-channel field-effect transistors [J]. Org. Lett.,2012,14(12):2964-2967.
    [117]Laquindanum J., Katz H., Dodabalapur A., et al. N-channel organic transistor materials based on naphthalene frameworks [J]. J. Am. Chem. Soc.,1996,118:11331-11332.
    [118]Katz H., Johnson J., Lovinger A., et al. Naphthalene tetracarboxylic diimide-based n-channel transistor semiconductors:structural variation and thiol-enhanced gold contacts [J]. J. Am. Chem. Soc, 2000,122:7787-7792.
    [119]Katz H., Lovinger A., Johnson J., et al. A soluble and air-stable organic semiconductor with high electron mobility [J]. Nature,2000,404:471-481.
    [120]Singh T., Erten S., Gunes S., et al. Soluble derivatives of perylene and naphthalene diimide for n-channel organic field-effect transistors [J]. Org. Electron.,2006,7:480-489.
    [121]Kao C., Lin P., Lee C., et al. High-Performance bottom-contact devices based on an air-stable n-type organic semiconductor N, N'-bis(4-trifluoromethoxybenzyl)-1,4,5,8-naphthalene-tetracarboxylic diimide [J]. Appl. Phys. Lett.,2007,90:212101-212103.
    [122]Shukia D., Nelson S., Freeman D., et al. Thin-film morphology control in naphthalene-diimide-based semiconductors:high mobility n-type semiconductor for organic thin-film transistors [J]. Chem. Mater.,2008,20:7486-7491.
    [123]Zheng Q., Huang J., Sarjeant A., and Katz H. Pyromellitic diimides:minimal cores for high mobility n-channel transistor semiconductors [J]. J. Am. Chem. Soc.,2008,130(44):14410.
    [124]Wang Z., Kim C., Facchetti A., and Marks T. Anthracenedicarboximides as air-stable n-channel semiconductors for thin-film transistors with remarkable current on-off ratios [J]. J. Am. Chem. Soc.,2007, 129(44):13362.
    [125]Katz H., Siegrist T., Schon J., et al. Solid-state structural and electrical characterization of N-benzyl and N-alkyl naphthalene 1,4,5,8-tetracarboxylic diimides [J]. ChemPhysChem,2001,2(3):167-172.
    [126]Chang J., Qu H., OOI Z., et al.6,13-Dicyano pentacene-2,3:9,10-bis(dicarboximide) for solution-processed air-stable n-channel field effect transistors and complementary circuit [J]. J. Mater. Chem.C,2013,1:456-462.
    [127]Zhan X., Tan Z., Domercq B., et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells [J]. J. Am. Chem. Soc.,2007, 129(23):7246.
    [128]Zhan X., Tan Z., Zhou E., et al. Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors [J]. J. Mater. Chem.,2009,19(32):5794-5803.
    [129]Huttner S., Sommer M., Thelakkat M., N-type organic field effect transistors from perylene bisimide block copolymers and homopolymers [J]. Appl. Phys. Lett.,2008,92(9):093302.
    [130]Babel A., Jenekhe S., High electron mobility in ladder polymer field-effect transistors [J]. J. Am. Chem. Soc.,2003,125(45):13656-13657.
    [131]Alam M., and Jenekhe S., Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers [J]. Chem. Mater.,2004,16(23):4647-4656.
    [132]Schubert M., Dolfen D., Frisch J., et al. Influence of aggregation on the performance of all-polymer solar cells containing low-bandgap naphthalenediimide copolymers [J]. Adv. Energy Mater.,2012,2(3): 369-380.
    [133]Zhan X., Facchetti A., Barlow S., et al. Rylene and related diimides for organic electronics [J]. Adv. Mater.,2011,23(2):268-284.
    [134]Yan H., Chen Z., Zheng Y., et al. A high-mobility electron-transporting polymer for printed transistors [J]. Nature,2009,457:679.
    [135]Blakesley J., Schubert M., Steyrleuthner R., Time-of-flight measurements and vertical transport in a high electron-mobility polymer [J]. Appl. Phys. Lett.,2011,99(18):183310.
    [136]Steyrleuthner R., Schubert M., Jaiser F., et al. Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer [J]. Adv. Mater.,2010,22(25):2799.
    [137]Szendrei K.., Jarzab D., and Chen Z. Ambipolar all-polymer bulk heterojunction field-effect transistors [J]. J. Mater. Chem.,2010,20(7):1317-1321.
    [138]Moore J., Albert-Seifried S., Rao A., et al. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor:device physics, photophysics and morphology [J]. Adv. Energy Mater.,2011,1(2):230-240.
    [139]Fabiano S., Chen Z., and Vahedi S. Role of photoactive layer morphology in high fill factor all-polymer bulk heteroj unction solar cells [J].J. Mater. Chem.,2011,21(16):5891-5896.
    [140]Steyrleuthner R., Schubert M., and Howard I. Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology [J]. J. Am. Chem. Soc.,2012,134(44): 18303-18317.
    [141]Di Pietro D., Fazzi D., Kehoe T., et al. Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors [J]. J. Am. Chem. Soc.,2012,134(36):14877-14889.
    [142]Hou J., Zhang S., Chen T., et al. A new n-type low bandgap conjugated polymer P-co-CDT: synthesis and excellent reversible electrochemical and electrochromic properties [J]. Chem. Commun., 2008, (45):6034-6036.
    [113]Zhou E., Cong J., and Wei Q. All-Polymer solar cells from perylene diimide based copolymers: material design and phase separation control [J]. Angew. Chem., Int. Ed.,2011,50(12):2799-2803.
    [144]Woodhouse M., Perkins C., Rawls M., et al. Non-conjugated polymers for organic photovoltaics: physical and optoelectronic properties of poly(perylene diimides) [J]. J. Phys. Chem. C.,2010,114(14): 6784-6790.
    [115]Mikroyannidis J., Stylianakis M., Sharma G., et al. A novel alternating phenylenevinylene copolymer with perylene bisimide units:synthesis, photophysical, electrochemical, and photovoltaic properties [J]. J. Phys. Chem. C,2009,113(18):7904-7912.
    [146]Li X., Xiao Y., and Qian X..2,3,6,7-Tetraamino-9,9-bis(2-ethylhexyl) fluorene:new multifunctional monomer for soluble ladder-conjugated molecules and polymers [J]. Org. Lett.,2008,10(13):2885-2888.
    [147]Giaimo J., Lockard J., Sinks L., et al. Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3,4:9,10-bis(dicarboximide)s [J]. J. Phys. Chem. A,2008.112(11):2322-2330.
    [148]Thompson B., Kim Y., and McCarley T. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications [J]. J. Am. Chem. Soc.,2006,128,12714-12725.
    [149]Muth M., Carrasco-Orozco M., and Thelakkat M. Liquid-crystalline perylene diester polymers with tunable charge-carrier mobility [J]. Adv. Funct. Mater.,2011,21(23):4510-4518.
    [150]Woo C., Thompson B., Kim B., et al. The influence of poly(3-hexylthiophene) regio-regularity on fullerene-composite solar cell performance [J]. J. Am. Chem. Soc.,2008,130(48) 16324-16329.
    [151]Kaafarani B., Kondo T., Yu J., et al. High charge-carrier mobility in an amorphous hexaazatrinaphthylene derivative [J]. J. Am. Chem. Soc.,2005,127(47) 16358-16359.
    [152]Blom P., Tanase C., Leeuw C., et al. Thickness scaling of the space-charge-limited current in poly(p-phenylene vinylene) [J]. Appl. Phys. Lett.,2005,86(9):092105/1-092105/3.
    [153]Khan M., Xu W., Haq K-u, et al. Electron injection and transport mechanism in organic devices based on electron transport materials [J]. J. Phys. D:Appl. Phys.,2008,41(22) 225105/1-225105/6.
    [154]Khan M., Xu W., Haq K-u, et al. Highly power efficient organic light-emitting diodes based on p-doped and novel n-doped carrier transport layers [J]. J. Phys. D:Appl. Phys.,2007,40(21):6535-6540.
    [155]Loannidis A., Forsythe E., Gao Y., et al. Current-voltage characteristic of organic light emitting diodes [J]. Appl. Phys. Lett.,1998,72(23):3038-3040.
    [156]Hochfilzer C., Leising G., Gao Y., et al. Emission process in bilayer organic light emitting diodes [J]. Appl. Phys. Lett.1998,73(16):2254-2256.
    [157]Di C., Li J., Yu G., and Xiao Y. Trifluoromethyltriphenodioxazine:air-stable and high-performance n-type semiconductor [J]. Org. Lett.,2008,10(14):3025-3028.
    [158]Yang Q., Yang P., Qian X., et al. Naphthalimide intercalators with chiral amino side chains:Effects of chirality on DNA binding, photodamage and antitumor cytotoxicity [J]. Bioorganic & Medicinal Chemistry Letters,2008,18(23):6210-6213.
    [159]Pratt D., and Perkins G.. Phthalic acid derivatives; constitution and color. Ⅵ. The action of amines upon dichlorophthalic anhydrides [J]. J. Am. Chem. Soc.,1918,40:214-219.
    [160]Garcia-Moreno I., Amat-Guerri F., Liras M., et al. Structural changes in the BODIPY dye PM567 enhancing the laser action liquid and solid media [J]. Adv. Funct. Mater.,2007,17(16) 3088-3098.
    [161]Kaur I., Jia W., Kopreski R., et al. Substituent effects in pentacenes:gaining control over homo-lumo gaps and photooxidative resistances [J]. J. Am. Chem. Soc.,2008,130(48):16274-16286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700