模态分析的快速计算方法及在重卡中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模态分析是依据动力学方程和输入输出数据为基础求解基于模态坐标下的结构动力学参数的一门科学。以保持计算精度的条件下降低实验成本、节约计算时间、实现结构动力学状态监控为目标,本文提出一整套针对大规模问题和复杂结构的模态分析的快速计算方法和系统。创新性的提出模型降阶与参数优化相结合的方法实现实验和工作模态分析的快速计算。依据适应性分析的要求,对重型卡车的驾驶室和车架等主要部分进行模态分析快速计算,并对结构改进提出相应建议和新的观点,文章应用先进软件和硬件技术,提出模态分析新的发展方向和技术实现手段,建立了完整的在线模态分析系统,主要包含以下几方面的工作:
     (1)在系统软件中提出模型降阶与参数优化相结合的方法实现模态参数快速识别。在实验模态参数快速识别方法研究中将间接模型降阶方法与最小二乘复频域法相结合实现系统特征矩阵的正规化缩减;将表征计算效率的特征矩阵特征量进行参数化,建立优化设计模型,应用遗传算法对参数进行进一步全局优化。在时域工作模态参数快速识别方法研究中,将平衡截断方法应用于协方差驱动的随机子空间法中,结合最小信息准则在保持系统特征不变的情况下对特征矩阵进行降阶处理,采用遗传算法对随机子空间特征矩阵进行进一步优化。通过计算效率比较和具体算例说明模态参数快速识别方法的有效性和实用性。
     (2)在硬件与系统实现上提出应用FPGA技术和实时系统相结合实现同步精确动态数据采集和快速高效计算。应用改进的FFT算法分别进行软件和硬件、实时和非实时计算效率和计算稳定性的比较研究,证明硬件和系统组成符合快速模态分析的要求,为在线模态分析打下良好的基础。
     (3)根据适应性分析的思想,依据重卡各部分的实际特点采用不同的方法进行模态分析。根据重卡驾驶室白车身重量较轻、处于半独立状态且行驶时环境激励无法达到要求的特点,对某基础车型和某高端车型改进前后的驾驶室白车身进行基于最小二乘复指数法(LSCE)与最小二乘复频域法(LSCF)的实验模态分析,并结合有限元模态分析结果对各种方法进行比较研究并验证了结果的有效性。同时提出具体的修改意见并进行实际应用,对车型改进起了关键作用。提出第一阶模态频率质量比的概念,依据轻量化的发展方向修正过度提高第一阶模态频率的认知。应用间接模型降阶和参数优化的方法相结合对改进后的驾驶室白车身进行实验模态参数快速识别,在保证计算精度的条件下使计算效率得到很大提高。
     (4)以重卡一体化车架和货箱为主要研究对象,根据满载时质量大、不便进行力锤或激振器激励的实际情况,提出利用环境激励对行驶中的车辆进行工作模态分析的方法。对环境激励下的样本进行时间序列分析得出其概率特征为类似维纳分布的平稳随机特征,结合功率谱密度分析结果认为其符合随机子空间工作模态分析的要求。根据误差模型建立协方差驱动随机子空间特征矩阵,采用平衡截断方法与参数优化相结合的方法对表征特征矩阵的参数进行缩减。采用最小信息准则确定系统阶数,对不同参数对计算效率和精度的影响进行分析和总结,在保证模态参数识别精度的条件下提高了计算效率。将工作模态分析快速计算结果与有限元模态分析结果进行比较,认为所得结论是可信的。
Modal analysis is a important subject in which the system’s dynamic parameters in themodal coordinate are estimated based on kinetic equation and input-output datas obtained frommodal experiments. In order to reduce the cost of experimentation and save computing time, thispaper proposed a set of methods and systems to realize modal analysis' fast calculation methodsfor large-scale problems and complex structures. Model order reduction and parameteroptimization combined methods is proposed to achieve modal parameters' fast calculation methodand used in heavy-duty truck’s cab and chassis respectively. Advanced software and hardwaretechnology are used to build complete fast modal analysis system and new direction is propose inthis paper. The main tasks are as follows.
     (1) A model order reduction and parameter optimization combined method is proposed torealize fast modal analysis in system’s software. In accordance with experimental modal analysissystem model, the paper achieve the system characteristic matrix reduction in least squarescomplex frequency domain experimental modal analysis useing indirect model order reductionmethod. With the parameterization of the characteristic matrix’s component which determine theparameter identification efficiency, the optimal design model is established and the parameters areglobally optimized and reduced using improved genetic algorithm. In the study of the fast timedomain operational modal analysis method, combined with minimum information criterionbalanced truncation method is used in stochastic subspace identification method driven by thecovariance to reduce system characteristic matrix order and keep system’s characteristic. Andgenetic algorithm optimization is also used to realize optimization and reduction of characteristicmatrix. At last, through comparison of computational efficiency and specific example application,modal analysis' fast calculation methods is proved to be effective.
     (2) A FPGA technology and real-time system combined method is proposed to achieve fast,synchronized and accurate dynamic data acquisition in system’s hardware. Through computationalefficiency and stability comparation using improved FFT algorithm between software andhardware in realtime and unrealtime system, the hardware and system structure are proved to beeffective to realize fast modal analysis and establish solid foundation to online modal analysis.
     (3) Different approaches are proposed to do modal analysis to the heavy-duty truck’sdifferent parts according to the adaptive analysis method. Compare to whole vehicle, the cab’sbody-in-white was light and semi-independent, and also be not well excited in round environmentexcitation. So it is appropriate for experimenttal modal analysis. Comparative study betweenLeast-Squares Complex Exponential (LSCE) methd and Least Squares Complex Frequency (LSCF) method were done, and the result between each method and finite element modal analysis areproved to be similar and effective. The amendments based on the specific suggestions forimprovement was proved to be successful by practical application in markets. The concept of theratio between the first order modal frequency and the quality is put forward. And the originalcognition of over-improve the first order modal frequency through improving local quality iscorrected according to the lightweight trendency. Simultaneously, the fast modal analysis of theimproved cab body-in-white is done and the computational efficiency has a substantial increasingin conditions of ensuring the accuracy based on indirect model order reduction and parameteroptimazation combined method.
     (4) Operational modal analysis method on running vehicles using environmental excitationin heavy truck road testing is proposed for the mass is too large and inconvenience to be artificiallyimposed external excitation. It was proved that the probabilistic characteristics of time seriescomposed of acceleration samples under uneven stone road environment excitation were similar tothe Wiener distribution through time series analysis. Combined the power spectrum analysis result,time series properties was regards as meeting the requirements of stochastic space modal analysis.Balanced truncation method and genetic optimization algorithms was combined to used in theframe’s stochastic subspace modal identification method driven by the covariance to reduces thecomputation. Minimum Information Standards was used to determine the key parameters’ value topromote optimization algorithms’ efficiency. It met the requirements of the online modal analysisand guarantee the accuracy of modal parameter identification. Compared with the finite elementmodal analysis result of the frame under different operating conditions, it believed that the fastmodal analysis results were reliable.
引文
[1]沃德·海伦,斯蒂芬·拉门兹,波尔·萨斯.白化同,郭继忠译.屠良尧校.模态分析理论与试验.北京:北京理工大学出版社,2001
    [2]李惠彬.大型工程结构模态参数识别技术.北京:北京理工大学出版社,2007
    [3] Schaller K V. MAN’s new heavy truck ranges TGX and TGS. ATZ worldwide.2007,109(10):2-5
    [4] Samuel Privara, Jiri Cigler, Zdenek Vana,et al. Subspace Identification of PoorlyExcited Industrial Systems.49th IEEE Conference on Decision and Control.Atlanta, USA.2010,4405-4410
    [5]赵德忠,王丽.重卡发展还需量变到质变.装备制造,2011,4:93-94
    [6]魏建秋.基于NVH特性的汽车舒适性设计技术. APC联合学术年会论文集.2007,9:179-182
    [7]王霄锋.汽车可靠性工程基础.北京:清华大学出版社,2007,4-16
    [8]戴禹.重型卡车驾驶室数值模态分析与结构优化:[吉林大学硕士学位论文],长春:吉林大学,2008,35-37
    [9] Heylen W, Lammens S, Sas P. Modal analysis theory and testing. PMA, KULeuven, Leuven, Belgium,1998,111-123
    [10]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2000,1-10
    [11]中华人民共和国国家标准,GB/T4970-2009,汽车平顺性试验方法,2009
    [12]陈晓新.基于刚柔耦合的整车动力学建模与悬架隔振性能分析:[合肥工业大学硕士学位论文],合肥:合肥工业大学,2010:2-6
    [13]张云清,项俊,陈立平等.整车多体动力学模型的建立、验证及仿真分析.汽车工程,2006,28(3):287-291
    [14]徐赵东,马乐为.结构动力学.北京:科学出版社,2005,1-5
    [15]Hanson D. Operational modal analysis and model updating with a cyclostationaryinput. The University of New South Wales, Australia.2006,12-24.
    [16]Verboven P. Freauency-domain system identification for modal analysis. Brussels,Belgium: Vrije University.2002,22-27
    [17]Jong B O, Wang X, Tan C S. Modal and stress analysis of gear train design inportal axle using finite element modeling and simulation. Journal of MechanicalScience and Technology.2012,26(2):575-589
    [18]张义民,张守元,李鹤等.运行模态分析中固有模态和谐波模态区分方法研究.振动与冲击,2009,28(1):64-67
    [19]郑敏,申凡,鲍明.在时域中单独利用响应数据进行模态分析.中国航空学报,2004,11(4):399-402
    [20]李鹤,姚红良,闻邦椿等.基于小波变换方法的高层建筑模态参数辨识.振动与冲击,2005,24(5):96-98
    [21]Wang B T, Cheng D K. Modal analysis of mdof system by using free vibrationresponse data only.Journal of Sound and Vibration.2008,311:737–755
    [22]Farooq U, Feeny B F. Smooth orthogonal decomposition for modal analysis ofrandomly excited systems. Journal of Sound and Vibration,2008,316:137–146
    [23]王建有,陈健云,李宗坤等.输入未知下非比例阻尼结构参数识别方法的研究.振动与冲击,2007,26(4):119-125
    [24]Samuel P, Cigler J, Vana Z, et al. Subspace Identification of Poorly ExcitedIndustrial Systems.49th IEEE Conference on Decision and Control December15-17,2010Hilton Atlanta Hotel, Atlanta, GA, USA.4405-4410
    [25]Thien P L, Patrick P. Modal identification based on continuous wavelet transformand ambient excitation tests. Journal of Sound and Vibration,2012,331:2023-2037
    [26]李中付,华宏星.一种非稳态环境激励下线性结构的模态参数辨识方法.振动与冲击,2008,27(3):8-12
    [27]杜秀丽,汪凤泉.非平稳Gauss环境激励下模态参数识别的新方法.应用数学和力学,2009,30(10):1213-1222
    [28]Du X L, Wang F Q. Modal identification based on Gaussian continuous timeautoregressive moving average model. Journal of Sound and Vibration,2010,329:4294–4312
    [29]公茂盛,谢礼立,欧进萍.结构振动台模型模态参数识别新方法研究.振动工程学报,2010,23(2):230-236
    [30]Lee C W, Han D J, Suh J H. Modal analysis of periodically time-varying linearrotor systems. Journal of Sound and Vibration,2007,303:553-574
    [31]谢小平,韩旭,吴长德等.基于PolyMAX方法的某轿车白车身实验模态分析.汽车工程,2009,31(5):440-443
    [32]谢献忠.结构动力学系统时域辨识理论与试验研究:[湖南大学博士学位论文],长沙:湖南大学土木工程学院,2005,12-15
    [33]李中付,宋汉文,华宏星等.基于环境激励的模态参数识别方法综述.振动工程学报,2000,13(5):578-585
    [34]顾培英,邓昌,吴福生.结构模态分析及其损伤诊断.南京:东南大学出版社,2008
    [35]Rodrigues J. Stochastic Modal Identification. Methodsand Applications in CivilEngineering Structures. Univ. of PORTO,2004
    [36]Ramos J A, Lopes D S. A Subspace Approach for Identifying Bilinear Systemswith Deterministic Inputs. Proceedings of the44th IEEE Conference on Decisionand Control, and the European Control Conference2005. Seville, Spain,December,2005,7114-7119
    [37]Aenlle M L, Brincker R, Pelayo F. On exact and approximated formulations forscaling-mode shapes in operational modal analysis by mass and stiffness change.Journal of Soundand Vibration.2012,331:622–637
    [38]Sim J S, Qiu Z P, Wang X J. Modal analysis of structures with uncertain-but-bounded parameters via interval analysis. Journal of Sound and Vibration.2007,303:29–45
    [39]Kiran D S, BogdanI E. Noise rejection for two time-based multi-output modalanalysis techniques. Journal of Sound and Vibration,2010,330:1045-1051
    [40]Hideyuki T, Jaafar A M, Tohru K. Stochastic subspace identification of linearsystems with observation outliers. Proceedings of the44th IEEE Conference onDecision and Control Conference. Seville, Spain, December12-15,2005.7090-7095
    [41]Weixin Ren,Zhouhong Zong. Output-only modal parameter identification ofcivil engineering structures. Structural Engineering and Machanics,2004,17:429-444
    [42]Takashi Hiyama, Naoto Suzuki. Real Time Modal Analysis of Power SystemOscillations[J]. IEEE International Symposium on Circuits and Systems, May28-31,2000, Geneva, Switzerland,225-228
    [43]Yang H, Takeshi T, Idaku I. Dynamics-Based Visual Inspection throughReal-Time Modal Analysis. IEEE International Conference on Robotics andAutomation,2011, Shanghai, China,5979-5984
    [44]Gong Y F, Armando G. Synchrophasor-Based Online Modal Analysis toMitigatePower System Interarea Oscillation. Schweitzer Engineering Laboratories,2008,TP6343-01
    [45]徐良,江见鲸,过静珺.基于样条函数的在线时域实验模态分析.中国矿业大学学报,2002,31(5):390-393
    [46]李枝军,李爱群,韩晓林.润扬大桥悬索桥在线模态分析系统的设计与实现研究.振动与冲击,2008,27(6):32-35
    [47]Antoulas A C. Approximation of Large-Scale Dynamical System. Philadelphia:SIAM,2005
    [48]蒋耀林.模型降阶方法.北京:科学出版社,2005
    [49]Michael H, Benner P, Maten E W. Model Reduction for Circuit Simulation. Berlin:Springer.2011,2-8
    [50]戈卢布,范罗恩.矩阵计算.袁亚湘译.北京:科学出版社,2001
    [51]Benner P, Mehrmann V, Sorensen D C. Dimension Reduction of Large-ScaleSystems. Berlin: Springer,2005
    [52]Bhatia R, Drissi D. Stochastic Generalized Lyapunov equations and positivedefinite functions. SIAM Journal on Matrix Analysis and Applications,2005,27(1):103-114
    [53]Gallivan K, Vandendorpe A, Van Dooren P. Model reduction of MIMO systemsvia tangential interpolation. SIAM Journal on Matrix Analysis and Applications,2005,26(2):328-349
    [54]Guyan R J. Reduction of stiffness and mass matrices. AIAA Journal,1965,3(2):380-381
    [55]Irons B. Structural eigenvalue problems-Elimination of unwanted variables, AIAAJournal,1965,3(5):951-962
    [56]Suarez L E, Singh M P. Dynamic condensation method for structural eigenvalueanalysis, AIAA Journal,1992,30(4):1046-1054
    [57]瞿祖清,傅志方.一种高精度动力缩聚法.机械强度,1998,20(3):230-231
    [58]Grimme E J. Krylov Projection Methods for Model Reduction. PhD thesis,University of Illinois at Urbana-Champain,1997
    [59]Schilders W H A,Van Der Vorst H A, Rommes J. Model Order Reduction: Theory,Research, and Application. Berlin: Springer,2008
    [60]Bai Z J, Freund R W. A partial Pade-via-Lanczos method for reduced ordermodeling. Linear Algebra and Its Application,2001,332:139-164
    [61]Chu C C, Lai M H, Feng W S. Model-order reductions for MIMO systems useingglobal Krylov subspace methods. Mathematics and Computers in Simulation,2008,79:1153-1164
    [62]Gunupudi P K, Nakhla M S. Model reduction of nonlinear circuits useing Krylov-subspace techniques. Proceedings of the36th Design Automation Conference,199:13-16
    [63]Chou M, White J. Efficient formulation and model-order reduction for thetransient simulation of three-dimensional vlsi interconnect. In IEEE TransactionsOn Computer-Aided Design of Integrated Circuit and Systems,1997,16:1454–1476
    [64]Lassaux G, Wilcox K. Model reduction for active control design using multi-pointarnoldi methods. AIAA, In Proceedings of the41st Aerospace Sciences Meetingand Exibit, January2003,0616
    [65]Astrid P. Reduction of process simulation models: A proper orthogonaldecomposition approach. Ph.D. Dissertation, Technical University of Eindhoven,2004
    [66]Hall K, Thomas J, Dowell E. Proper orthogonal decomposition technique fortransonic unsteady aerodynamic flows. AIAA,2000,38:1853-1862
    [67]Romanowski M. Reduced order unsteady aerodynamic and aeroelastic modelsusing karhunen loeve eigenmode. AIAA,1996,96-194
    [68]Dowell E, Hall K. Modeling of fluid-structure interaction. Annual Review of FluidMechanics,2001,33:445-490
    [69]Ravindaran S S. A reduced-order approach for optimal control of fluids usingproper orthogonal decomposition. Int J Numer Meth Fluids,2000,34:425–448
    [70]Noor A K, Peters J M. Reduced basis technique for nonlinear analysis ofstructures[J], AIAA Journal.18(4):455-462
    [71]Noor A K. Recent advances and applications of reduction methods. Applied Mecha-nics Reviews,1994,47(5):125-146
    [72]Machiels L, Maday Y, Oliveira I B, et al. Output bounds for reduced-basisapproximations of symmetric positive definite eigenvalue problems. C. R. Acad.Sci. Paris, Serie I,2000,331(2):153–158
    [73]Maday Y, Patera A T, Turinici G. Global a priori convergence theory forreduced-basis approximation of single-parameter symmetric coercive ellipticpartial differential equations. C. R. Acad. Sci. Paris, Serie I,2002,335(3):289–294
    [74]Veroy K, Prudhomme C, Rovas D V, et al, A posteriori error bounds forreduced-basis approximation of parametrized noncoercive and nonlinear ellipticpartial differential equations. Proceedings of the16th AIAA Computational FluidDynamics Conference,2003, AIAA Paper,3847
    [75]Veroy K, Patera A T, Certified real-time solution of the parametrized steadyincompressible Navier-Stokes equations; rigorous reduced-basis a posteriori errorbounds. International Journal for Numerical Methods in Fluids.2005,47:773-788
    [76]Patera A T, R nquist E M. Reduced basis approximation and a posteriori errorestimation for a Boltzmann model[J], Comput. Methods Appl. Mech. Engrg.2007,196:2925-2942
    [77]Grepl M. Reduced-Basis Approximations for Time-Dependent Partial DifferentialEquations: Application to Optimal Control. PhD thesis, Massachusetts Institute ofTechnology,2005
    [78]Nguyen N C, A posteriori error estimation and basis adaptivity for reduced basisapproximation of nonaffine-parameterized linear elliptic partial differentialequations. Journal of Computational Physics.2007,227:983-1006
    [79]SERKAN G, ATHANASIOS C A. A survey of model reduction by balancedtruncation and some new results. INT. J. CONTROL,2004,77(8):748–766
    [80]Golub G H, Nash S, Vanloan C. A Hessenberg-Schur method for matrix problem.IEEE Transaction on Automatic Control,1979,24(6):909-913
    [81]Moore B C. Principal component analysis in linear systems: Controllability,observability, and model reduction. IEEE Transactions on Automatic Control,1981,26(1):17-32
    [82]Pernebo L, Silerman L M. Model reduction via balanced state spacerepresentations. IEEE Transaction on Automatics Control,1982,27(2):382-387
    [83]Wang G, Sreeram V, Liu W Q. A new frequency-weighted balanced truncationmethod and an error bound. IEEE Transactions on Automatic Control,1999,44(9):1734-1737
    [84]Guoyong Shi. Model-Order Reduction by Dominant Subspace Projection: ErrorBound, Subspace Computation and Circuit Applications. IEEE Transactions onCircuits and Systems-I:RegularPaper,2005,52(5):975-993
    [85]Heydari P. Model-Order Reduction Using Variational Balanced Truncation withSpectral Shaping. IEEE Transactions on Circuits and Systems I-RegularPaper,2006,53(4):879-891
    [86]Sanjay L, Jerrold E M, Sonja G. A subspace approach to balanced truncation formodel reduction of nonlinear control systems. International Journal of Robust andNonlinear Control,2002,12(6):519-535
    [87]Willcox K E, Peraire J. Balanced model reduction via the proper orthogonaldecomposition. AIAA journal,2002,40(11):2323-2330
    [88]Chahlaoui Y, Lemonnier D, Vandendorpe A, et al. Second-order balancedtruncation. Linear Algebra and Its Application,2006,415:373-384
    [89]雷飞.一种面向车身结构设计的大规模问题快速计算方法:[湖南大学博士学位论文],长沙:湖南大学机械与运载工程学院,2009,2-5
    [90]袁亚湘,孙文瑜.最优化理论与方法.科学出版社,1997,9-11
    [91]陈国良,王熙法等.遗传算法及其应用.北京:科学出版社,2002,5-13
    [92]Vigdergauz, S. Genetic algorithm perpective to identify energy optimizinginclusions in an elastic plate. The International Journal of Solids and Structures.2001,38:6851-6867
    [93]Goldberg, D E Deb, K. Special issue on Genetic Algorithms. Computer Methodsin Applied Mechanics and Engineering.2000,186:121-124
    [94]高亚军.基于FPGA的数字信号处理.北京:电子工业出版社,2012,1-18
    [95]何宾.FPGA数字信号处理实现原理及方法.北京:清华大学出版社,2010,15-38
    [96]Shahnaz R, Usman A, Chughtai I R. Review of Storage Techniques for SparseMatrices.9th International Multitopic Conference, IEEE INMIC2005,1-7
    [97]Majumdar A, Rabab K. W. Fast group sparse classification rapide a dispersion degroupes. Can. J. Elect. Comput. Eng.,2009,34(4),136-144
    [98]Ramirez A B, Arce G R, Otero D, et ac.Reconstruction of Sparse Signals FromDimensionality-Reduced Cauchy Random Projections. IEEE Transactions onSignal Processing.2006,60(11):5725-5737
    [99]Zhu Z Q, Lu X B, Li J. A study of domain decomposition and parallel computation.Acta Mechanica.2001,150(3-4):219-235
    [100] George T, Vaibhav Saxena, Anshul Gupta.Multifrontal Factorization ofSparse SPD Matrices on GPUs. IEEE International Parallel&DistributedProcessing Symposium,2011,372-383
    [101] Auwemer V H, Leuridan J. Multiple Input Orthogonal Polynomial ParameterEstimation. Proceedings of ISMA11: workshop on parameter estimation, leuven,Bel-gium, September,1986,16-26
    [102] Peeters B. System Identification and Damage Detection in Civil Engineering,Ph.D Thesis, Katholieke University, Leuven, Belgium.2000,100-133
    [103] Fladung W, Brown D. Multiple reference impact testing. Proceeding of ISMA17, Leuven, Belgium,1992,257-272
    [104] Peeters B, Vanhollebeke F, H Van der Auweraer. Operational PolyMAX forestimating the dynamic properties of a stadium structure during a football game.Proceeding of IMAC23, Orlando, USA,2005
    [105] Guillaume P, Verboven P, Vanlanduit S. Frequency-domain maximumlikelihood identification of modal parameters with confidence intervals. InProceedings of ISMA23, the International Conference on Noise and VibrationEngineering, Leuven, Belgium,1998,16-18
    [106] Auweraer H V, Guillaume P, Verboven P, et al. Application of a FastStabilizing Frequency Domain Parameter Estimation Method. Journal of DynamicSystems Measurement and Control.2001,123:651-658
    [107] Liu G R, Zaw Khin, Wang Y Y, Deng B. A novel reduced-basis method withupper and lower bounds for real-time computation of linear elasticity problems[J].Comput Methods Appl Mech Engrg,2008,198:269-279
    [108]黄永辉,韩旭,冉承新.基于减基法的层合板瞬态响应快速分析方法.力学学报,2008,40(2):255-260
    [109] Veroy Karen. Reduced-Basis Methods Applied to Problems in Elasticity:Analysis and Applications, Ph.D. thesis, MIT,2003:38-41
    [110]雷飞,韩旭,黄永辉.车身复杂结构大规模问题的缩减计算.中国机械工程,2009,20(17):2127-2131
    [111] Goldberg D. Genetic algorithms in search, optimization and machine learningAddision-Wesley. Reading,1989,16-32
    [112]陈国良,王熙法.遗传算法及其应用.北京:科学出版社,2002,5-13
    [113] James G H. The natural excitation technique (Next) for modal parameterextraction from operating structures. Modal Analysis,1995,10(4):260-277
    [114] Devriendt C, Sitter G D, Vanlanduit S, et al. Operational modal analysis inthe presence of harmonic excitations by the use of transmissibility measurements.Mechanical Systems and Signal Processing.2009,23(3):621–635
    [115] Overschee P V, Moor B D. Subspace identification for linear systems.Katholieke University, Leuven,Belgium,1996
    [116] Yasuhiro K, Yoshito O. Continuous-time system identification usingcompactly supported filter kernels generated from Laguerre basis functions.49thIEEE Conference on Decision and Control., Atlanta,2010,4461-4466
    [117] Bergamasco M, Lovera M. Continuous-time predictor-based subspaceidentification using Laguerre filters. IET Control Theory and Applications.2011,5(7):856–867
    [118] Muhammad H R A, Rosmiwati M M. Stochastic subspace algorithm based onthe orthogonal decomposition method for closed-loop system identification.Proceedings of2010IEEE Student Conference on Research and Development,Putrajaya, Malaysia,2010,230-235
    [119] Alessandro C, Gianluigi P, Giuseppe D N. Subspace Identification usingpredictor estimation via Gaussian Regression. Proceedings of the47th IEEEConference on Decision and Control Cancun, Mexico,2008,3299-3304
    [120]李睿,于德介,曾威.环境激励下基于奇异谱互熵的结构损伤诊断方法.工程力学,2007,24(6):142-146
    [121]张文泉,李彦斌.最大熵谱估计及应用研究.现代电力,2001,18(1):41-46
    [122]美国NI公司.NI CompactRIO技术白皮书.2011
    [123]廖林清,徐科峰,雷刚等.轿车白车身模态试验与有限元模态分析的对比重庆工学院学报(自然科学版),2009,23(1):11-14
    [124]谢小平,韩旭,陈国栋等.某商用车驾驶室白车身模态分析,湖南大学学报(自然科学版),2010,37(5):24-30
    [125]中华人民共和国国家标准,GB/T12534-1990,汽车道路试验方法通则,1990
    [126]中国定远汽车试验场简介.汽车工程.2003
    [127] Yu N H,Guo W F,Zhang Y Q.The efficient numerical simulation ofstochastic road excitation to vehicles in time domain.2nd International Conferenceon Industrial Mechatronics and Automation (ICIMA),2010,2:150-154
    [128]张子庆,倪计民,石秀勇.路面激励对车用发动机动平衡特性的影响.机械工程学报,2011,47(8):134-140
    [129]王俊龙,汪洋,王吉华.基于ADAMS的随机路面不平度建模及参数选择.汽车科技,2011,4:41-44
    [130]周龙保.内燃机学.北京:机械工业出版社,2004
    [131]吴海东.不平路面中频激励轮胎动态特性研究:[吉林大学博士毕业论文].长春:吉林大学出版社,2007
    [132]孙兆伟.基于现代信号处理的结构模态参数识别与损伤识别研究:[北京邮电大学博士毕业论文].北京:北京邮电大学出版社,2012
    [133] Edwin Reynders,Guido De Roeck.Reference-based combineddeterministic StochaStic subspace identification for experimental and operationalmodal analysis.Mechanical Systems and Signal Processing,2008,22:617-637
    [134]刘东霞.基于随机子空间法的梁桥模态参数识别:[西南交通大学硕士学位论文].成都:西南交通大学出版社,2008,21-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700