基于有限差分法的非对称共面波导及其弯曲结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共面波导作为一种重要的平面传输线,已应用于微波、毫米波、亚毫米波、光学和高温超导集成电路等领域,并已在一些电路中取代微带线,在微波集成电路中占据着越来越重要的地位。非对称共面波导是在共面波导的基础上发展而成的一种新型传输线。相比共面波导,非对称共面波导中心导带与两侧接地板之间的缝隙宽度是不同的,可以认为是共面波导的一种推广,更具有一般性和应用灵活性。
     虽然对非对称共面波导的研究进行了很多年了,但由于测试条件和实际应用经验限制,对于非对称共面波导的理论分析和实际应用研究仍处于发展阶段。
     为了对非对称共面波导进行理论分析,许多学者采用准静态的保角变换方法来进行研究,但保角变换方法难以分析非对称共面波导的频域特性。虽然时域的方法(如时域有限差分或时域多分辨率分析)能分析非对称共面波导的色散特性,但是由于受到精度所限,不能展现出非对称共面波导的优点。本文在前期研究的基础上,将近似完全匹配层边界应用于二维频域有限差分方法,使算法更加容易编程实现,更加适合分析开放结构的非对称共面波导传输线。应用改进后的二维频域有限差分方法对具有过孔的非对称共面波导相位常数进行了分析。由于直接应用二维频域有限差分方法计算传输线特性阻抗精度较差,提出了以一维波方程为插值函数的阻抗计算方法,提高了特性阻抗的计算精度。分析结果表明,非对称共面波导具有比共面波导更优的阻抗频域特性。
     不连续结构(如弯曲结构,十字节等)是非对称共面波导在实际应用时不可避免的电路形式,因此详细研究了非对称共面波导弯曲结构。本文将频域有限差分方法和时域有限差分方法相结合,对非对称共面波导弯曲结构的模式转换特性进行了分析。通过分析比较直角、45。斜角和圆角三种不同的共面波导和非对称共面波导弯曲结构,确定了非对称共面波导弯曲结构的模式间能量转换更小,这就意味着非对称共面波导比共面波导具有更低的传输损耗。为了验证这一结论,本文利用非对称共面波导上c模和π模具有不同的场分布特性,设计了一种测试装置并实际测试了各种弯曲结构的传输特性。基于以上研究,本文最后提出了一种新型的共面波导弯曲结构,实验结果表明了这种新型的共面波导弯曲结构抑制了模式间能量转换,具有更小的传输损耗。
Coplanar waveguide, as a kind of important transmission line, has been implemented on microwave, millimeter wave, submilimeter wave, optics and high temperature superconducting integrated circuits, etc. even it has been applied in microwave circuits instead of microstrip, thus coplanar waveguide is occupying more important position in MMIC. The asymmetric coplanar waveguide is a novel transmission line developed from coplanar waveguide. Compared with coplanar waveguide, the slot widths of asymmetric coplanar waveguide are different, thus the asymmetric coplanar waveguide is a kind of extension of coplanar waveguide, and it has more generality and flexibility than coplanar waveguide.
     The asymmetric coplanar waveguide has been studied by many scholars, but the theory analysis and practical application are still at their stage of development for the limitation of the test condition and the application experience.
     In the theory analysis, asymmetric coplanar waveguide has been analyzed by many scholars using conformal mapping method, but the conformal mapping method can not be applied in frequency domain. Some scholars use the time domain methods, such as finite difference time domain method and multi-resolution time domain methods, to analyze the dispersion characteristics of the asymmetric coplanar waveguide, but the unique characteristics of the asymmetric coplanar waveguide cannot be found for the limited precision of these methods. This dissertation applies NPML boundary to2D finite difference frequency domain, then uses the new algorithm on the analysis of asymmetric coplanar waveguide. Compared with UPML finite difference frequency domain, NPML finite difference frequency domain is easy to implement by programming, and it is more suitable for open structure transmission line, such as microstrip line and asymmetric coplanar waveguide, etc. This dissertation has calculated the phase constant of the microstrip line, coplanar waveguide and asymmetric coplanar waveguide using2D finite difference frequency domain of NPML, and the asymmetric coplanar waveguide with via hole is analyzed for the first time through this algorithm. Because of the poor accuracy of finite difference frequency domain in the characteristic impedance calculation, the wave equation as interpolation function is added in the finite difference frequency domain to improve the accuracy of the algorithm.
     In the practical application, the study of discontinuous of asymmetric coplanar waveguide can not be overstepped. This dissertation mainly researches on asymmetric coplanar waveguide bend. First, the mode conversion of asymmetric coplanar waveguide is investigated through finite difference frequency domain and finite difference time domain. Second, through analyzing the mode conversion of three kinds of asymmetric coplanar waveguide and coplanar waveguide bends, it is noted that the energy conversion of asymmetric coplanar waveguide between modes is smaller compared with coplanar waveguide. That means the asymmetric coplanar waveguide bend can transmit signal better. Third, for verifying the low transmission loss of asymmetric coplanar waveguide, a new test fixing is proposed and designed by taking advantage of different field distribution of different modes. According to the characteristics of asymmetric coplanar waveguide, a novel coplanar waveguide is proposed by combining the transformation unit between asymmetric coplanar waveguide and coplanar waveguide. The experiment shows the novel coplanar waveguide bend restrain the energy conversion effectively, and it has low transmission loss.
引文
[1]Heaviside oliver. On induction between parallel wires. Telegraph Engineers,1880,9(34): 427-458.
    [2]Russell Alexander. The mathematical theory of the magnetic field round a circular current, and allied problems. Electrical Engineers,1929,67(389):655-664.
    [3]Schelkunoff S A. Coaxial communication transmission lines. Electrical Engineering,1934, 53(12):1592-1593.
    [4]Kemp John. Wave guides in electrical communication. Electrical Engineers,1943,90(11): 90-114.
    [5]Moullin E B. The propagation of electric waves in a rectangular wave guide. Electrical Engineers,1945,92(51):142-144
    [6]Willoughby EO, Williams EM. Attenuation curves for 2:1 rectangular, square and circular wave guides. Electrical Engineers,1946,93(4):723-724.
    [7]Whitmer Robert M. Radiation from a Dielectric Wave Guide. Journal of Applied Physics, 1952,23(9):949-953.
    [8]栾秀珍,房少军,金红,邰佑诚.微波技术.北京:北京邮电大学出版社.
    [9]Grieg D D. Microstrip-A New Transmission Technique for the Klilomegacycle Range. Proceedings of the IRE,1952,40(12):1644-1650.
    [10]Wen C P. Coplanar waveguide:A surfaces strip transmission line suitable for nonreciprocal gyro-magnetic device applications. IEEE Trans. on MTT.1969,17(12): 1087-1090
    [11]Sain A, Melde K L. Broadband Characterization of Coplanar Waveguide Interconnects With Rough Conductor Surfaces. Components, Packaging and Manufacturing Technology,2013,3(6): 1038-1046.
    [12]Cheng Yu Jian, Bao Xiao Yue, Guo Yong Xin. LTCC-Based Substrate Integrated Image Guide and Its Transition to Conductor-Backed Coplanar Waveguide. Microwave and Wireless Components Letters,2013,23(9):450-452.
    [13]Endo Y, Fukushima M, Arai K, Yanagi K. Measurement of GHz range magnetic field distribution near a coplanar waveguide using a beating field-type magnetic force microscope. Journal of Applied Physics,2014,115(17):17D120-17D120-3
    [14]Vahabisani N, Daneshmand M. Monolithic Wafer-Level Rectangular Waveguide and Its Transition to Coplanar Waveguide Line Using a Simplified 3-D Fabrication Process. Components, Packaging and Manufacturing Technology,2013,4 (1):168-176.
    [15]Nguyen T T L, Kim S D. Millimeter-Wave Small-Signal Model Using A Coplanar Waveguide De-Embedded Sub-Model for HEMT. Microwave and Wireless Components Letters,2014,24(2): 99-101.
    [16]Hua M J, Wang P, Zheng Y, Yuan S L. Compact tri-band CPW-fed antenna for WLAN/WiMAX applications. Electronics Letters,2013,49(13):1118-1119.
    [17]Naser Moghadasi M, Sadeghzadeh R, Asadpor L, Virdee B S. A Small Dual-Band CPW-Fed Monopole Antenna for GSM and WLAN Applications. Antennas and Wireless Propagation Letters, 2013,12:508-511.
    [18]Deepak U, Roshna T K, Nijas C M, Mohanan P. Compact CPW fed electrically small antenna for WLAN application. Electronics Letters,2014,50(2):62-64.
    [19]Vogel R W. Analysis and design of lumped- and lumped-distributed element directional couplers for MIC and MMIC applications. IEEE Trans. on MTT.,1992,40(2):253-262.
    [20]Liao Chun-Lin, Chen Chun Hsiung. A novel coplanar-waveguide directional coupler with finite-extent backed conductor. Microwave Theory and Techniques,2003,51(1):200-206.
    [21]Tounsi M L, Touhami R, Yagoub M C E. Hybrid-mode analysis of bilateral multilayered anisotropic CPW couplers. Electrical and Computer Engineering,2007,32(2):103-111.
    [22]Chang C L, Tseng C H. New compact Ka-band CPW rat-race coupler using GaAs MMIC technology. Electronics Letters,2013,49 (19):1227-1229.
    [23]Hettak K, Morin G A, Stubbs M G. Compact MMIC CPW and asymmetric CPS branch- line couplers and Wilkinson dividers using shunt and series stub loading. Microwave Theory and Techniques,2005,53(5):1624-1635.
    [24]Kuo C-Y, Chen A Y K, Lee C M, Luo C H. Miniature 60 GHz slow-wave CPW branch- line coupler using 90 nm digital CMOS process. Electronics Letters,47(16):924-925.
    [25]Lu Fan, Ho C-H, Kanamaluru S, Kai Chang. Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde's CPW-slot couplers. Microwave Theory and Techniques,1995, 43(12):2749-2758.
    [26]Park Jae-Hyoung, Kim Hong-Teuk, Choi Wooyeol. V-band reflection-type phase shifters using micromachined CPW coupler and RF switches. Microelectromechanical Systems,2002, 11(6):808-814.
    [27]Kim Hong-Teuk, Ko Won, Kim Dae-Hyun. CPW MMIC coupler based on offset broadside air-gap coupling fabricated by standard airbridge processes. Electronics Letters,2001,37(6): 358-359.
    [28]Haroun I, Wight J, Plett C. Experimental Analysis of a 60 GHz Compact EC-CPW Branch-Line Coupler for mm-Wave CMOS Radios. Microwave and Wireless Components Letters,2010,20(4): 211-213.
    [29]Daisuke Kurita, Keren Li. Multi-layered Ultra-wideband (UWB) BandPass Filters. Proeeedings of the 38th European Microwave Conference,2008:845-848.
    [30]Yeh L K, Chen C Y, Chuang H R. A Millimeter-Wave CPW CMOS On-Chip Bandpass Filter Using Conductor-Backed Resonators. Electron Device Letters,2010,31(5):399-401.
    [31]Mernyei F, Aoki I, Matsuura H. MMIC bandpass filter using parallel-coupled CPW lines. Electronics Letters,30(22):1862-1863.
    [32]Nedil M, Denidni T A, Djaiz A. Ultra-wideband microstrip to CB-CPW transition applied to broadband filter. Electronics Letters,2007,43(8):464-466.
    [33]Liu H W, Yoshimasu T, Sun L L. CPW bandstop filter using periodically loaded slot resonators. Electronics Letters,2006,42(6):352-353.
    [34]Mernyei F, Aoki I, Matsuura H. New filter element for MMICs:triple coupled CPW lines. Electronics Letters,1994,30(25):2150-2151.
    [35]Zhang N B. Method to design microwave band-stop filter based on CPW. Electronics Letters, 2011,47(7):450-451.
    [36]Al-Khateeb L, Safia 0 A. Dual-band bandpass filter based on CPW series-connected resonators. Electronics Letters,2013,49(12):761-762.
    [37]No Jin-Won, Hwang Hee-Yong. A Design of Cascaded CPW Low-Pass Filter With Broad Stopband. Microwave and Wireless Components Letters.2007,17(6):427-429.
    [38]Martin F, Falcone F, Bonache J. Dual electromagnetic bandgap CPW structures for filter applications. Microwave and Wireless Components Letters,2003,13(9):393-395.
    [39]Hanna V Fouad, Thebault D. Analysis of asymmetrical coplanar waveguides. INT. J. Electronies,1981,50(3):221-224.
    [40]李晓明.非对称共面波导等阻抗特性及其应用的研究:(博士学位论文).大连:大连海事大学,2011.
    [41]房少军.非对称共面波导的特性及其场结构图的研究:(博士学位论文).大连:大连海事大学.
    [42]陈鹏.利用时域有限差分法计算并分析非对称共面波导色散特性:(博士学位论文).大连:大连海事大学
    [43]Zhao Yong-Jiu, Wu Ke-Li, Cheng Kwok-Keung M. A compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures. Microwave Theory and Techniques.,2002,50(7):1844-1848.
    [44]Hwang Jiunn-Nan. A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer. Microwave Theory and Techniques.,53(2): 653-659.
    [45]Tu Wen-Hua, Chang Kai. Compact microstrip bandstop filter using open stub and spurline. Microwave and Wireless Components Letters,2005,15(4):268-270.
    [46]Kang H D, Ha J, Koh E. Wideband power line isolation using open stub structures. Electronics Letters,2013,49(13):821-823.
    [47]Diamond J M. Shorted Stubs of High Resonant Impedance. Proceedings of the IRE,1952, 40(2):188-189.
    [48]Prasad Sheila, Dastidar P M. The radiation resistance of off-set series slots in microstrip line. IEE-IERE Proceedings,1976,14(1):16-19.
    [49]Giauffret Laurent, Laheurte J M, Papiernik A. Study of various shapes of the coupling slot in CPW-fed microstrip antennas. Antennas and Propagation,1997,45(4):642-647.
    [50]Javadzadeh S M H, Farzaneh F, Fardmanesh M. Nonlinear Circuit Model for Discontinuity of Step in Width in Superconducting Microstrip Structures and Its Impact on Nonlinear Effects. Applied Superconductivity,2013,23(2).
    [51]Neidert R E. Large-microstrip-step-discontinuity model useful to 10 GHz. Electronics Letters,2007,11(20):478-479.
    [52]Feix N, Lalande M, Jecko B. Harmonical characterization of a microstrip bend via the finite difference time domain method. Microwave Theory and Techniques,1992,40(5): 955-961.
    [53]Lee Jongjoo, Kim Jingook, Yu Sungkyu. Picosecond time-domain characterization of CPW bends using a photoconductive near-field mapping probe. Microwave and Wireless Components Letters,2002,11(11):453-455.
    [54]Nantista C, Kroll N M, Nelson E M. Design of a 90° overmoded waveguide bend. Particle Accelerator Conference,1993:983-985.
    [55]Hanna V. Fouad and Thebault D. Theoretical and experimental investigation of asymmetrical coplanar waveguides, IEEE Trans. on MTT.,1984,32(12):1649-1651.
    [56]Katazawa T. Quasi-static characteristic of asymmetrical and coupled coplanar type transmission lines. IEEE Trans. on MTT.,1985,33(10):771-778.
    [57]Ghione G. A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs, IEEE Trans. on MTT.,1993,41(9):1499-1510.
    [58]Shao-jun Fang, Bai-suo Wang. Analysis of Asymmetric Coplanar Wavegnide with Conductor Backing. IEEE Trans. MTT.,1999,47(2):238-240.
    [59]Gorur A, Karpuz C. Analytic formulas for conduetor-baeked asymmetric CPW with one lateral ground plane. Microwave and Optical Technology Letters,1999,22(2):123-126.
    [60]Gorur A, Karpuz C. Effect of finite ground-plane widths on quasi-static parameters of asymmetrical coplanar waveguides. IEE proc. Micro. Antennas propag.,2000(10):343-347.
    [61]Chi-Hsueh Wang, Huei Wang, Chun Hsiung Chen. An extended short-open calibration technique for multimode analysis of asymmetric coplanar-waveguide discontinuities. Proeeedings of APMC2001:437-440.
    [62]房少军,王百锁.面向CAD的非对称共面波导模型及分析.电子学报,2002(6):804-807.
    [63]陈鹏,房少军.基于时域有限差分法计算共面波导的特性阻抗[J].大连海事大学学报,2005(3):74-76
    [64]陈鹏,房少军.利用时域有限差分法计算并分析非对称共面波导色散特性.电子学报,2006(9):1610-1612
    [65]Fan Mujie, Fang Shao-jun, Wang En-cheng, Fu Shi-qiang, Chen Peng. Analysis of charaeteristic impedance of asymmetrical coplanar waveguide using multi-resolution time domain method[C]. MAPE2007, Hangzhou, China,2007,8:370-373.
    [66]Chen Peng, Fang Shaojun. Research of ACPW Using FDTD Method Based on Mur-PML Absothing Boundary Condition. ISAPE2008, Kunrning, China,2008,11:1096-1099.
    [67]Wang Zhongbao, Fang Shaojun. ANN Synthesis models for asymmetric coplanar waveguides with finite dielectric thickness. Chinese Journal of Electronics,2012,21(4),759-763.
    [68]Fu S Q, Fang S J, Wang Z B, Li X M. Broadband Circularly polarized Slot Antenna Array Fed by Asymmetric CPW for L-Band Applications. IEEE Antenna sand Wireless Propagation Letters,2009,8:1014-1016.
    [69]陈鹏,房少军,范木杰,等.非对称共面波导—槽线转接器S参数的分析与计算.大连海事大学学报,2009,35(1):36-38.
    [70]陈鹏,李晓明,房少军,等.一种超宽带非对称共面波导—槽线转接器的研究.电波科学学报,2010,25(3):559-563.
    [71]范木杰,房少军,苏晓宏.一种新型非对称共面波导滤波器的设计与仿真.太原理工大学学报,2011,42(2):138-140.
    [72]Pozar D M.微波工程.北京:电子工业出版社,2006.
    [73]庞小峰.生物电磁学.北京:国防工业出版社,2008
    [74]鲁述,徐鹏根.电磁场边值问题解析方法.武汉:武汉大学出版社,2005.
    [75]杨儒贵.高等电磁理论.北京:高等教育出版社,2008.
    [76]Harrington R F. Field Computation by Moment Methods. New York:McMillan,1968
    [77]Taflove A and Hagness S C. Computational Electrodynamics:The Finite-Difference Time-Domain. New York:Artech House,2000.
    [78]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [79]张文生.科学计算中偏微分方程有限差分法.北京:高等教育出版社,2006.
    [80]王秉中.计算电磁学.北京:科学出版社,2002.
    [81]Binns K J and Lawrenson P J. Analysis and computation of electric and magnetic field problem. Pergamon Press Oxford,1963.
    [82]Hyun S Y, Kim S Y and Kim Y S. An efficient FDTD model for resistively loaded cylindrical antennas with coaxial lines. IEEE Trans. Antennas Propagat.,2009,57(2):484-490.
    [83]Li X S, Luo F and Hu B J. FDTD analysis of radiation performance of a cylinder plasma antenna. IEEE Antennas Wireless Propagat. Lett.,2009,8:756-758.
    [84]Sani A, Zhao Y, Hao Y, et al. An efficient FDTD algorithm based on the equivlance principle for analyzing onbody antenna performance. IEEE Trans. Antennas Propagat.,2009, 57(4):1006-1014.
    [85]Wang J H. Research on the radiation characteristics of patched leaky coaxial cable by FDTD method and mode expansion method. IEEE Trans. Vehicular Tech.,2008,57(1):90-96.
    [86]Yang X and Sullivan D M. Under water FDTD simulation at extremely low frequencies. IEEE Antennas Wireless Propagat. Lett.,2008,7:661-664.
    [87]Caudle B T, Baginski M E, Kirkici H et al. Three-Dimensional FDTD Simulation of Nonlinear Ferroelectric Materials in Rectangular Waveguide. IEEE Trans. On Plasma Science,. 2013,41(2):365-370.
    [88]Su Hsin-Hsiang, Kuo Chih-Wen and Kitazawa T. A Novel Approach for Modeling Diodes Without Reducing the Time Step in the FDTD Method.2013,3(9):1506-1511.
    [89]Wang Jianbao, Zhou Bihua, Shi Lihua et al. Analyzing the Electromagnetic Performances of Composite Materials With the FDTD Method. IEEE Trans. on 2013,61(5):2646-2654.
    [90]Ha Sang-Gyu, Cho Jeahoon, Choi Jaehoon, et al. FDTD Dispersive Modeling of Human Tissues Based on Quadratic Complex Rational Function. IEEE Trans. on Antennas and Propagation,2013, 61(2):996-999.
    [91]Ou Naiming, Bai Ming, Liang Bin, et al. The Analysis of Periodic Structures With 2-D-Staggered Grid by FDTD Algorithm. IEEE Trans. on Antennas and Propagation.,2013,61(1): 290-298.
    [92]Haffa S, Hollmann D and Wiesbeck W. The finite difference method for S-parameter calculation of arbitrary three-dimensional structures. IEEE Trans. Microwave Theory Tech. 1992,40(8):1602-1610.
    [93]Rappaport C M and McCartin B J. FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes. IEEE Trans. Antennas Propagat. 1991,39(3):345-349.
    [94]Klingbeil H, Beilenhoff K and Hartnagel H L. FDFD full-wave analysis and modeling of dielectric and metallic losses of CPW short circuits. IEEE Trans. Microwave Theory Tech., 1996,44(3):485-487.
    [95]Morgenthaler A W and Rappaport C M. Scattering from lossy dielectric objects buried beneach randomly rough ground:validating the semi-analytic mode matching algorrthm with 2-D FDFD. IEEE Trans. Geosci. Remote Sensing.,2001,39(11):2421-2428.
    [96]Ramahi 0 M, Subramanian V and Archambeault B. A simple finite-difference frequency-domain (FDFD) algorithm for analysis of switching noise in printed circuit boards and packages. IEEE Trans. Advanced packaging,2003,26(2):191-198.
    [97]Xu F, Wu K and Hong W. Equivalent resonant cavity model of arbitrary periodic guided-wave structures and its application to finite-difference frequency-domain algorithm. IEEE Trans. Microwave Theory Tech.,2007,55 (4):697-702.
    [98]Wang X H and Wang B Z. Propagation characteristic of periodic guided wave structures with a compact finite-difference frequency-domain method. Microw. Opt. Tech. Lett.,2008, 50(7):1941-1944.
    [99]Cwikla A, Mrozowski M and Rewienski M. Finite-difference analysis of a loaded hemispherical resonator. IEEE Trans. Microwave Theory Tech.,2003,51(5):1506-1511.
    [100]Luo G Q, Hong W, Hao Z C, et al. Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology. IEEE Trans. Antennas Progapat., 2005,53(12):4035-4043.
    [101]Luo G Q, Hong W, Tang H J, et al. High performance frequency selective surface using cascading substrate integrated waveguide cavities. IEEE Microw. Wireless Compon. Lett., 2006,16(12):648-650.
    [102]Dong Q and Rappaport C M. Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion. IEEE Trans. Geosci. Remote Sensing,2009,47(11): 3664-3670.
    [103]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation,1966, AP-14(3):302-307.
    [104]Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Transactions on Electromagnetic Compatibility,1981, EMC-23(4):377-382.
    [105]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics,1994,114:185-200.
    [106]Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics,1996,127:363-379.
    [107]Sacks Z S, Kingsland D M, Lee R, Lee J F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Transactions on Antennas and Propagation, 1995,43:1460-1463.
    [108]Gedney S D. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans. Antennas Propagat.,1996,44(12):1630-1639.
    [109]CUMMER S A. A simple, nearly perfectly matched layer for general electromagnetic media. IEEE Microwave Wireless Components Lett.,2003,13(3):128-130.
    [110]HU W Y and CUMMER S A. The nearly perfectly matched layer is a perfectly matched layer. IEEE Microwave Wireless Components Lett.,2004,3(1):137-140.
    [111]Li Ling-Yun and Mao Jun-Fa. An Improved Compact 2-D Finite-Difference Frequency-Domain Method for Guided Wave Structures. IEEE Trans. on MTT.,2003,13(12), 520-522.
    [112]张祺,周希郎,沈文辉.圆金属波导传输特性的2-D频域有限差分法分析.微波学报,2005,21(2):12-19.
    [113]Zheng Gang and Wang Bing-Zhong. A High-Order Compact 2D FDFD Method for Waveguides. International Journal of Antennas and Propagation,2012,1-6.
    [114]Scarlatti A, Holloway C L. An equivalent transmission-line model containing dispersion for high-speed digital lines-with an FDTD implementation. Electromagnetic Compatibility,2001,43(4):504-514.
    [115]Prescott D T, Shuley N V. Reducing solution time in monochromatic FDTD waveguide simulations. Microwave Theory and Techniques,1994,42(8):1582-1584.
    [116]Hikage T, Omiya M, Itoh K. Considerations on performance evaluation of cavity-backed slot antenna using the FDTD technique. Antennas and Propagation,2001,49(12):1712-1717.
    [117]Namiki T, Ito K. Numerical simulation using ADI-FDTD method to estimate shielding effectiveness of thin conductive enclosures. Microwave Theory and Techniques,2001,49(6): 1060-1066.
    [118]Luebbers R, Penney C. Scattering from apertures in infinite ground planes using FDTD. Antennas and Propagation,1994,42(5):731-736.
    [119]Chi en-Nan Kuo, Houshmand B, Itoh T. Full-wave analysis of packaged microwave circuits with active and nonlinear devices:an FDTD approach. Microwave Theory and Techniques,1997, 45(5):819-826.
    [120]Sullivan D M. Electromagnetic simulation using the FDTD method. New York:IEEE Press, 2000.
    [121]Chew W C and Weedon W H. A 3-D perfectly matched medium for modified Maxwell's equations with coordinates. Micro. Opt. Tech. Lett.,1994,7:257-260.
    [122]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2005.
    [123]Tien C C, Tzuang C C, Peng S T, et al. Transmission Characteristics of Finite-Width Conductor-Backed Coplanar Waveguide. IEEE Trans Microwave Theory and Techniques,1993, 41(9):1616-1624.
    [124]Tripathi V K. Asymmetric coupled transmission lines in an inhomogeneous medium. IEEE Trans Microwave Theory and Techniques,1975,23(9):734-739.
    [125]Sidney F. Characteristic Impedance of Parallel Wires in Rectangular Troughs. Proceedings of the IRE,1942,30(4):182-190.
    [126]Shuai Chung-jiang. The Quadric FEM analysis of characteristic impedance in microstrip line of homogeneous dielectric. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference,2011,1:79-81.
    [127]Lukasz Kulas, Michal Mrozowski. Simple and accurate field interpolation in finite difference methods. Microwave Radar and wireless communication,2006,711-714.
    [128]李晓明,房少军,付世强.一种非对称共面波导相位补偿弯曲结构.电波科学学报,2011,26(1):84-89.
    [129]张卉,王均宏.奇模抑制孔缝阵列速度补偿型弯曲共面波导.电波科学学报,2009,24(2):228-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700