紫外辐照导致植物细胞DNA损伤的彗星电泳检测及生理指标的测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
彗星实验(comet assay)又称单细胞凝胶电泳(single cell gel electrophoresis,SCGE),以电泳后细胞核DNA显示的显微镜荧光图像特征而得名,是用来定量分析和测定细胞核中DNA损伤程度的实验方法。可在单细胞水平上检测单链/双链DNA断裂,DNA分子中碱性不稳定位点,DNA链中不完全切除修复位点和DNA分子内及分子间交联等损伤与修复的的方法,具有敏感、稳定、快速的优点。在国外已得到了广泛应用,在我国SCGE主要被用于对环境毒理学、离子射线损伤、自由基损伤、癌症放疗、生物监测等领域。对植物的研究报道甚少。
     本实验设计是建立在前期所做的植物不对称体细胞杂交实验基础之上。实验发现柴胡、盐芥的原生质体分别经UV(380μW/cm~2)照射2min,5min后再分别与不同植物的原生质体融合,在所得的相应的体细胞杂种细胞中观察到柴胡和盐芥具有使异源染色质消减与渐渗的现象。该结果与本实验室所作的大量有关小麦的体细胞杂交实验和国内外其它已报道的其它植物体细胞杂交实验的结果相反。为了进一步探讨柴胡、盐芥为什么可使受体染色质消减与渐渗,本实验拟以六种不同植物的原生质体(单、双子叶植物各三种)为研究对象,对经UV辐照后导致细胞中DNA损伤测定的SCGE方法进行不同实验条件优;利用CASP分析软件(comet assay software projiect)对所得数据进行分析;综合评价不同UV照射剂量下各植物DNA损伤程度的差异;对UV辐照前后与DNA损伤修复相关的抗氧酶及生物大分子合物的变情况进行测定分析。选取的双子叶植物:柴胡(Bupleurm scorzonerifolium Willd.),盐芥(Thellungiella salsuginea),拟南芥(Arabidopsis thaliana)。单子叶植物:小麦(Triticum aestivum L.),中间偃麦草(Thinopyrum intermedium(Hest)Nevski),簇毛麦(Dasypyrum villosum)。
     以上研究期望对植物不对称体细胞杂交机理的阐明提供新依据。
     主要研究内容及实验结果:
     1)利用CASP软件对SCGE测定的细胞损伤量(Olive Tail Moment,OTM值)进行分析
     彗星实验测定六种待测实验材料的原生质体,在低剂量(380μW/cm~2,≤2min)的UV辐照下,柴胡、盐芥、拟南芥、簇毛麦及小麦细胞的OTM值差别不明显,肉眼可辨其彗星电泳图片拖尾较短;中间偃麦草细胞的OTM值在UV照射1min剂量时,较其它5种材料上升明显,此时彗星电泳图片显示有较明显的拖尾现象。以中等剂量的UV(380μW/cm~2,2-5min)辐照时,上述六种材料的OTM值差异显著,其中柴胡、盐芥、拟南芥细胞的OTM值比小麦、中间偃麦草、簇毛麦明显偏低,此时小麦、中间偃麦草、簇毛麦彗星电泳图片有较明显的拖尾出现;当UV照射剂量达到(380μW/cm~2,5-10min)高剂量时,盐芥、拟南芥细胞的OTM值急剧上升与小麦、中间偃麦草、簇毛麦相近,此时柴胡细胞也有上升,但是OTM随UV照射剂量变的曲线较其它三种细胞相对缓慢。在极端UV照射剂量下(380μW/cm~2,12.5min),除了柴胡其它5种材料细胞中的DNA在凝胶中都呈弥散状态已无法检测,而柴胡中还有接近20%细胞的DNA损伤可以被检测到。不同UV照射剂量对六种植物材料DNA损伤的比较图析显示在每个照射剂量下,柴胡、盐芥的OTM值都是偏低的,而簇毛麦、中间偃麦草的OTM值则是偏高的。以SCGE结合CASP软件分析可见六种植物细胞UV抗性由高到低的排列顺序是:柴胡>盐芥>小麦>拟南芥>中间偃麦草>簇毛麦。
     2)UV照射前后各实验材料愈伤组织中O_2~-的含量测定
     未经UV辐照的六种材料细胞内都含有一定浓度的O_2~-,盐芥、拟南芥、中间偃麦草、簇毛麦细胞O_2~-的含量高于柴胡、小麦。随着UV照射剂量的增加,各实验材料细胞内O_2~-含量都有所上升。盐芥细胞内O_2~-浓度急剧上升;柴胡细胞内O_2~-上升较为平缓;其余四种材料在每个UV照射剂量下细胞内O_2~-含量处于柴胡与盐芥之间。推测柴胡细胞内或许存在与其它材料不同的,更为有效的清除UV胁迫产生O_2~-的机制。
     3)UV照射前后各实验材料愈伤组织中黄酮含量的比较
     利用紫外分光光度计进行UV(380μW/cm~2,0,5,10,15,20min)照射前后六种实验材料愈伤组织中总黄酮含量测定时发现:UV照射前柴胡细胞中总黄酮的含量最高,小麦细胞中总黄酮的含量次之;中间偃麦草、簇毛麦细胞中总黄酮含量居中,盐芥、拟南芥细胞中总黄酮的含量最低。UV辐照5min内,柴胡、小麦细胞内总黄酮的含量与UV照射时间呈正相关,达到最高,然后开始降低:UV辐照10min内,盐芥、拟南芥细胞内总黄酮含量与UV照射时间呈正相关,此时测定的拟南芥、中间偃麦草、簇毛麦细胞中总黄酮含量达到最高,然后开始降低;盐芥细胞中总黄酮含量则在UV辐照15min后达到最高,之后又降低。
     4)UV照射前后各实验材料愈伤组织中多酚类合物含量的比较
     紫外分光光度计测定UV(380μW/cm~2,0,5,10,15,20min)照射前后各实验材料愈伤组织中多酚类物质含量显示:UV照射前后柴胡细胞中酚类物质含量在六种材料中最高,在一定剂量范围内UV(380μW/cm~2,≤10min)两者呈正相关,UV辐照5min时,柴胡细胞中多酚类合物含量达到最高;拟南芥、小麦、中间偃麦草、簇毛麦、盐芥细胞多酚类物质含量则在UV辐照10min时达到最高。
     通过黄酮、多酚类物质的含量对比,推测各种植物是分别通过不同的方式抵御其氧造成的损伤。如柴胡、小麦细胞可能主要通过快速的应激反应产生大量的保护类物质,如黄酮、多酚类物质直接吸收UV已抵御其氧造成的损伤,以防止细胞中的DNA遭受损伤;而拟南芥、中间偃麦草和簇毛麦细胞中黄酮、多酚类物质产生较慢,它们可能主要通过体内存在的抗氧酶类直接清除UV氧产生的氧自由基而起作用;而对照组盐芥细胞中黄酮类合物几乎测不到,多酚类物质含量也很低,但UV照射后两物质含量迅速增加,推测细胞内游离的多酚类/黄酮类合物与抗氧酶类在清除自由基中相结合共同发挥作用。
     5)UV照射前后各实验材料愈伤组织中POD活性分析
     未经UV照射时,柴胡细胞中POD活性低于其它五种实验材料。随UV照射时间增加,各实验材料细胞中POD活性均呈现先升后降的振荡趋势。UV-5min处柴胡细胞中的POD活性上升仅次于POD活性最高的拟南芥;UV-10min时柴胡细胞中POD活性下降的速度大于其它五种,降至最低;但到UV-20min处柴胡细胞中POD活性与小麦、盐芥、簇毛麦相近但都低于拟南芥、中间偃麦草。说明轻度UV辐照可能会在一定程度上诱导POD活性,但高剂量UV辐照,会使POD活性有所下降。六种实验材料POD活性随UV变总体未呈现统一的规律性。
     6)UV照射前后各实验材料愈伤组织中Pro浓度测定
     未经UV辐照时,拟南芥细胞内Pro含量最高,而盐芥的最低,其余材料的细胞中Pro含量居中,随着UV照射剂量的增加,六种材料细胞内Pro含量都有所上升。柴胡细胞内Pro浓度相对于其它五种细胞上升较缓慢,含量一直处于最低;盐芥细胞内Pro含量上升最快。当UV照射剂量大于10min,盐芥细胞内的Pro浓度高于其它五种细胞。推测盐芥细胞可能部分通过Pro的浓度变来起到调节其抗UV氧的作用。
Comet assay as also called the single cell gel electrophoresis(SCGE)is a sensitive,reliable,and rapid method which can detect double or single DNA breaks and alkal-labile sites in eukaryotic individual cells.In this study,this method was applied to measure DNA damage of several plant protoplasts,which induced by UV. An improvement method that is used for detecting different plant DNA damages.
     In our previous asymmetric somatic hybridization of plants,some asymmetry hybrids were obtained by UV irridiated protoplasts of Bupleurm scorzonerifolium (380μW/cm~2,5min)and Thellungiella salsuginea(380μW/cm~2,2min)before asymmetric somatic hybridization between Arabidopsis thaliana/B,scorzonerifolium and A.thaliana/T,salsuginea.The chromotins of receptor eliminated and introgressed into genomes of donors were investgated in these somatic hybrids.On the contrary., many results showed that the chromosomes of donor fragmented,translocted or introgressed into the genomes of receptor in the somatic hybridization in which Triticum aestivum as one partners and heterologous genus grasses were UV-irradiated before fusion.Since ionization and excitation could be induced by primary UV-radiation led to the production of new chemical species in donor and hybrid cell, such as hydroxyl radicals,hydrogen radicals,and solvated electrons produced have a finite probability of interacting with DNA sites.To investigate the relationship between the dosages of UV-radiation on the protoplasts of donor and the chromosomes elimination/introgression of receptors or donors in the somatic hybrids. we use SCGE to evaluate UV damage at DNA level on six plant protopasts(B. scorzonerifolium,T.salsuginea,T.aestivum L.,Hasypyrum villosum and Thinopyrum intermedium(Hest)Nevski.)and using CASP(Comet assay software project) software to accurately analyze the images.The related physiological indicators produced by UV- radiation on plant materials were also detected and analyzed.
     The following experiments were operated in this research:
     The values of OTM(value of damage on cells)could reflect the response for different dosages of UV-irradiation on six plant protoplasts.We found that the value of OTM of B.scorzonerifolium,A.thaliana,T.salsuginea,T.aestivum and S,villosum don't have obvious images of DNA smearing(DNA migration length)at the low doses of UV-irradiation.While the value of OTM of H.villosum is the highest in these plant materials.The images of SCGE had the longest DNA smearing after UV irradiated its protoplasts for 1 min.The OTM values of the other five protoplastes varied greatly during the medium doses of UV(380μW/cm~2)irradiatied for 2-5min. The OTM values of B.scorzonerifolium and T.salsuginea are lower than that A.thaliana,T.aestivum and T.intermedium,accordingly,the images of SCGE have longer DNA smearing in A.thaliana,7.aestivum and 7.intermedium as compared to B.scorzonerifolium and T.salsuginea with increase in UV exposure time.The DNA damage level of 7.salsuginea rises sharply with increase in UV exposure time (380μW/cm~2 for 5-10min)using SCGE analysis;while the OTM values of B. scorzonerifolium rises gently.Just about 20%of DNA damages can be detected in the cells of B.scorzonerifloium,the other DNA samples all diffused in the gel to be detected with UV exposure time rised to(380μW/cm~2)12.5min.According to above data,the OTM value of B.scorzoneriflium is the lowest and H,villosum,is the highest, respectively.UV-resistant order of six plant materials arranged descending roughly:B. scorzonerifolium>T.salsuginea>T.aestivum>A.thaliana>T.intermedium>H. villosum.
     1)The concentration of flavonoids in all six kinds of plant cells was measured using AI(NO3)3-NaNO2-NaOH method before and after UV-irradiation.Before and after UV irradiation,the concentration of flavonoids in B.scorzonerifolium was the highest. and the concentration of flavonoids in A.thaliana and T.salsuginea are the lowestin all other plant materials mensurated by ultraviolet spectroscopy.Accompaned by the rise of UV dosage,the content of flavonoids in all six kinds of plant materials are all gradually increased and then decreased after reaching a peak.The concentration of flavonoids in B.scorzonerifolium cells reached the maximum at UV-5min,while in T. salsuginea cells reached the maximum at UV-15min.The concentration of flavonoids in A.thaliana,T.intermedium and H,villosum reached the peak at UV-10min.
     2)The concentration of phenolic compounds in B.scorzonerifolium,T.salsuginea, A.thaliana,T.intermedium,H.villosum and T.aestivum were measured after UV-irradiation using Prussian Blue(PB)method as compared to untreat sample.The concentration of polyphenols in B.scorzonerifolium is the highest in six plant materials.A sharp increase in the level of polyphenols was observed in six kinds of plant materials with increase in the time of exposure of samples to UV-radiation.A significant change in the content of polyphenols was observed in calli of B.scorzonerifolium till it reached the maximum level when added the UV irradiation for 5 min,and the production of polyphenols enhanced with increase the UV exposure for 10 min in all other five samples.
     Above results lead us to believe that UV radiation induced secondary metabolites accumulation have an important role in protection B.scorzonerifolium cells against UV radiation promoted flavonoids paths processes.
     3)The activities of POD in B.scorzonerifolium,T.salsuginea,Arabidopsis thaliana, H.villosum,T.intermediumand T.aestivum were detected before and after UV-irradiation.No significant regularity of POD content was observed in all six samples.Compared to other samples,the activity of POD in B.scorzonerifolium calli was the lowest in the control.Calli of B.scorzonerifolium had higher potential to accumulate POD in response to UV irradiation for 5 min,and then decreased sharply to the lowest level.Almost the same level of POD activity of B.scorzonerifolium. T.aestivum,T.salsugmea,and H.villosum was detected in the time of exposure of samples to UV-radiation for 20 min.The results suggested that UV could induce the activity of POD in plants.
     4)The concentration of Pro in B.scorzonerifolium,T.salsuginea,A.thaliana,H. villosum,T.intermedium and T.aestivum were measured before and after UV exposure by acidic-ninhydrin method.The content of Pro was the highest in A. thaliana,and was the lowest in T.salsuginea in control samples.Calli of six kinds of sample exposed to UV radiation showed a time dependent increase in the level of Proline.No significant Pro accumulation was show in the calli of B.scorzonerifolium with increase in duration of UV exposure in its all five samples.Calli of T.salsuginea had higher potential to accumulate Pro in response to UV irradiation more than 10 min.Besides Proline accumulation in T.salsuginea during UV-exposure might be one of the modes to counteract UV radiation promoted ROS generation.
     5)The activities of O_2~(?)in B.scorzonerifolium,T.salsuginea,A.thaliana,H. villosum,T.intermedium and T.aestivum were measured before and after UV-irradiation by hydroxylammoniumchloride autoxidation method.The activities of O_2~(?)in the calli of B.scorzonerifolium and T.aestivum were the lowest in the six plants in controls.A sharp increase in the level of O_2~(?)was observed in T.salsuginea upon exposure to UV-radiation,and no significant change was observed in calli of B.scorzonerifolium.O_2~(?)generation is one of the initial cytochemical responses of plants exposed to UV radiation.
     To sum up,Secondary metabolite,such as flavonoids and polyphenols accumulation is the most frequent metabolic responses exhibited by B.scorzonerifolium exposed to UV stresses.POD and Pro accumulation in other plant samples during UV-exposure might be one of the modes to counteract UV radiation promoted ROS generation.
引文
1.Akagi H,Sakamoto M,Negishi T.Construction of rice cybrid plants.Mol Gen Genet.1989,215:501-506.
    2.Avila V.Antioxidant Properties of natural flavonoida:quenching and generation of singlet molecular oxygen.International J.of Food Science and Technology.2001.36(1):25-33.
    3.Basia V.Arie A.Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations.Current Opinion in Biotechnology.2005.16:123-132.
    4.Baushin AK,Alkalay I,Ben-Neriah Y.Redox regulation of a protein tyrosine kinase in the endoplasmic.Cell.1991,66(4):685-689.
    5.Boqinoc XH,Plant Biochemical Anal,vtical Method.Translated by JING Jiahai.Beijing:Science Press.1981:197-201.
    6.Buiteveld J,Suo Y,Van L.Production and characterization of somatic hybrid plants between leek(Allium ampeloprasum L.)and onion(Allium cape L.).Theor.Appl.Genet.1998,96:765-775.
    7.Cai Y,Xiang F,Zhi D,Liu H.Xia G.Genotyping of somatic hybrids between Festuca arundinacea Schreb.and Triticum aestivum L.Plant Cell Rep.2007,26(10):1809-1819.
    8.Cardson PS.Parasexual interspecific plant hybridization.Proc Natl Acad Sci USA.1972.69:2292-2294.
    9.Chauvel-Lebret DJ,Auroy P,Tncot-Doleux S,Bonnaure-Mallet M.Evaluation of the capacity of the SCGE assay to assess the genotoxicity of biomaterials.Biomaterials.2001.22:1795-1801.
    10.Collins AR,Duthie SJ.Dobson VL.Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA.Carcinogenesis.1993.14(9):1733-1735.
    11.Collins R,Dusinska M,Gedik CM,Stetina R.Oxidative damage to DNA:do we have a reliable biomarker,Environ.Health Perspect.1996.104:465-469.
    12.Deng JY Cui HF.Zhi DY,Zhou CN,Xia G.M.Analysis of remote asymmetric somatic hybrids between common wheat and Arabidopsis thaliana.Plant Cell Rep.2007.26(8):1233-41.
    13.D'Surney SJ.Biological responses of two soybean cultivars exposed to enhanced UV-B radiation.Environ Exp Bot.1993,33:347-350.
    14.Elstner EF,Heupel A.Inhibition of nitrite formation from hydroxylammoniumchloride:a simple assay for superoxide dismutase.Anal Biochem.1976,70:616-620.
    15.Famelaer I,Gleba YY,Sidorov VA,Kaleda VA,Parakonny AS,Boryshuk NV,Cherep NN,Negrutiu L Jacobs M.Intergeneric asymmetric hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by 'gamma-fusion'.Plant Sci.1989.61:105-117.
    16.Fekadu K,Wolfram P,Siegfried K.Single cell gel electrophoresis assay:a new technique for haman biomonitoring studies.Mutation Research.2000,463:13-31.
    17.Gleba YY,Hinnisdaels S,Sidorov VA,et al.Intergeneric asymmetric hybrids between Nicotiana plumbaginifolia and Atropa belladonna obtained by gamma-fusion.Tricot Appl Genet.1988.76:760-766.
    18.Gorbunova V,Levy AA.How plants make ends meet:DNA double-strand break repair.Trends in Plant Sci.1999,4(7):263-269.
    19.Gupta AS,Heinen JL,Holaday AS.Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase.Proc Natl Acad Sci USA.1993,90(4):1629-1633.
    20.Kisaka JH,Kameya T.Production of somatic hybrids between Daucus carota and Nicotiana tabacum.Theol Appl Cenet.1994,88:75-80.
    21.Kisaka H,Kisaka M,Kanno A,Kameya T,Intergeneric somatic hybridization of rice (Oryza sativa L.)and barley(Hordeum vulgate L)by protoplast fusion.Plant Cell Reports.1998,17:362-367.
    22.Konca K,Lankof A,Banasik Anna.A cross-platform public domain PC image-analysis program for the comet assay.Murat Res.2003,534:15-20.
    23.Konca K,Lankof A,Banasik Anna.A cross-platform public domain PC image-analysis program for the comet assay.Mutat Res.2003.534:15-20.
    24.Koppen G,Verschaeve L.The alkaline comet test on plant cells:A new genotoxicity test for DNA strand breaks in Vicia faba root cell.Mutation Research.1996.360:193-200.
    25.Kramer GF.Norman HA.Krizek DT.Influence of UV-B radiation on polyamines,lipid peroxidation and membrane lipids in cucumber.Phytochem.1991.30(7):2101-2104.
    26.Krzysztof K,Anna L,Anna B,Halina L,Tomasz K,Stanislaw G,Zbigniew K,Andrzej W.A cross-platform public domain PC image-analysis program for the comet assay.Mutation Research.2003,534:15-20.
    27.Kubasek WL,Shirley BW,Mckillop.Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings.Plant Cell.1992,4:1229-1132.
    28.Helma C,Uhi M.A public domain image analysis program for the single cell electrophoresis(comet)assay.Mutat Res.2000.466:9-15.
    29.Heng L,Lei S,Junsheng Z,Guangmin X.Genetic characteristic of high molecular weight glutenin subunits in somatic hybrid wheat lines--potential application to wheat breeding.J Agric Food Chem 2006,54(14):5007-13.
    30.Hidema J,Kumagai T.Differences in the sensitivity to UV-B radiation of two cultivars of rice.Plant Cell Physiol.1996,37(6):742-744.
    31.Hidema J,Kumagai T.Suthedand JC.Ultraviolet Bsensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair.Plant Physiol.1997,113:39-41.
    32.http://casp.sourceforge.net/index.php
    33.Larkin PJ,Banks PM,Lagudah ES.Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances.Genome.1995.38:385-394.
    34.Li J.OuLee TM,Raba R.Arabidopsis flavonoid mutant are hypersensitive to UV-B irradiation.Plant Cell.1993,5:171-173.
    35.Li YG,Tanner K,Deleves AC,Larkin P.Asymmetric somatic hybrid plants between Medicago sativa L.(alfalfa.Lucerne)and Onobrychis viciifolia Scop.(sainfoin).Theor Appl Genet.1993,87:455-463.
    36.Liu JH,Xu XY,Deng XX.Intergeneric somatic hybridization and its application to crop genetic improvement.Plant Cel.Tiss and Org Cul.2005,82:19-44.
    37.Mark A,Berhow,Elizabeth D,Wagner,Steven F,Vaughn,Michael J,Plewa.Characterization and antimutagenic activity of soybean saponins.Mutation Research 2000.448:11-22.
    38.Melchers G,Sacristain MD,Holder AA.Somatic hybrid plants of potato and tomato regenerated from fused protoplasts.Carlsberg Res Commun.1978,(43):203-206.
    39.Melzer JM.O'Connell MA.Molecular analysis of the extent of asymmetry in two asymmetric somatic hybrids of tomato.Theor Appl Genet.1990.79:193-200.
    40.Melzer JM,O'Connell MA.Effect of radiation dose on the production of and the extent of asymmetry in tomato asymmetric somatic hybrids.Theor Appl Genet.1992.83:337-344.
    41.Menke M.Chen IP,Angelis KJ.DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins.Mutation Research.2001,493:87-93.
    42.Murali NS,Teramura AH.Intraspecific differences in Cucumis sativa sensitivity to ultraviolet-B radiation.Physiol Plant.1986,68:673-675.
    43.Murphy TF.Membrane as targets of ultraviolet radiation.Plant Physiol.1983.58:381-383.
    44.Nadin SB,Vargas-Roig LM,Ciocca DR.A silver staining method for single-cell gel assay.J Histochem Cytochem.2001,49(9):1183-1186.
    45.Ostling O,Johabson KJ.Microelectrophoretic study of radiation induced DNA damage in individual mammalian cells.Biochem Biophys Res Commun.1984,123:291-298.
    46.Richard FF,Gauillard FA.Oxidation of chlorogenic acid,catechins and 4-methylcatecholinmodel solutionsbycombinations of pear polyphenol oxidase and peroxidase:a possible involvement of peroxidase in enzymatic browning.J Agri Food Chem.1997,45:2472-2476.
    47.Sakihama Y,Cohen MF,Grace SC.Plant phenolic antioxidant and prooxidant activities:Phenolics-induced oxidative damage mediate by metals in plants.Toxicology.2002.17:67-80.
    48.Santos SJ,Singh NP,Natarajan AT.Fluorescence in situ hybridization with comets.Exp Cell Res.1997,232(2):407-411.
    49.Sate T,Kumagai.Role of UV absorbing compounds in genetic differences in the resistance to UVB radiation in rice plants.Breeding Sci.1997,47:2126-2128.
    50.Singh NP,McCoy MT,Tice RR,Schnider EL.A simple technique for quantification of low levels of DNA damage in individual cells.Exp.Cell Res.1988,175:184-191.
    51.Smimoff N.The role of active oxygen in the response of plants to water deficit and desiccation.New Phytologist.1993,125:27-58.
    52.Spangenberg G.Valles MP,Wang ZY,Montavon P,Nagel J,Potrykus I.Asymmetric somatic hybridization between tall fescue(Festuca arundinacea Schreb.)and irradiated Italian ryegrass(Lolium mutiflorum Lam.)protoplasts,Theor Appli Genet.1994,88:509-519.
    53.Spangenberg G,Wang ZY,Legris G,et al.Intergeneric symmetric and asymmetric hybridization in Festuca and Lolium.Euphytica.1995,85:235-245.
    54.Stapleton AE.Ultraviolet radiation and plants:burning questions.Plant Cell.1992,4:1353-1357.
    55.Stapleton AE.Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage.Plant Physiol.1994,105:881-883.
    56.Strid A.Alternation in expression of defence genes in Pisum sativum after exposure to supplementary UVB radiation.Plant Cell Physiol.1993,34(6):949-953.
    57.Trick H,Zelcer A,Bates GW.Electrofusion of plant protoplasts.Selection and screening for somatic hybrids of Nicotiana.Methods Mol Biol.1995,55:165-79.
    58.Vlahova M,Hinnisdaels S,Frulleux F.UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana plumbaginifolia and Lycopersicon esculentum.Theor.Appl.Genet.1997,94:184-191.
    59.Waara S,Glimelius K.The potential of somatic hybridization in crop breeding.Euphytica.1995,85:217-233.
    60.Walker JR,Ferrar PH.Diphenol oxidase,enzyme-catalysed browning and plant discasc resistance.Biotechn Gen Eng Rev.1998,15:457-498.
    61.Wang AG,Luo GH.Quantitative relation between the reaction of hydroxylalmine and superoxide anionradical in plant.Plant Physiol Commun.1990,6:55-57.
    62.Wang J,Xiang FN,Xia GM.Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization.Sci China.2004,47(4):1-8.
    63.Wang MQ.Xia GM.Peng ZY.High UV-tolerance with introgression hybrid formation of Bupleurum scorzonerifolium Willd.Plant Sci.2005,168:593-600.
    64.Wang MQ,Zhao JS,Peng ZY Guo W,Wang Y,Wang L,Xia GM.Chromosomes are eliminated in the symmetric fusion between Arabidopsis thaliana L.and Bupleurum scorzonerifolium Willd.Plant Cell Tiss Organ Cult.2008,92:121-130.
    65.West SC.Molecular views of recombination proteins and their control.Nat Rev Mol Cell Biol.2003,4(6):435-445.
    66.Wang MQ,Xia GM,Peng ZY.High UV-tolerance with introgression hybrid formation of Bupleurum scorzonerifolium Willd.Plant Science(SCI).2005.168:593-600.
    67.Xia GM,Chen HM.Plant regeneration from intergeneric somatic hybridization between Trticum aestivum L and Leymus chinensis(Trin)Tzvel.Plant Sci.1996,120:197-203.
    68.Xia GM,Xiang FN,Zhou AF,Wang H,Chen HM.Asymmetric somatic hybridization between wheat(Triticum aestivum L.)and Agropyron elongatum(Host)Nevishi.Thero Appl Genet.2003,107:299-305.
    69.Xiang FN,Xia GM.Effect of UV dosage on somatic hybridization between common wheat(Triticum aestivum L.)and Avena sativa L.Plant Sci.2003,164:697-707.
    70.Xiang FN,Xia GM.Hybrid plant regeneration in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica.Genome.2005,47:680-688.
    71.Xu CH,Xia GM,Xiang FN,Chen HM.Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization.Plant Science.2004.46:560-568.
    72.Xu YS,Pehu E.RFLP analysis of asymmetric somatic hybrids between Solanum tuberosum and irradiated S.brevidens.Theor Appl Genet.1993,86:754-760.
    73.Yamagishi H,Landgren M,Forsberg J,Glimelius K.Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system.Theor Appl Genet.2002,104:959-964.
    74.Yoshioka H,Numata N,Nakajimaa K.Nicotiana benthamiana gp91 phox Homologs NbrbohA and NbrbohB Participate in H_2O_2 Accumulation and Resistance to Phytophthora infestans.Plant Cell.2003,15(3):706-718.
    75.Zhou AF,Xia GM,Chen HM et al.Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa.Sci Chin.(Ser.C)2001,44(3):294-304.
    76.Zhou AF,Xia GM.Introgression of the Haynaldia villosa genome into gamma-ray-induced asymmetric somatic hybrids of wheat.Plant Cell Rep.2005,24(5):289-296.
    77.Zhou CE,Xia GM,Zhi Dy,Chen Y.Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd and Triticum aestivum L.:potential application to the study of the wheat genome.Planta.2006,223(4):714-724.
    78.陈文品,吴琴生,刘大钧,M.G.K.Jones,小麦与多年生黑麦草原生质体的电融台及杂种愈伤组织的形成。 植物学报,1992,4:76-79
    79.崔林,范银燕,裸燕麦胚性愈伤组织培养及悬浮系的建立.生物工程学报.1998,1:85-92
    80.董玉琛,作物种质资源学科的发展和展望.中国工程科学,2001,3(1):1-5
    81.方允中,郑荣梁,自由基生物学的理论与应用.科学出版社,北京,2002
    82.何杰,石明,陈友琴,幸浩洋,郑雪莲,10-羧基喜树碱对人膀胱癌细胞染色质DNA的断裂作用的研究.华西医学,2003,18:21-23
    83.花仲卉,安雪梅,王伟内,比色法测定广枣醇提物中总黄酮的含量.海峡药学,2003,15:362-381
    84.高建军,丰盛梅,顾淑珠,金慰芳,王洪复,利用单细胞凝胶技术估算淋巴细胞受照剂量.复旦学报,2004,31:69-71
    85.郭亚健,范莉,王晓强,关于NANO_2-Al(NO_3)_3-NaOH比色法测定总黄酮方法的探讨.药物分析杂志,2002,22:972-991
    86.蒋磊,王静,王艳等,紫外辐射诱导植物细胞DNA损伤的彗星检测.南师范大学学报,2006,4:100-105
    87.李鹏,李祺福,黄胤怡,抗UV-B辐射植物黄酮类合物研究进展.生态学杂志,2001,20(6):36-40
    88.李妍,耐盐研究模式植物-盐芥.生物学通报,2007,42:22-24
    89.李元,何永美,祖艳群,增强UV-B辐射对作物生理代谢、DNA和蛋白质的影响研究进展.应用生态学报,2006,17(1):123-126
    90.颜仁梁,刘志刚,中草药、中药制剂中总黄酮类合物含量测定方法综述.广州 医药,2005,36:6-10
    91.林爱军,张旭红,朱永官,镉对小麦叶片DNA伤害的彗星实验研究.环境科学学报,2005,25(3):329-333
    92.林爱军,张旭红,张增利,曹青,朱永官,利用不同植物进行DNA损伤彗星实验的方法比较.生态毒理学报,2006,1:156-171
    93.刘爱荣,盐胁迫对盐芥(Thellungiella halophila)生长和抗氧酶活性的影响.植物研究,2006,26(2):216-221
    94.刘道峰,王献平,景建康,张相岐,用顺序GISH-FISH技术鉴定小麦-中间偃麦草小片段易位系.遗传学报,2000,10:878-882+941
    95.刘芬萄,汪涛,洪承皎,许玉杰,苏燎原,刘永彪,单细胞凝胶电泳对辐射所致肿瘤细胞DNA损伤的研究.辐射研究与辐射工艺学报,2001,19:302-306
    96.刘国安,司玉春.丁兰,曾家豫,SCGE检测人单个核细胞细胞DNA损伤.西北师范大学学报,2002,38:58-61
    97.刘国艳,自由基的生物学效应及自由基清除系统的功能特性.上海交通大学学报,2002,20:93-96
    98.刘继红,柑橘原生质体对称和非对称融合研究.1999,华中农业大学博士研究生学位论文
    99.刘江驺,周荣琪,竹叶提取物总黄酮含量测定方法的改进.检测技术,2005.7:76-79
    100.刘松,李俊清,廖蓉苏,普鲁士兰法测定胡杨中植物多酚含量.林业科技开发,2007,21:42-44
    101.刘拥海,俞乐,植物体细胞不对称杂交研究进展.生物学杂志,2004,21:10-13
    102.骆蓉,刘志宏,硫酸铍对小鼠体外脾淋巴细胞DNA损伤的剂量效应.第四军医大学学报.,2007,28(9):809-811
    103.潘国庆,梁永欣,黄酮类合物结构与抗氧活性关系研究.青海科技,2005,3:28-30
    104.庞学群,段学武,张昭其,徐凤彩,季作梁,荔枝果皮过氧物酶的纯及部分酶学性质研究.热带亚热带植物学报.2004,12(5):449-454
    105.齐宝宁,易建华,唐国慧,苗江丽,郭剑锋,正己烷致大鼠脂质过氧及肝细胞DNA损伤的实验研究.西安交通大学学报,2007,28(2):145-148.
    106.全先庆,张渝洁,单雷,毕玉平.脯氨酸在植物生长和非生物胁迫耐受中的作用.生物技术通讯,2007.18:159-162
    107.任成山,细胞信号转导的概念研究进展及临床意义.中华综合临床医学杂志,2005,7(5):1-4
    108.任德成,杜冠华,活性氧对蛋白激酶和基因表达调节作用的研究进展.中国药理学通报,2003,19(5):489-493
    109.任泽舫,庄志雄,张锦周,黄海雄,张丙尧,柳青,单细胞凝胶电泳法分析指标及检测DNA交联的标准断裂剂的研究.中华劳动卫生职业病杂志,2000.18:210-212
    110.任正隆,用不规则非整倍体作基因的染色体定位.四川农业大学学报,1991,9(1):1-6
    111.石碧,狄莹,植物多酚.北京科学出版社,2000:19-20
    112.史青,聂淑琴,黄璐琦,柴胡的学组成及药效成分的最新研究进展.中国传统中药实验方剂,2002,8:16-19
    113.孙强正,鲁文清,单细胞凝胶电泳技术在环境卫生学中的应用卫生研究.卫生研究,2002,31:142-144
    114.田云,卢向阳,易克,何小解,黄成江,许亮,单细胞凝胶电泳技术.生命的学,2004,24(1):77-78
    115.王纲,自由基与中医中药.南京大学出版社,1993,P8
    116.魏育明,周荣华.应用荧光原位杂交和RFLP标记检测多小穗小麦新种质10-A中的黑麦染色质.植物学报,1999,41(7):722-725
    117.夏光敏,王槐,陈惠民,小麦与新麦草及高冰草的不对称体细胞杂交再生植株.科学通报,1996,41(15):1423-1426
    118.谢明,李彦,彗星试验检测两种农药对小鼠睾丸细胞的DNA损伤.毒理学杂志.2005,19:225
    119.邢彩虹,李桂兰,纪之莹,单细胞凝胶电泳图像分析软件的比较.毒理学杂志.2005,19(2):141-143
    120.邢梅青,夏光敏,陈惠民.小麦与禾草对称融合中杂种染色体组成与亲缘关系的初步探究.植物研究 2001,21(1):77-81
    121.王静,蒋磊,王艳,李韶山.紫外辐射诱导植物叶片DNA损伤敏感性差异.植物学通报,2007,24:189-193
    122.王槐,陈正华,夏光敏.陈惠民,植物体细胞杂交的进展.生命科学,1995,11:100-103
    123.张军宁,洪承皎,朱寿彭,单细胞凝胶电泳检测外照射诱导DNA单链断裂和双链断裂.辐射研究与辐射工艺学报,2002,3:220-224
    124.钟冠昌,李俊明,高产稳产小麦新品种--科农 9204.麦类作物学报,2003,23(1):100-103
    125.朱志良,庄志雄.黄钰等,单细胞凝胶电泳图像分析系统的研制及应用.中华劳动卫生职业病杂志,2001,19(4):298-300
    126.诸姮,胡宏友,卢昌义,李雄,植物体内的黄酮类合物代谢及其调控研究进展.厦门大学学报,2007,46:136-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700